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Abstract
It has been reported that there are seven different types of coronaviruses realized by
individuals, containing those responsible for the SARS, MERS, and COVID-19
epidemics. Nowadays, numerous designs of COVID-19 are investigated using different
operators of fractional calculus. Most of these mathematical models describe only
one type of COVID-19 (infected and asymptomatic). In this study, we aim to present
an altered growth of two or more types of COVID-19. Our technique is based on the
ABC-fractional derivative operator. We investigate a system of coupled differential
equations, which contains the dynamics of the diffusion between infected and
asymptomatic people. The consequence is accordingly connected with a
macroscopic rule for the individuals. In this analysis, we utilize the concept of a
fractional chain. This type of chain is a fractional differential–difference equation
combining continuous and discrete variables. The existence of solutions is recognized
by formulating a matrix theory. The solution of the approximated system is shown to
have a minimax point at the origin.

Keywords: Fractional calculus; Fractional differential equation; Fractional derivative
chains; COVID-19; Transformations

1 Introduction
It is very significant to present the mathematical simulations of infectious viruses for a
better assessment of their survival, constancy, and control. As the traditional methodolo-
gies of mathematical representations do not conclude the high gradation of truthfulness to
describe these diseases, fractional calculus, including fractional differential, integral, and
hybrid (mixed integral-differential and differential-integral) equations, was introduced to
avoid such difficulties (for some recent works, see [1–4]). All fractional operators have var-
ious applications in practical areas like construction problems, optimization issues, artifi-
cial intelligence, optics, medical identification, automation, biology, and numerous other
fields. In the previous few decades, fractional calculus has been utilized in the mathemati-
cal description of biological phenomena. This is for the reason that arbitrary calculus can
clarify and establish the existence of custom properties of numerous materials truthfully
compared to ordinary simulations. For further presentations about fractional calculus in
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biostatistics, bioinformatics, biomedical and biomathematical systems, we refer to the re-
cent papers [5–9].

Henceforward, the above-mentioned information is presented and studied from numer-
ous viewpoints, namely we present a qualitative study, optimization theory, and numerical
analysis. Therefore, investigators extended the traditional calculus to the generalized cal-
culus modeling, using different mathematical procedures. Nowadays, many researchers
have deliberated mathematical representations of COVID-19 under the fractional calcu-
lus (see the very recent publications in this direction [10–17]). Using the current data from
European and African countries, Atangana and Araz offered different statistical analyses
[18–20]. Moreover, Atangana and Araz [21] presented a numerical mathematical model-
ing system utilizing the Newton polynomial. Other approaches can be found in [21–30].

We investigate the growth of two or more coexisting types of COVID-19. The ABC-
fractional derivative operator formalizes our procedure. We deal with a system of coupled
differential equations, which contains the dynamics of the diffusion between infected and
asymptomatic populations. The outcome is accordingly associated with a macroscopic
rule for the individuals. Moreover, this analysis is formulated with the concept of a frac-
tional chain. This type of chain is a fractional differential–difference equation combining
continuous and discrete variables. The existence of solutions is established by formulating
a matrix theory. Some numerical results are illustrated in the sequel.

The rest of the paper is organized as follows: Sect. 2 presents the methodology that will
be used in our study; Sect. 3 describes the results and discussion of the suggested model;
Sect. 4 provides the conclusion and directions for future works.

2 Methodology
2.1 ABC-definition
The elementary viewpoint and appearances of fractional calculus and its applications are
realized in numerous assessments and evaluations. Most studies on the fractional calculus
contain kernels. For example, the main difference between the Caputo differential opera-
tor, the Caputo–Fabrizio operator [31], and others is that the Caputo differential operator
is associated with a power law, the Caputo–Fabrizio differential operator is modified by
employing an exponential growth term. Atangana–Baleanu differential operator is formu-
lated by suggesting the generalized Mittag-Leffler function [32].

Definition 2.1 Let �α , α ∈ (0, 1) be the Atangana–Baleanu differential operator of order
α of a function g having the structure

�αg(t) =
D(α)
1 – α

∫ t

0
g ′(τ )�α

(
–α

1 – α
(t – τ )α

)
dτ , t ∈ [0,∞),

where D(α) denotes a normalization function, while Eα indicates the Mittag-Leffler func-
tion

Eα(η) =
∞∑

n=0

ηn

�(αn + 1)
.

