
fcvm-09-989091 September 10, 2022 Time: 13:27 # 1

TYPE Original Research
PUBLISHED 14 September 2022
DOI 10.3389/fcvm.2022.989091

OPEN ACCESS

EDITED BY

Xiang Li,
Harvard Medical School, United States

REVIEWED BY

Shen Zhao,
Sun Yat-sen University, China
Gongning Luo,
Harbin Institute of Technology, China

*CORRESPONDENCE

Mingxing Xie
xiemx@hust.edu.cn
Wufeng Xue
xuewf@szu.edu.cn
Li Zhang
zli429@hust.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cardiovascular Imaging,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 08 July 2022
ACCEPTED 22 August 2022
PUBLISHED 14 September 2022

CITATION

Zhu Y, Ma J, Zhang Z, Zhang Y, Zhu S,
Liu M, Zhang Z, Wu C, Yang X,
Cheng J, Ni D, Xie M, Xue W and
Zhang L (2022) Automatic view
classification of contrast
and non-contrast echocardiography.
Front. Cardiovasc. Med. 9:989091.
doi: 10.3389/fcvm.2022.989091

COPYRIGHT

© 2022 Zhu, Ma, Zhang, Zhang, Zhu,
Liu, Zhang, Wu, Yang, Cheng, Ni, Xie,
Xue and Zhang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Automatic view classification of
contrast and non-contrast
echocardiography
Ye Zhu1,2,3†, Junqiang Ma4,5†, Zisang Zhang1,2,3,
Yiwei Zhang1,2,3, Shuangshuang Zhu1,2,3, Manwei Liu1,2,3,
Ziming Zhang1,2,3, Chun Wu1,2,3, Xin Yang6, Jun Cheng4,5,
Dong Ni4,5, Mingxing Xie1,2,3*, Wufeng Xue4,5* and
Li Zhang1,2,3*
1Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Clinical Research Center for Medical Imaging in Hubei
Province, Wuhan, China, 3Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China,
4National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China, 5School
of Biomedical Engineering, Health Science Center, Shenzhen University and Medical Ultrasound
Image Computing (MUSIC) Lab, Shenzhen, China, 6Media and Communication Lab (MC Lab),
Electronics and Information Engineering Department, Huazhong University of Science
and Technology, Wuhan, China

Background: Contrast and non-contrast echocardiography are crucial for

cardiovascular diagnoses and treatments. Correct view classification is a

foundational step for the analysis of cardiac structure and function. View

classification from all sequences of a patient is laborious and depends

heavily on the sonographer’s experience. In addition, the intra-view variability

and the inter-view similarity increase the difficulty in identifying critical

views in contrast and non-contrast echocardiography. This study aims to

develop a deep residual convolutional neural network (CNN) to automatically

identify multiple views of contrast and non-contrast echocardiography,

including parasternal left ventricular short axis, apical two, three, and four-

chamber views.

Methods: The study retrospectively analyzed a cohort of 855 patients who

had undergone left ventricular opacification at the Department of Ultrasound

Medicine, Wuhan Union Medical College Hospital from 2013 to 2021,

including 70.3% men and 29.7% women aged from 41 to 62 (median age, 53).

All datasets were preprocessed to remove sensitive information and 10 frames

with equivalent intervals were sampled from each of the original videos.

The number of frames in the training, validation, and test datasets were,

respectively, 19,370, 2,370, and 2,620 from 9 views, corresponding to 688, 84,

and 83 patients. We presented the CNN model to classify echocardiographic

views with an initial learning rate of 0.001, and a batch size of 4 for 30 epochs.

The learning rate was decayed by a factor of 0.9 per epoch.

Results: On the test dataset, the overall classification accuracy is 99.1 and

99.5% for contrast and non-contrast echocardiographic views. The average
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precision, recall, specificity, and F1 score are 96.9, 96.9, 100, and 96.9% for the

9 echocardiographic views.

