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ABSTRACT

Most ab initio pseudoknot predicting methods pro-
vide very few folding scenarios for a given RNA
sequence and have low sensitivities. RNA resear-
chers, in many cases, would rather sacrifice the
specificity for a much higher sensitivity for pseudo-
knot detection. In this study, we introduce the
Pseudoknot Local Motif Model and Dynamic
Partner Sequence Stacking (PLMM_DPSS) algorithm
which predicts all PLM model pseudoknots within an
RNA sequence in a neighboring-region-interference-
free fashion. The PLM model is derived from the
existing Pseudobase entries. The innovative DPSS
approach calculates the optimally lowest stacking
energy between two partner sequences. Combined
with the Mfold, PLMM_DPSS can also be used in
predicting complicated pseudoknots. The test
results of PLMM_DPSS, PKNOTS, iterated loop mat-
ching, pknotsRG and HotKnots with Pseudobase
sequences have shown that PLMM_DPSS is the most
sensitive among the five methods. PLMM_DPSS also
provides manageable pseudoknot folding scenarios
for further structure determination.

INTRODUCTION

Most RNA secondary structure prediction approaches are
thermodynamic energy minimization methods (1,2), such as
Mfold and Vienna RNA packages implemented with Zuker’s
dynamic programming algorithm based on the thermodyn-
amic model (3,4). These methods do not predict pseudoknots.
Pseudoknots are RNA structure elements formed upon stan-
dard base-pairing of a loop region with residues outside
that loop (Figure 1) (5). The pseudoknot database Pseudobase
has two types of pseudoknots (6): the H-type which has only
two cross-pairing stems and the complicated type which
contains recursively cross-pairing (more than two) stems.
In the September 2005 Pseudobase, 229 out of 238 unique
entries are H-type pseudoknots. Even though pseudoknots
are involved in <5% of overall RNA base-pairing, they
have various important biological functions (5). Among
many important functions, pseudoknots are essential for

some virus ribosome entry sites (7), are crucial in promoting
frameshifting (8-14) and are critically related to some
diseases (15).

The two main approaches for pseudoknot prediction are
comparative methods and ab initio methods. Comparative
methods in general are more accurate, but they require a
high level of homologous sequence similarities; thus they
are not applicable for many novice sequence structure predic-
tions (16,17). The ab initio pseudoknot prediction methods
can be applied to all RNA sequences and are important
tools for RNA research. The ab initio pseudoknots-included
RNA structure prediction methods, mainly various modifi-
cations of Zuker’s algorithm, predict pseudoknots in the
context of the entire RNA sequence; therefore these methods
are often time consuming. PKNOTS, with the gap matrix
approach and time complexity O(n®®), searches for the
pseudoknot-included RNA secondary structure with the
optimally lowest energy (18); the NUPACK partition func-
tion algorithm with time complexity O(n’) considers only
the H-type pseudoknots (19).

Currently, there are two efficient pseudoknot predicting
methods, pknotsRG and iterated loop matching (ILM). These
two methods use heuristic approaches and simple pseudoknot
models to reduce time cost (20,21). The pknotsRG (the
pknotsRG-enf version) with O(n*) time complexity uses a
simple pseudoknot model with three canonical rules and priori-
tizes the pseudoknot stem (pseudo-stems) detection. ILM with
O(n) time complexity uses the ILM method that heuristically
picks a stem-forming region pair according to the local optima.

All of these methods provide just one folding scenario per
sequence, and they tune the prediction performance by bal-
ancing the sensitivity and the specificity. RNA researchers,
in many cases, would rather compromise specificity for
higher sensitivity. They would like to be given a group of
folding scenarios per sequence with a high confidence that
a structure of interest (e.g. a pseudoknot) would be included
if theoretically possible. Once an exhaustive range of pseudo-
knot possibilities has been provided, the determination of
a pseudoknot could then be conducted through filtration
with knowledge, chemical probing, mutagenesis and other
means. HotKnots is the most recent method that uses a
heuristic approach in exploring alternative pseudoknot-
included secondary structures for a given sequence (22).
HotKnots provides multiple folding possibilities, but the
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Figure 1. A typical H-type pseudoknot. S; and S, denote stem 1 and stem 2;
L;, L, and L3 denote loop 1, loop 2 and loop 3.

choices are not exhaustive and it might miss the actual
pseudoknot structures.