Associated with �α , the ABC integral is realized by

�αg(t) =
(1 – α)
D(α)

g(t) +
α

D(α)�(α)

∫ t

0
g(τ )(t – τ )α–1 dτ .
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Example 2.2 The function g(t) = tκ has the ABC integral

�αtκ =
(1 – α)
D(α)

tκ +
α�(κ + 1)

D(α)�(κ + 1 + α)
tκ+α .

In our study, since we focus on the approximated solutions, we assume that D(α) → 1,
for all α ∈ (0, 1).

2.2 Infected dynamics
We assume that T(t) is the total number of infected individuals, which characterizes the
sum of two numbers, the customary infected individuals χ (t) and those involved in the
asymptomatic transmission ϒ(t), so that T(t) = χ (t) +ϒ(t). We take into account that χ (t)
includes people who were previously sick. Consequently, there are frequency functions,
combining χ and ϒ . In this study, we assume that T contains two sets of variables: con-
tinuous time variables and multiple discrete variables, namely numbers of infected and
asymptomatic. Since COVID-19 has multiple faces, we may assume that T has chain de-
scriptions in both categories of the variables. Two faces of COVID-19 have the description
T(m, n, t, s), where (m, n) ∈ N

2 are the discrete variables and (s, t) ∈ R
2, s ≤ t are the con-

tinuous variables. One can extend the functional T into three faces as T(m, n, k, t, s,�), and
so on for finite faces, when we have T(m1, . . . , mj, t1, . . . , tj), where (m1, . . . , mj) ∈N

j are the
discrete variables and (t1, . . . , tj) ∈R

j.

2.3 ABC-fractional chain
In general, a chain is an integrable differential–difference equation joining at least one
continuous variable and one discrete variable. The first derivative of this chain is used to
suggest a system of differential equations. A fractional chain was formulated for the first
time by using the Riemann–Liouville differential operator (see [33]). Based on this idea, we
improve the fractional chain using a fractional differential operator for several continuous
and discrete variables, namely the ABC-fractional differential operator.

In this part, we use the above information to define the ABC-fractional chain. We deal
with a two-dimensional functional T. That is, T has two discrete variables, as well as two
continuous variables. Similarly, for the extension to higher dimension. Define the ABC-
fractional chain as follows:

�α
t T(m, n, t, s) =

(
1

T(m + 1, n, t, s) – T(m – 1, n, t, s)

)
, (2.1)

whereT(m, n, t, s) is a function depending on discrete and continuous variables (m, n) ∈N
2

(discrete variables) and (t, s) ∈ R
2 (continuous variables), and �α

t is Atangana–Baleanu
differential operator of order α with respect to the continuous variable t. Moreover, we
consider the lowest order of (2.1) to be structured by

�α
s T(m, n, t, s)

=
T(m + 2, n, t, s)

(T(m + 1, n, t, s) – T(m – 1, n, t, s))2(T(m + 2, n, t, s) – T(m, n, t, s))(T(m, n, t, s) – T(m – 2, n, t, s))

–
T(m – 2, n, t, s)

(T(m + 1, n, t, s) – T(m – 1, n, t, s))2(T(m + 2, n, t, s) – T(m, n, t, s))(T(m, n, t, s) – T(m – 2, n, t, s))
(2.2)
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where �t�sT = �s�tT. To present the dynamic system, we have the following construc-
tion: by using (2.1), we have

T(m – 2, n, t, s) =
(
T(m, n, t, s) –

1
�α

t T(m – 1, n, t, s)

)
,

T(m – 1, n, t, s) =
(
T(m + 1, n, t, s) –

1
�α

t vm,n

)
,

T(m + 2, n, t, s) =
(
T(m, n, t, s) +

1
�α

t T(m + 1, n, t, s)

)
.

(2.3)

Substituting (2.3) into (2.2), we get the nonlinear system

�α
s 
 = �α

t
(
�α

t 

)

+ 2
(
�α

t 

)2

�α
t � ,

�α
s � = –�α

t
(
�α

t �
)

+ 2
(
�α

t �
)2

�α
t 
,

(2.4)

where 
 := T(m, n, t, s) and � := T(m + 1, n, t, s). In view of (2.1), we have the transmission
information

(
T(m, n, t, s),T(m + 1, n, t, s)

) → (
T(m + 1, n, t, s),T(m + 2, n, t, s)

)
, (2.5)

(
T(m – 1, n, t, s),T(m, n, t, s)

) → (
T(m, n, t, s),T(m + 1, n, t, s)

)
. (2.6)

Hence, we get the transformations

(



�

)
→

(
�


 + 1
�α

t �

)
(2.7)

and
(




�

)
→

(
� – 1

�α
t 





)
. (2.8)

System (2.4) represents the dynamics of multi-face of COVID-19, where m is the number
of sick people on the recent face, while n is for the previous face. We suppose that the
previous face is eliminated or terminated completely. But, there are some countries, still
suffering from the two faces, where the previous face has not completely disappeared, yet.
In this case, we suggest another dynamical system.