Conclusions: This study highlights the potential of CNN in the view

classification of echocardiograms with and without contrast. It shows promise

in improving the workflow of clinical analysis of echocardiography.

KEYWORDS

echocardiography, contrast, view classification, convolutional neural network,
artificial intelligence (AI)

Introduction

Transthoracic echocardiography is one of the most
important non-invasive imaging techniques, with the
advantages of non-radiation, easy bedside operation, and
real-time evaluation (1). With changes in relative position
between the transducer and the patient, sonographers obtain
multiple views from different perspectives. In particular, the
apical views and short axis views are most commonly used in
routine clinical workflows (1, 2). Currently, view classification is
the prerequisite for the post-processing and analysis of cardiac
structure and function. However, it generally depends on the
sonographer’s experience and is time-consuming especially
for large datasets. It is a challenging task due to the inter-view
similarity, intra-view variability and noise.

Earlier research adopted classical machine learning
algorithms to classify echocardiograms with multiple views.
They generally extracted features using the Histogram of
Oriented Gradients (HOG) (3), Bag of Word (BoW) (4, 5),
and classified echocardiography view using the Support Vector
Machine (SVM) (3–7). Current studies have mainly focused on
Convolutional neural networks (CNNs), which have brought
about a series of breakthroughs for medical image analysis (8,
9). CNNs tend to recognize visual patterns from raw image
pixels in an end-to-end learning process. The initial layers are
used to observe local geometric structures (such as edges, blobs,
etc.), whereas the neurons in the higher layers focus more on the
global distribution of human organs. A large number of studies
have confirmed the feasibility and accuracy of CNNs with
various depth in echocardiographic view classification (10–13).
For a closer look of the echocardiographic images, Madani et al.
has used U-Net to extract the regions of interest, improving
the signal-to-noise ratio. The precision and efficiency of the
network were further promoted (14). Echocardiography has
rich temporal domain information, while single CNNs only
focuses on spatial location information. A study indicated that
the dense optical flow technique represented temporal motion
information, building two strands of CNNs with temporal-
spatial information fusion and improving classification accuracy
from 89.5% of single CNN to 92.1% of the fusion network (12).
In addition, several studies optimized the algorithm based on

CNNs, ensuring the classification accuracy and significantly
improving efficiency. CNNs can be used to facilitate automatic
multiplanar reformation and orientation guidance (15) and
deploy on mobile devices for downstream analysis (16).
CNNs simplify the image processing process, assist novices in
identifying standard images, reduce observer variability, and
improve analyzing efficiency.

Existing studies have mainly focused on two-dimensional
grayscale or Doppler echocardiograms (3–7, 10–16). Most
of them dealt with common cardiac views: apical two-
chamber (A2C), apical three-chamber (A3C) and apical
four-chamber (A4C), as well as the parasternal short-axis
(PSAX). Although extensive studies have been carried out on
conventional echocardiography, no single study focuses on
the view classification of contrast echocardiography. Contrast
echocardiography significantly enhances the boundaries of
the left ventricular endocardium, which has great clinical
significance in the quantification of cardiac function (2).
In addition, contrast echocardiography effectively reduces
missed diagnoses of apical hypertrophic cardiomyopathy (17),
intracardiac thrombi, and non-compaction cardiomyopathy
(18). However, the contrast agent fills the heart cavity, making
the mitral valve ring obscure, which increases the difficulty of
identifying the primary views. Therefore, this study sets out to
evaluate the discriminative capability of CNNs in identifying
the PSAX, A2C, A3C, A4C views from non-contrast or contrast
echocardiographic videos.

Materials and methods

Study design

All datasets were collected from 855 patients who underwent
left ventricular opacification at the Department of Ultrasound
Medicine, Wuhan Union Medical College Hospital from
2013 to 2021. This study was approved by the Ethics
Committee of Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China. In the study
population, 70.3% are male and 29.7% are female, aging
from 41 to 62 with a median age of 53. Indications of
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TABLE 1 Baseline characteristics.