Despite several efforts to estimate free energy parameters
for pseudoknot loops (23-26), there is still no solid
understanding of the pseudoknot folding mechanism (27).
Recently, Aalbert et al. (25) have reported that pseudoknots
have very specific local sequence restrictions and that short
loop 2 in H-type pseudoknots play an important role in stabi-
lizing the pseudoknot structure. Cao et al. (26) have studied
the pseudoknot loop thermodynamics through the experi-
mentally determined atomic coordinates and have suggested
that pseudoknot stem lengths are closely related to the loop
lengths. Based on the above results, we believe that pseudo-
knots can be searched through a local motif model.

Short loop 2 size (12size) is not only favorable in stabiliz-
ing pseudoknot structure (25), but also is the key to forming
the pseudoknot-specific knot-like structure. In Pseudobase,
>90% of pseudoknots have 12size < 2. Because short
12sizes are crucial to ensure the sequence pattern specificity
for the Pseudoknot local motif (PLM) model construction,
we have focused only on pseudoknots with 12sizes < 2,
and will ignore those pseudoknots with 12size > 2 until
we have better understanding about their sequence pattern
specificities.

In this study, based on our previously designed Similar
enRiched Parikh Vector Searching (SRPVS) algorithm for
the protein intrasequence inversed repeats study (28), we
have developed the Pseudoknot Local Motif Model
and Dynamic Partner Sequence Stacking (PLMM_DPSS)
algorithm for pseudoknot prediction. The purpose of
PLMM_DPSS is to allow biologists to identify interactions
which can be tested experimentally. The PLM model is con-
structed based on 182 H-type pseudoknots in the Pseudobase.
DPSS, a modification of the dynamic programming for
sequence alignment algorithm (29), calculates the lowest
stacking energy between two potential stem-forming regions.
Even though the current PLM model is derived only from
H-type pseudoknots, it can also be applied to complicated
pseudoknots searching if we view a complicated pseudoknot
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Table 1. The longest loop 2 sizes and other related data in 182 Pseudobase
H-type pseudoknots (data for longer stem 1 5’ regions is omitted here)

Stem 1 5’ Maximum stem 1 Longest
region size energy (kcal/mole) loop 2 size
2 -3.3 0

3 —0.2 0

3 —4.7 1

4 —32 0

4 —6.4 1

4 —7.6 2

Table 2. The PLM model parameters derived from the data in Tablel

Stem 1 5 Stem 1| energy lower  Stem 1 energy upper  Loop 2 size
region size  bound (kcal/mole) bound (kcal/mole) upper Bound
2 —00 -3.3 0

3 —4.7 —0.2 0

3 —00 —4.7 1

4 —6.4 -32 0

4 —7.6 —6.4 1

4 —0 =76 2

The shortest loop 2 size in the PLM model is always 0

as a composition of a core H-type pseudoknot and some
other stems further crossing the pseudoknot stem (PK-stem)
regions. With a comprehensive PLM model, PLMM_DPSS
is guaranteed to be highly sensitive because it simply sear-
ches pseudoknot stems without any interference from the
neighboring regions.

The PLMM_DPSS web server and the Supplementary Data
including the executables, data sets and other related informa-
tion are available at http://bioinformatics.ist.unomaha.
edu:8080/x/PLMM_DPSS.html.

MATERIALS AND METHODS

PLMM_DPSS first decomposes the input sequence into
subsequences and then calculates the stacking energy value
between each subsequence pair. The subsequence pairs that
have met the PLM model size and energy requirements will
be considered as potential PK-stems and will then be paired
and assembled. Finally, PLMM_DPSS will output those
PLM-model-compatible stem pairs as predicted H-type
pseudoknots.