2.4 Shifted dynamic system
Clearly, Eqs. (2.1) and (2.2) impose the discrete equation of the structure

(
T(m, n, t, s) – T(m + 1, n + 1, t, s)

)(
T(m + 1, n, t, s) – T(m, n + 1, t, s)

)
+ � = ℘, (2.9)

where � and ℘ are fixed constants. Equation (2.9) indicates the KdV-type and pKdV-type
equations. Also, (2.1) and (2.2) imply the symmetry of (2.9). Hence, the conclusion is that
there exists a function �(t, s) such that

�α
t � = 0, �α

s � = 0, (2.10)
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where

�(t, s) :=
(
T(m, n, t, s) – T(m + 1, n + 1, t, s)

)(
T(m + 1, n, t, s) – T(m, n + 1, t, s)

)

+ � – ℘. (2.11)

Consequently, we have the shifted quantities

φ = T(m, n + 1, t, s), ψ = T(m + 1, n + 1, t, s). (2.12)

Thus, we obtain the shifted dynamical system

�α
s φ = �α

t
(
�α

t φ
)

+ 2
(
�α

t φ
)2

�α
t ψ ,

�α
s ψ = –�α

t
(
�α

t ψ
)

+ 2
(
�α

t ψ
)2

�α
t φ.

(2.13)

Combining (2.4) and (2.13), we have

(
 – ψ)(� – φ) = ð, ð := ℘ – �. (2.14)

Equation (2.10) can be written in the up–down shifted form with respect to m, namely

(
T(m + 1, n, t, s) – T(m + 2, n + 1, t, s)

)

× (
T(m + 2, n, t, s) – T(m + 1, n + 1, t, s)

)
= ð (2.15)

and

(
T(m – 1, n, t, s) – T(m, n + 1, t, s)

) × (
T(m, n, t, s) – T(m – 1, n + 1, t, s)

)
= ð. (2.16)

Utilizing Eq. (2.1), we get

T(m + 2, n, t, s) = 
 +
1

�α
t �

, T(m + 2, n + 1, t, s) = φ +
1

�α
t ψ

, (2.17)

and

T(m – 1, n, t, s) = � +
1

�α
t 


, T(m – 1, n + 1, t, s) = ψ +
1

�α
t φ

. (2.18)

From (2.15) and (2.16), we have

(
� – φ –

1
�α

t ψ

)(

 – ψ –

1
�α

t �

)
= ð (2.19)

and

(
� – φ –

1
�α

t v

)(

 – ψ –

1
�α

t φ

)
= ð. (2.20)
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System (2.13) indicates the dynamics of multi-face COVID-19, where m is the number
sick people on the recent face and n is the number of the previous face, which is not ter-
minated yet. Both systems (2.4) and (2.13) can be generalized into j faces. Moreover, one
can generalize the above systems by using the 1D-parametric structure as follows:

(
T(m + ν, n, t, s) – T(m + 1 + ν, n, t, s)

)

× (
T(m + ν + 1, n, t, s) – T(m + ν, n, t, s)

)
= ðν , (2.21)

where ν is an arbitrary integer. Similarly, for the shifted system. From (2.21), we have the
system

(
 – ψ)(� – φ) = ðν , (2.22)

where 
 = T(m + ν, n, t, s),� = T(m + ν + 1, n, t, s) and T(m + ν, n + 1, t, s) = φ,T(m + ν +
1, n + 1, t, s) = ψ . In addition, 2D-parametric structure can be realized by considering a
new parameter for n to become

(
T(m + ν, n + μ, t, s) – T(m + 1 + ν, n + μ + 1t, s)

)

× (
T(m + ν + 1, n + μ, t, )s – T(m + ν, n + μ + 1, t, s)

)
= ðν,μ, (2.23)

which implies the system

(
 – ψ)(� – φ) = ðν,μ. (2.24)

3 Results and discussion
In this section, we investigate the stability of systems (2.4) and (2.13). We have the follow-
ing results for system (2.4), which can be extended to system (2.13).

Theorem 3.1 Consider system (2.4). Then system (2.4) has a minimax point.

Proof System (2.4) can be reduced to the matrix system

(
�α

s 


�α
s �

)
=

(
a 2b
2c –a

)(
�α

t 


�α
t �

)

(
a := �α , b :=

(
�α

t 

)2, c :=

(
�α

t �
)2).