Variable All (N = 855) Training (N = 688) Validation (N = 84) Testing (N = 83)

Demographics

Age (years) 53 (41, 62) 53 (40, 62) 53 (42, 62) 51 (43, 63)

Sex (male) 601 (70.3%) 476 (69.2%) 65 (77.4%) 59 (71.1%)

Indication

Myocardial hypertrophy 360 (42.0%) 285 (41.4%) 37 (44.0%) 38 (45.8%)

NCM 85 (9.9%) 61 (8.9%) 11 (13.1%) 13 (15.7%)

DCM 17 (2.0%) 12 (1.7%) 3 (3.6%) 2 (2.4%)

NCM & DCM 32 (4.0%) 29 (4.0%) 2 (2.4%) 1 (1.2%)

RWMA 118 (13.8%) 98 (14.2%) 13 (11.9%) 7 (8.4%)

Others 243 (28.4%) 203 (29.5%) 18 (21.4%) 22 (26.5%)

Data are expressed as median (interquartile range) or number (%). NCM, non-compaction of ventricular myocardium; DCM, dilated cardiomyopathy; RWMA, regional wall motion
abnormality; Others, other conditions that required contrast echocardiography.

TABLE 2 Distribution of the clip number in the dataset.

Class Training Validation Testing Total

2DE.A2C 222 (2,220) 28 (280) 28 (280) 278 (2,780)

2DE.A3C 233 (2,330) 31 (310) 30 (300) 294 (2,940)

2DE.A4C 219 (2,190) 25 (250) 30 (300) 274 (2,740)

2DE.PSAX 226 (2,260) 29 (290) 31 (310) 286 (2,860)

C2DE.A2C 224 (2,240) 29 (290) 30 (300) 283 (2,830)

C2DE.A3C 182 (1,820) 20 (200) 26 (260) 228 (2,280)

C2DE.A4C 221 (2,210) 25 (250) 30 (300) 276 (2,760)

C2DE.PSAX 223 (2,230) 24 (240) 29 (290) 276 (2,760)

Other 187 (1,870) 26 (260) 28 (280) 241 (2,410)

Total 1,937 (19,370) 237 (2,370) 262 (2,620) 2,436 (24,360)

For training, validation and testing datasets, clips are from separate echocardiographic videos. The numbers in parentheses indicate the number of images. 2DE, two-dimensional
echocardiography; C2DE, contrast two-dimensional echocardiography; A2C, apical 2-chamber; A3C, apical 3-chamber; A4C, apical 4-chamber; PSAX, parasternal left ventricular short
axis; Other, including parasternal left ventricular long axis, pulmonary artery long axis, and major artery short axis.

left ventricular opacification in routine clinical practice are
shown in Table 1. Each sample consisted of data from the
echocardiographic examination of a patient, including M-mode,
two-dimensional, three-dimensional, Doppler and other still
images or videos. The echocardiograms were mainly acquired
with GE Vivid E9, Philips iE33, IE Elite, EPIQ 7C, and
EPIQ 5.

Data preprocessing

The echocardiograms were stored in DICOM format.
This study mainly analyzed two-dimensional grayscale
videos (contrast and non-contrast echocardiography). All
videos are anonymized.

The PSAX and apical views play an essential role in the
diagnosis and treatment of cardiovascular diseases. The PSAX
view focuses on mitral valve and left ventricular wall motion.
The A2C, A3C, and A4C views are mainly used to assess cardiac
structure and function comprehensively. Moreover, it is of

incremental value for detecting apical abnormalities in contrast
echocardiography. Thus, the dataset was divided into nine
categories, including the above-mentioned views of contrast
and non-contrast echocardiograms, and an additional class
including all the rest views (parasternal left ventricular long axis,
pulmonary artery long axis, and major artery short axis views,
etc.). All views included diverse image quality and were reviewed
independently by two experts. Low-quality and inefficient videos
were excluded (contrast echocardiography with underfilling or
echocardiography with the incompletion of heart chambers).