Pseudoknot local motif model

The PLM model was constructed from the Pseudobase in
September 2005 (6). Out of a total of 238 unique entries,
we have excluded the redundant pseudoknots (>85% similar-
ity), unnatural SELEX pseudoknots (30), the pseudoknots
with 12size > 2 and pseudoknots with loop 1 or loop 3 sizes
>800. The PLM model is then built based on 182 H-type
pseudoknots.

In order to ensure the high sensitivity, every parameter in
the PLM model is defined to be within a fully inclusive
acceptance interval formed by the highest and the lowest
values from the data. Table 1 shows some summary data
obtained from the 182 Pseudobase H-type pseudoknots.
Table 2 illustrates the PLM model parameters based on the
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Table 3. The matrix cell components of DPSA and DPSS, given two
sequences Segx and Seqy (i and j are base locations in Segx and Seqy)

DPSA DPSS
F (i, j): score E(i, j): optimally lowest energy score from (1,1) to (i, j)
DG, j): ™\ <, 1 DG ): 1[I\, () paired], 2 [«, (i, )) paired ), 3 (T, (i, /)

paired], 4 [\, (i, /) not paired], 5 [«, (i, /) not paired ),
6 (T, (i, j) not paired]

P (i, j): P(i,j) = 1 if (i, j) forms a WC or GU base pair;
otherwise P(i, j)) = 0

[Sx (i, j), Sy (i, )]: the 5 side base pair that is closest
0 (i, j)

“N.” denotes that the path from the current cell is directed towards its upper-left
cell, ‘=" denotes that the path is directed towards the left cell, and ‘" denotes
that the path is directed towards the upper cell

data in Table 1 and reflects the relationships among stem 1 5’
region sizes, stem 1 energy values and longest loop 2 sizes in
the PLM model. For example, according to Table 1, all pseu-
doknots with stem 1 5’ region size 4 have the highest stacking
energy —6.4 if the longest loop 2 size is 1 and —7.6 if the
longest loop 2 size is 2; thus for a stem 1 with 5’ region
size 4 and energy value —6.8, its PLM model longest loop
2 size equals 1. The PK-stem energy-sum restriction is also
included in the PLM model. An example of PK-stem energy-
sum calculation is presented in the Supplementary Figure 1.

Once a pair of regions is considered as potential PLM
stem-forming regions according to their sizes, flanking region
sizes, and matched base number, DPSS will calculate the
lowest Turner’s stacking energy value (31) of the pair and
then decide whether this pair is able to form an acceptable
PLM PK-stem.

Dynamic Partner Sequence Stacking (DPSS) Algorithm

DPSS is modified from the Dynamic Programming
for Sequence Alignment (DPSA) algorithm (20). In a DPSS
matrix, each cell has four elements (Table 3). The DPSS
algorithm is deployed in Figure 2. An example of the
DPSS energy calculation process is presented in Supplemen-
tary Figure 2. The DPSS traceback step is similar to the trace-
back step in the DPSA. Given two subsequences of size v and
w, assuming v > w, the DPSS energy calculation has the time
complexity of O (v’'w) and the space complexity of O (vw).
Since the PLM stem-forming region sizes are from 2 to 21,
DPSS time and space costs could be considered as constant.

PLMM_DPSS algorithm

PLMM_DPSS uses two steps to predict pseudoknots for an
input RNA sequence seq of size n: the Stem Finding step
that locates all the potential stems within the sequence, and
the Pseudoknot Assembly step that predicts whole pseudo-
knots based on the results obtained from the Stem Finding
step (Figure 3).

An example illustrating how Pseudoknot Assembly assem-
bles the pseudo-stems into pseudoknots is presented in the
Supplementary Figure 3. The PLMM_DPSS algorithm pro-
vides all PLM-model-compatible pseudoknots for a given
sequence, while the PLMM_DPSS_lowest version provides
only one pseudoknot with the lowest PK-stem energy-sum

if there are several possible pseudoknots overlapping a
certain region.