The above system can be approximated at the fixed point of �α
t 
 and �α

t � to obtain the
linear system

(
�α

s 


�α
s �

)
=

(
a 2b
2c –a

)(



�

)
. (3.1)

The eigenvalues of this system are

λ1,2 = ±√
a2 + 4bc, a2 + 4bc > 0, (3.2)
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which correspond to the eigenvectors

V1,2 =
(

–
(–a ± √

a2 + 4bc)
2c

, 1
)

.

Hence, the critical point is a saddle point (minimax point) satisfying

max(
,�0) = (
0,�0) = min(
0,�). (3.3)�

Corollary 3.2 The solution of system (2.13) satisfies

(min sup)m,n,t,s(
,�) = (sup min)m,n,t,s(
,�). (3.4)

Proof By Theorem 3.1, the origin is a solution of system (2.13) satisfying

max(
,�0) = (
0,�0) = min(
0,�), (3.5)

where (sup)m,n,t,s(
, ·) is the lower value in dom(�) and (min)m,n,t,s(·,�) is the upper value
in dom(
). Hence, we obtain the desired assertion. �

Remark 3.3
• Note that this point represents the transmission from one face to another of the

coronavirus. The ordinary case of system (3.1) is known as the Wilson–Cowan
system, which is utilized in formulating neuronal or cell population [34].

• The rate of expansion can be evaluated by the formula [34]

R :=
∂t
� ∗ �, (3.6)

where � is the is the speed of waves from the origin, ∂t = t – s, and � indicates the
period of the periodic solution (the number of the recent face of the coronavirus).
Wilson and Cowan evaluated the average of the speed by letting � = 22.4 mm/s. Using
system (3.1), the rate can be recognized by a fractional derivative

Rα(
) :=
�α

s 


� ∗ 22.4, Rα(�) :=
�α

s �

� ∗ 22.4. (3.7)

• In view of Theorem 3.1, system (3.7) has a minimum point. Figure 1 shows two
important cases, a global minimum and a local minimum.

Example 3.4 Consider system (2.4), and set

υ(s) :=
(
�α

t
(
�α

t 

)

+ 2
(
�α

t 

)2

�α
t �

)

and

ω(s) :=
(
–�α

t
(
�α

t �
)

+ 2
(
�α

t �
)2

�α
t 


)
.
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Figure 1 Parametric plot of the eigenvalues of system (2.13). The first row indicates the global minimum,
when b = c, while the second row represents the local minimum, when a = 1,b 
= c

Then the solution can be formulated by the integral system of equations, with the initial
condition 
0 = 0,�0 = 0,


 =
(1 – α)
D(α)

υ(s) +
α

D(α)�(α)

∫ s

0
υ(τ )(s – τ )α–1 dτ , (3.8)

� =
(1 – α)
D(α)

ω(s) +
α

D(α)�(α)

∫ s

0
ω(τ )(s – τ )α–1 dτ . (3.9)

Figure 2 presents the behavior of the solution for different values of α ∈ (0, 1]. The behavior
of the solution shows the minimax point at the origin. The solution is approximated at the
maximum case, when α → 1, by


 =
1

10
c1e–

√
5t((5 +

√
5)e2

√
5t + 5 –

√
5
)

+
c2e–

√
5t(e2

√
5t – 1)√

5
, (3.10)

� =
c1e–

√
5t(e2

√
5t – 1)√

5
–

1
10

c2e–
√

5t((
√

5 – 5)e2
√

5t – 5 –
√

5
)
. (3.11)
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Figure 2 Slope field of solutions of the system (2.4). The solution is approximated at the maximum case,
when α → 1, where α ∈ (0, 1], x-axis is 
 and y-axis is �

4 Conclusion
The minimax point theorem is one of the greatest significant consequences of the math-
ematical analysis theory. It indicates that there is a technique, which together minimizes
the maximum loss (sick people) and maximizes the minimum improvement (healthy peo-
ple). Roughly speaking, there is an approach, which normal people would take supposing
the worst-case situation.

Summarizing the above analysis, we have formulated a new mathematical technique
based on fractional calculus with the ABC-derivative operator. We formulated a system
that satisfies multiple faces of the coronavirus. The total number is suggested as a contin-
uous function of time, which is discrete in the number of faces. We used an approximation
method to analyze the system. We recognized that the solution possesses a minimax point.
This point indicates the termination of the recent face and realizes a new face of the corona
virus.
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