The dataset consisted of video clips from the 10 temporally
sampled frames with equivalent intervals from each of the
original sequences. Considering the different types of equipment
for image acquisition, all clips were downsampled to 256 × 256
pixels by linear interpolation and the intensity is normalized
into [0, 1]. Quality control is carried out by random sampling
the preprocessed clips, to ensure that the dataset did not contain
sensitive information. To maintain sample independence, all
samples were randomly split into training, validation and test
datasets in an approximate 8:1:1 ratio. The training dataset was
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used for model development. The validation dataset was used
for tuning model parameters, and the testing dataset was used
for evaluating the performance of the final model. The training,
validation, and test datasets included 688, 84, and 83 studies,
respectively (corresponding to 1,937, 237, and 262 clips from
9 views). The datasets are derived from real world data. The
distribution of each dataset is shown in Table 2.

View classification model architecture
and training process

View classification tasks were mainly performed by CNNs.
This study chose the deep residual network with 34 layers (called
EchoV-Net) to classify 9 classes of echocardiographic views.
Numerous studies have demonstrated that the residual network
(ResNet) can improve accuracy from considerably increased
depth (19). EchoV-Net was developed based on ResNet, as
shown in Table 3. We conducted comparative experiments
to validate the performance. The detailed results are listed in
Table 2 and Figure 1 of Supplementary materials. The overview
diagram of view classification task is shown in Figure 1. For
echocardiographic view classification, the model was trained
to minimize the cross-entropy loss between the true label and
prediction using an Adam optimizer with an initial learning rate
of 0.001, and a batch size of 4 for 30 epochs. The learning rate
was decayed by a factor of 0.9 each epoch. The 10 frames of
each video were used as the model input. The final model was
selected with the lowest loss of the validation dataset. The model
was implemented on the software Python (version 3.7.10) and
PyTorch (version 1.7.1), and on the server with one NVIDIA
GeForce RTX3090 GPU and 24GB of memory.

Model evaluation and visualization

In the process of video classification, we evaluated 10
sampled images of each video, averaged the results, and
assigned the video to the class with the maximum probability.
The four metrics, namely accuracy, precision (also called
“positive predictive value”), recall (also called “sensitivity”),
specificity, and F1-score were used to evaluate the classification
performance of EchoV-Net. All metrics were calculated
separately in a single category (cardiac view), with the current
category defined as a positive class, and the other 8 categories
as negative classes. The overall accuracy is defined as the ratio
of the number of correctly classified videos to the number
of all samples. The top-1 accuracy is defined as the accuracy
of the first prediction category that matched the true label.
The top-2 accuracy is defined as the accuracy of the first two
prediction categories that matched the true label. The precision
is defined as the number of correctly classified positive samples
divided by the number of true positive samples. The recall is

TABLE 3 The architecture of EchoV-Net.

Layer name Output size Feature map

Conv1 128× 128 5× 5, 64, stride 2

Conv2 64× 64 3× 3 max pool, stride 2 3 × 3, 64

3 × 3, 64

 × 3

Conv3 32× 32

 3 × 3, 128

3 × 3, 128

 × 4

Conv4 16× 16

 3 × 3, 256

3 × 3, 256

 × 6

Conv5 8× 8

 3 × 3, 512

3 × 3, 512

 × 3

1× 1 Average pool, 9-d fc, softmax

defined as the number of correctly classified positive samples
divided by the number of all positive samples. The specificity
is defined as the correctly classified negative samples divided by
all the negative samples. The F1-score is the harmonic average
of precision and recall. Additionally, confusion matrices are
calculated and plotted as heatmaps to visualize the results of
multi-view classification.