In the worst case, the stem lists contain n® stems and each
stem pairs with a constant ¢ other stems to form c¢
pseudoknots. In this study, the PLM PK-stem region sizes
are from 2 to 21 and loop 2 sizes are from O to 2, so ¢ =
(21—2+1) x 3 = 60. Since the stem 2 5’ region ending posi-
tion is searched in sorted stem lists through binary search, the
PLMM_DPSS algorithm has the time complexity of O
(Cn*logn). The constant C = dc, where d is the DPSS energy
calculation time cost for each sequence region pair. The stem
list size and pseudoknot amount in any real sequence are
always far smaller. The PLMM_DPSS space complexity is
O(n*). PLMM_DPSS is currently implemented in JAVA
and is run under the Linux system with the Intel(R)
Xeon(TM) 1700 MHz processor and 256 KB cache size.

RESULTS AND DISCUSSION

In this study, we have tested three data sets containing
Pseudobase entries with sequence sizes <140: the pk168 con-
tains 168 H-type entries with loop 2 sizes <2; the pkCmplt
contains six complicated pseudoknots; and the pkLL2 con-
tains nine H-type pseudoknots with loop 2 size >2. Both
pkCmplt and pkLL2 contain pseudoknots not involved in
the PLM model building. Because the long loop 2-sized
pseudoknots are not typical structures and the Pseudobase
has accepted pseudoknots with different levels of structure
confirmation, we have selected into pkLL2 only those entries
with some forms of experimental confirmation or those
entries resulting from the sequence comparisons with experi-
mentally confirmed sequences. More details of pkLL2
sequence selection are in the Supplementary Table 1.

PLMM_DPSS algorithm performance

Figure 4 shows the average numbers of PLM model stems
and pseudoknots detected by PLMM_DPSS for all sequences
in pk168, pkCmplt and pkLL2 within 12 sequence size ranges
(e.g. in the lower graph of Figure 4, the average number of
pseudoknots found in the sequence length range 70-79 is
60). Although not very clear due to the lack of sequences,
the upward trends of both stem and pseudoknot numbers in
Figure 4 are close to linear. Also in Figure 4, in order to pro-
vide only the distinguished stems and pseudoknots, a stem
will not be counted if it is a substem of a bigger stem and
has higher energy value than that of the bigger stem; and a
pseudoknot will be ignored if its energy value is higher
than another pseudoknot and each of their four PK-stem
regions has an overlapping rate =80%. The highest pseudo-
knot amount is <200 for all sequences tested in Figure 4
(see Supplementary Data), so PLMM_DPSS provides a man-
ageable amount of pseudoknot candidates even with the fully
inclusive PLM model and exhaustive searching.
PLMM_DPSS has time complexity of O (Cn’logn).
Because the constant in the PLMM_DPSS time complexity
is big, the Figure 5 time cost comparisons with pk168, pkCm-
plt and pkLL2 sequences have shown that PLMM_DPSS is
slower than ILM and pknotsRG; and PLMM_DPSS is
much more efficient than PKNOTS. One would think that



Step 1: Initiation
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if' (1, 1) and (v, m) both form Watson-Crick base-pairs or GU pairs, then

E(1,1) « 000
forcfrom2tow, do

Efc, 1) « 900
forr from 2 tow, do

Eflr) <900
forcfrom1ltow,do

forr from 1 tow,do

if (e, ») forms a base-pair, then

Pler)e1
else
Pfle,r)e0
forcfrom2tow, do
forr from 2 tow,do
Efe, r) <000
else
return E (v, m) = 9.00 and skip Step 2

Step 2: Fill
fPEH=1 mm[
E@ip=
Bli-15-1)

EGj-1
E(i-1,7)

else

i PUj)=1 and D=1, 2 or 3
Sx@= |Sx(i-1,7-1 i PG,j)=0, and D=4
Sx(,j-1) if PFi,j)=0, and D=5
Sx(i-17) if Fi,j)=0, and D=6

Fif PLj)=1 and D=1 2 or 3
HED= | HG-17-1) i PEH=0 and D=4
-1 F Pj1=0, and D=5
SG-17) if P, j)=0, and D=6

E(-17-D+TES(-1,7-10, 80 -1, 7 - 1), Seqr (Sx (i =1, 7 = 1), 8), Seqp (Sp (i - L7 - 1), 7),5,.00
B, -1+ TE(Sx(, 7 -1, p(r, j - 1), Segx(Sx(d, j —1),3), Seqy (5 (4,7 - 1), /1.5)
Bl -1 )+ TE(Sx( -1, 1), i - 1, 1), Seqx(Sx( -1, 1).3), Seqy ($y (1 -1, 7, 7,300

1if PL=1 and E(,j) is oblzined from E(i-1,7-1)
29 FiLn=1 and E(,j) is obfained from E(,j-1)

DEA= 13 ¢ Rij=1 and Bp) 15 obtained from E(i—1.5)

49 Fi=0 and E(G,7) = EG-17-1)
59 PUH=0and Eij) = E{j-1
6 ff Fij)=0 and BGij) = EGi-L7)

return E fv, w)

Figure 2. Summary of DPSS algorithm. Given Segx of size v and Seqy of size w (in reversed order), Seqx (a, i) is the region in Segx flanking locations a and 7, and
Seqy (b, j) is defined similarly. E (a, b) = 9.00 indicates that no stacking is allowed at (@, b) and the TE function returns the Turner’s energy between two nearest

UAC
base pairs. The stacking energy for 5’ | |
3" AGG 5’

the exhaustive PLMM_DPSS should be slower than the
heuristic HotKnots, but since PLMM_DPSS detects only
potential pseudoknots and ignores all other folding types,
PLMM_DPSS and HotKnots have similar time costs, and
the longest time cost of PLMM_DPSS is <2 min (Figure 5).

PLMM_DPSS prediction of pk168

The PLMM_DPSS algorithm is constructed to meet the
requirements of RNA researchers who have asked for a
highly sensitive pseudoknot searching tool. In this study,
PLMM_DPSS prediction results of pk168 have been com-
pared with those of HotKnots, pknotsRG-enf, ILM and

3"is TE (U, A, ‘A’, ‘G’, C, G) = 1.1 (kcal/mole).

PKNOTS. Since PLMM_DPSS detects only the base pairs
that form PK-stems and ignores noncrossing stems, we
have used the pkl68 prediction results of the
PLMM_DPSS_Mfold and PLMM_DPSS_lowest_Mfold
packages to ensure a fair result comparison.
PLMM_DPSS_Mfold is an integration of PLMM_DPSS
and Mfold methods. PLMM_DPSS first predicts H-type pseu-
doknots for a given sequence, then will feed the sequence file
and the corresponding constraint file masking the base pairs
already predicted to the Mfold, and then will output the
base pair prediction results of both methods (see Supplemen-
tary Table 2). The PLMM_DPSS_lowest_Mfold package is
built in the same way.
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Stem Finding

Input: sequence seq of size n, PLIM model
Chutpt: sfemLists

1: forwifrom 2 to 21
forifrom1ton

get 71 (the shortest PLIWI partner region size), given 5’ region size wi
get 72 (the longest PLIM partner region size), grven 57 region size wi

forj fromi+5ton, do
energy <~ DPSS(s (1 1 +wi), s i, 7 +wi))

2

3

4

5 for wi frora il to 72, do
6

7

8 if energy is acceptable by the PLIVI model
9

store 5 @, 1 +wi) and 5 f 7 +wj) as a stem into sfemLisf fwif

Pseudoknot Assembly

Input: ster list array
Chatpt: peeudoknot list

1. for sz from 21 to 2, do
for each entry sé in stemList [527,

fory from 0 to 12 do

Iast < sti 37 region start posttion - 1 —f

VE IO W

add s#1 and 5£2 into the pseudoknot list

get I2 (the PLIVI longest loop 2 size, given sz and s£] energy)

get energy T (the PLI highest energy threshold of two pseudo-stem energy-sum)

for each 52 (stem in sfemLisf array with 5° region ending position = lzs#), do
if Es2 (sf2 energy) + Est (st] energy) € energyT, then

Figure 3. The pseudo-codes of the Stem Finding and the Pseudoknot Assembly steps. Each stemList [x] in the stemLists contains stems with the 5’ region size x
and with the 5’ region starting (also ending) base position in nondecreasing order.
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Figure 4. The average numbers of stems (upper graph) and pseudoknots
(lower graph) detected by PLMM_DPSS at 12 sequence size ranges. The
sequence data involves all sequences in pk168, pkCmplt and pkLL2.