Accuracy =
TP+ TN

TP + FP + TN + FN

Precision =
TP

TP+ FP

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

F1− score = 2 ×
Precision × Recall
Precision+ Recall

The following strategies enhanced the interpretability of the
classification model. The feature obtained by EchoV-Net was
visualized using t-distributed stochastic neighbor embedding
(t-SNE). t-SNE is a non-parametric dimensionality reduction
technique that visualizes high-dimensional data by giving
each sample a location in a two or three-dimensional map
(20). In addition, gradient-weighted class activation mapping
(Grad-CAM) was created to explain which critical anatomical
structures (regions of the pixel) that affect image classification
results (21).

Re-evaluation by another expert

Due to fatigue and the similarity of views, there is
inherent variation when observers explain echocardiograms,
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FIGURE 1

Schematic diagram of echocardiographic view classification.

especially the apical views. Another expert specializing in
cardiovascular imaging performed a blinded review of the
samples, when there was disagreement between the initial
label and the prediction by EchoV-Net. The expert received
the paired echocardiograms and a set of labels including the
initial human label and the prediction by EchoV-Net, and
then tried to decide which label corresponded more closely
to his or her evaluation of echocardiographic views. When
reviewing the prediction results, experts recorded the reasons
for misclassification of samples, such as poor image quality or
contrast agent underfilling.

Statistical analysis

All analyses were performed with R (version 4.1.2) or
Python (version 3.7). The Kolmogorov-Smirnov test was used
to assess the normality of patients’ age. Continuous variables
were presented as the median (1st and 3rd interquartile
range) and categorical variables were shown as frequency (%).
The accuracy, precision, recall, specificity and F1-score were
described as percentages. A value of P < 0.05 was considered
statistically significant. The classification model was developed
using the PyTorch package (22). DICOM images were processed
by Pydicom and OpenCV 3.0.

Results

Our model successfully distinguished non-contrast and
contrast echocardiographic views (as shown in the confusion
matrix in Figure 2). The numbers on the diagonal are the
number of correctly classified videos. On the test dataset, 96.9%
(254 out of 262) of the videos are correctly classified. The top-1
accuracy of the model for the 2DE view is 99.5%, and it is 99.1%
for the C2DE views (Figure 3).

The evaluation of the view classification is shown in Table 4.
The A2C and A3C for 2DE and A4C and PSAX for C2DE are

FIGURE 2

The confusion matrix demonstrated the results of view
classifications within the test dataset. Numbers along the
diagonal line represented successful classifications, while
non-diagonal entries were misclassified. 2DE, two-dimensional
echocardiography; C2DE, contrast two-dimensional
echocardiography; A2C, apical 2-chamber; A3C, apical
3-chamber; A4C, apical 4-chamber; PSAX, parasternal left
ventricular short axis; Other, including parasternal left ventricular
long axis, pulmonary artery long axis, and major artery short axis.

fully correctly classified. However, the recall of PSAX in 2DE and
A2C and A3C in C2DE are reduced to 93.55, 93.33, and 92.31%,
respectively.

All metrics of the model are above 95% at the single video
level. For the nine target views (i.e., A2C, A3C, A4C, PSAX
and Other), the averages overall accuracy, top-2 accuracy, recall,
precision, specificity, and F1 score are 97.0, 98.9, 96.9, 96.9,
100.0, and 96.9%, respectively.

The output of the fully connected layer in EchoV-
Net is further interpreted by t-SNE (Figure 4) and Grad-
CAM (Figure 5), showing obvious cluster results, and the
classification criterion is consistent with the anatomical
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FIGURE 3

The accuracy of the classification model on the test dataset.

TABLE 4 The results of view classification on the test dataset.

Cardiac view Precision Recall Specificity F1 score

2DE.A2C 96.55 100.00 99.60 98.25

2DE.A3C 100.00 100.00 100.00 100.00

2DE.A4C 96.67 96.67 99.60 96.67

2DE.PSAX 100.00 93.55 100.00 96.67

C2DE.A2C 93.33 93.33 99.10 93.33

C2DE.A3C 92.31 92.31 99.20 92.31

C2DE.A4C 96.77 100.00 99.60 98.36

C2DE.PSAX 96.67 100.00 99.60 98.31

Other 100.00 96.43 100.00 98.18

2DE, two-dimensional echocardiography; C2DE, contrast two-dimensional echocardiography; A2C, apical 2-chamber; A3C, apical 3-chamber; A4C, apical 4-chamber; PSAX, parasternal
left ventricular short axis; Other, including parasternal left ventricular long axis, pulmonary artery long axis, and major artery short axis.

structure discerned by the cardiac sonographer. The Grad-
CAM visual experiments indicate that the CNNs focus more
on the mitral valve structure, the left ventricular outflow
tract, and the cross of ventricle and atrium in A2C, A3C,
and A4C, respectively. In addition, compared with non-
contrast echocardiography, contrast echocardiography has a
clearer cardiac contour, thus the regions of interest for
CNNs focus more on the cardiac chamber cross junction
(Supplementary materials and Figure 4). The F1 score of
A4C in C2DE is 98.4%, and only 96.7% in 2DE (shown in
Table 4).

Blinded reviews are performed for inconsistent results
(shown in Table 5 and Figure 6). One expert with more than
5 years of clinical experience notes that 50% (4 out of 8) of
the videos have considerable flaws and 37.5% (3 out of 8) of
videos have incomplete cardiac structure, making it hard for the
expert to identify the view. However, one video is misclassified

by EchoV-Net despite good image quality. The expert prefers the
initial human label in 87.5% (7 out of 8) cases based on the most
likely outcomes (top-1 prediction). For one video, the expert
prefers the prediction of EchoV-Net to the human label.

Discussion

Echocardiographic view classification is the basis of
the analysis and interpretation of echocardiography.
The above target views are the standard views
recommended by the guidelines for clinical diagnosis.
In this study, we proposed a CNN-based automatic
echocardiographic view classification system, which
classified the PSAX and A2C, A3C, and A4C views
of contrast and non-contrast echocardiography. The
system was developed by a training set of 688 cases
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FIGURE 4

t-SNE visualization of view classification. On the left, each image was plotted in 2-dimensional space from 256 × 256 pixels by principal
component analysis (PCA). The results showed that the data had no clear clustering pattern. On the right, the features of the fully connected
layer of the CNN model (EchoV-Net) were projected to two-dimensional space by t-SNE, displaying that images were recognized into specific
view categories.

FIGURE 5

Original images and the results of EchoV-Net visualization of the most related regions for view recognition. (A) 2DE.A2C, (B) 2DE.A3C, (C)
2DE.A4C, (D) 2DE.PSAX, (E) C2DE.A2C, (F) C2DE.A3C, (G) C2DE.A4C, (H) C2DE.PSAX, and (I) Other. 2DE, two-dimensional echocardiography;
C2DE, contrast two-dimensional echocardiography; A2C, apical 2-chamber; A3C, apical 3-chamber; A4C, apical 4-chamber; PSAX, parasternal
left ventricular short axis; Other, including parasternal left ventricular long axis, pulmonary artery long axis, and major artery short axis.

containing 19,370 echocardiographic images. In the
independent testing set of 83 cases with 2,620 images,
the experimental results show that EchoV-Net accurately
classified target views in contrast and non-contrast
echocardiography, laying a foundation for subsequent
AI-based cardiac function assessment and cardiovascular
disease diagnoses.

Several factors lead to unsatisfactory view classification
results. The intra-view variability of echocardiograms of
the same cardiac view exists due to individual variations
among subjects, different acquisition parameters (angle,
depth, transducer performance, etc.), and the sonographer’s
experience. The inter-view similarity of echocardiograms
of different cardiac views exists due to similar information
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TABLE 5 Videos with the discordance between model prediction and human label.