Since both PLMM_DPSS and HotKnots provide multiple
folding scenarios for each sequence, we have summed up
base pairs from the best predicted scenarios (the highest
correctly predicted base pair number scenario per sequence)
of both PLMM_DPSS_Mfold and HotKnots (Table 4).
Even though both methods provide alternative folding scenar-
ios, PLMM_DPSS_Mfold is more sensitive than HotKnots
for pk168 because PLMM_DPSS provides exhaustive PLM
pseudoknot folding scenarios, while HotKnots is a heuristic
approach that may miss real pseudoknot structures.
PLMM_DPSS_Mfold results with the best prediction sce-
nario per pk168 entry are the most sensitive among all listed
methods in Table 4.

If a pseudoknot is considered as correctly predicted
when each of four PK-stem regions is at least partially
included, the pkl168 test results have also shown that
PLMM_DPSS has included all actual pseudoknot structures
within its prediction results while HotKnots has missed 17
pseudoknots (see the details at http://bioinformatics.ist.
unomaha.edu:8080/x/PLMM_DPSS.html).

Among all the methods that provide only one result per
entry (for HotKnots, the first folding scenario per sequence
which has the lowest overall energy is selected),
PLMM_DPSS_lowest_Mfold, which predicts only one pseu-
doknot structure with the lowest PK-stem energy-sum per
sequence, has the highest sensitivity (Table 4). Because
PLMM_DPSS is not designed to provide just one ‘most
likely’ pseudoknot folding scenario per sequence, the highly
sensitive and precise PLMM_DPSS_lowest_Mfold result for
pk168 is an unexpected encouraging bonus and suggest that
most ‘typical’ (H-type with loop 2 size <3) pseudoknots are
local-folding and are preferred structures of the natural
RNA folding mechanism.

In order to validate the PLM model, we have separated the
182 PLM pseudoknots into two data sets: pktest and pktrain.
The test data set pktest contains all 30 entries with sequence
sizes <140 and the Pseudobase identification numbers >199;
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Figure 5. Summary of the average time costs of five methods at 12 sequence size ranges. The data involves all sequences in pk168, pkCmplt and pkLL2.

Table 4. Summary of pk168 base pair prediction results and evaluations of Table 6. Summary of pkCmplt base pair prediction results and evaluations of

five methods

five methods

TP Sensitivity TP + FP  Specificity TP Sensitivity TP + FP  Specificity

(%) (%) (%) (%)
PLMM_DPSS_Mfold 1839  96.2 2301 79.9 PLMM_DPSS_Mfold 111 84.1 155 71.6
HotKnots (the best scenario) 1703  89.1 2094 81.3 HotKnots (the best scenario) 105 79.6 155 67.7
PLMM_DPSS_lowest_Mfold 1612 84.4 2308 69.8 PLMM_DPSS_lowest_Mfold 45 341 147 30.6
HotKnots (the first scenario) 1334 69.8 1926 69.3 HotKnots (the first scenario) 69 523 147 46.9
pknotsRG-enf 1449 758 2031 71.3 pknotsRG-enf 97 735 155 62.6
ILM 1244 65.1 2084 59.7 ILM 101 76.5 166 60.8
PKNOTS 1398 73.2 1935 72.3 PKNOTS 65 49.2 178 36.5

PLMM_DPSS_Mfold has two results: the PLMM_DPSS_lowest_Mfold result
and the base pair sum result from the best predicted scenario per entry with
PLMM_DPSS_Mfold; HotKnots also has two results: the base pair sum from
each first result per entry which has the lowest overall energy and the base pair
sum result from the best predicted scenario per entry. The total pk168 base pair
number is 1911. TP = number of correctly predicted base pairs; sensitivity =
TP/(the total base pair number); FP = number of wrongly predicted base pairs;
specificity = TP/(TP + FP).