Video Human label Top-1 prediction Top-2 prediction Expert results

565-14.dcm 2DE.A4C 2DE.A2C 2DE.PSAX 2DE.A4C

509-39.dcm 2DE.PSAX 2DE.A4C C2DE.PSAX 2DE.PSAX

554-9.dcm C2DE.A3C C2DE.A2C C2DE.A4C C2DE.A3C

504-29.dcm Other C2DE.PSAX Other Other

558-47.dcm C2DE.A2C C2DE.A3C C2DE.A2C C2DE.A2C

306-29.dcm C2DE.A3C C2DE.A2C C2DE.A3C C2DE.A3C

172-53.dcm C2DE.A2C C2DE.A3C C2DE.A2C C2DE.A3C

314-62.dcm 2DE.PSAX C2DE.A4C 2DE.PSAX 2DE.PSAX

FIGURE 6

Misclassified samples. (A–D) Were of poor image quality. (E–G) Showed incomplete cardiac structures. (H) Was actually 2DE.PSAX, the top-1
prediction was C2DE.A4C, but the top-2 prediction was 2DE.PSAX.

(e.g., valve and ventricular wall movement, left ventricle,
etc.). The contrast agent fills the cavity of the left ventricle,
enhancing visualization of endocardium boundaries, but it
obscures the mitral valve, aortic valve and other structures,
making it hard to which may the classifiers to distinguish
A2C from A3C in C2DE. Besides, echocardiograms are
mainly derived from positive cases, the abnormalities in
cardiac anatomy increase the heterogeneity of the data.
The speckle noise and clutter noise lower the clarity of
the images, limiting the accuracy of view classification.
For the PASX views in 2DE, the patient’s poor acoustic
window makes it hard to identify the myocardium of the
left ventricle. For the poor quality and low-level contrast
images, it is necessary for experts to play an active role
in quality control. What’s more, in the retrospectively
collected data, view distribution is imbalanced. All the
above-mentioned issues increase the difficulty in classifying
the key echocardiographic views in contrast and non-contrast
echocardiography.

The size and image quality of echocardiograms are
essential for the development and validation of a model.

In this study, we used a large dataset with a wide
range of image quality that ensured data diversity and
independence, making our model more robust to noise and
poor image quality. However, in terms of computational
efficiency, there is no comprehensive solution. A study
carried out by Vaseli et al. attempted to overcome this
problem. They adopted an knowledge distillation approach
to compress the model and improve the efficiency of
echocardiographic view classification (23). AI is often
considered as a “black box,” which is challenging to
understand, and thus we improved the interpretability
of this model through several visualization methods,
which showed that the model automatically classified
echocardiograms depending on interpretable clinical
features. The results indicate that the AI tasks have the
potential to improve the work efficiency of sonographers
and provide support for high-throughput analysis of
echocardiography.

In future work, more echocardiographic views (e.g.,
parasternal long-axis views of the left ventricle, apical five-
chamber view, etc.) need to be incorporated into our model,
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in addition to the frequently used ones. More high-quality
and multimodal echocardiograms are expected to be used
to improve the echocardiographic view classification system.
In addition, we will continue exploring the causes of non-
standard echocardiography to develop man-machine interactive
quality control AI system and improve the performance of
view classification.

Conclusion

The main goal of the current study is to determine the
feasibility and effectiveness of CNNs in view classification for
contrast and non-contrast echocardiography. The results show
that the EchoV-Net achieves expert-level view classification
and accurately identifies the main categories in contrast-
enhanced and non-contrast echocardiography. This study
is expected to accelerate the automatic interpretation
of contrast echocardiography and expand the clinical
application of contrast echocardiography. In the future,
the model also is expanded to classify other modalities of
echocardiographic views (e.g., to distinguish colors, continuous-
waves, pulsed-waves Doppler echocardiography), which has
foundational significance for research, clinical practice, and
sonographers’ training.
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