Table 5. Summary of pktest base pair prediction results and evaluations of five
methods

TP  Sensitivity TP+ FP  Specificity

(%) (%)
PLMtrain_DPSS_Mfold 446  92.1 560 79.6
HotKnots (the best scenario) 420 86.8 502 83.7
PLMtrain_DPSS_lowest_Mfold 401 82.9 541 74.1
HotKnots (the first scenario) 373 77.1 496 75.2
pknotsRG-enf 291 60.1 475 61.3
ILM 300 62.0 541 55.5
PKNOTS 339 700 504 67.3

As in Table 4, PLMtrain_DPSS_Mfold and HotKnots each have two results.
The total pktest base pair number is 484.

and the training data set pktrain contains the remaining
152 entries to build the PLMtrain model. Table 5 has
shown that the prediction results of PLMtrain_DPSS_Mfold,
_Mfold, PLMtrain_DPSS_lowest_ Mfold and the other four
methods are consistent with the results in Table 4. Therefore,

As in Table4, PLMM_DPSS_Mfold and HotKnots each have two results. The
total pkCmplt base pair number is 132.

the PLM model is a robust PLM model, and PLMM_DPSS is
a highly sensitive and precisely accurate approach for short
loop 2 H-type pseudoknot prediction.

PLMM_DPSS prediction of pkCmplt

The pkCmplt prediction results have shown that the
PLMM_DPSS_Mfold results with the highest correctly pre-
dicted number of base pairs per entry are the most sensitive
among all listed methods (Table 6), so PLMM_DPSS is
also the most sensitive tool for complicated pseudoknot pre-
diction. An illustration of how PLMM_DPSS_Mfold detect a
complicated pseudoknot in pkCmplt is presented in the Sup-
plementary Table 2. The PLMM_DPSS_lowest_Mfold result,
however, is the least accurate among all methods. We have
expected such a result since complicated pseudoknots involve
more stems; so picking the most stable H-type pseudoknot
scenario alone may miss the actual folding in many cases.
The results have also shown that ILM is the second most
accurate among all listed methods and is the most accurate
among all one-scenario-per-entry methods.

PLMM_DPSS prediction of pkLL2

In theory, PLMM_DPSS will miss all pseudoknots with loop
2 size >2. However, the pkLLL2 prediction results have shown
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Table 7. Summary of pkLLL2 base pair prediction results and evaluations of
five methods

TP Sensitivity TP + FP  Specificity

(%) (%)
PLMM_DPSS_Mfold 154 642 232 66.4
HotKnots (the best scenario) 141 58.8 178 79.2
PLMM_DPSS_lowest_Mfold 119 49.6 271 439
HotKnots (the first scenario) 107 44.6 238 45.0
pknotsRG-enf 119  49.6 225 529
ILM 139 579 280 49.6
PKNOTS 124 51.7 253 49.0

As in Table 4, PLMM_DPSS_Mfold and HotKnots each have two results.
The total pkLL2 base pair number is 240.

that the PLMM_DPSS_Mfold results (with the highest
correctly predicted base pair number per pkLL2 entry) are
the most sensitive among all listed methods (Table 7).
PLMM_DPSS_MFold is able to detect long loop 2 pseudo-
knots because some pkLL2 pseudoknots have possible
PK-stem base pairs that involve bases in the loop 2 region,
a pseudoknot with short loop 2 predicted by PLMM_DPSS
may include the PK-stem base pairs of the actual long loop
2 pseudoknot. In general, all applied methods have low
sensitivities and specificities. The pkLL2 results in Table 7
have suggested that PLMM_DPSS is a broadly applicable
pseudoknot searching tool with high sensitivity.

Of all methods that predict one unique folding scenario
per sequence, the PLMM_DPSS_lowest_Mfold has fewer
correctly predicted base pairs than ILM and PKNOTS, has
the same result as pknotsRG-enf and has better results than
HotKnots.

In this study, PLMM_DPSS has been shown to be the most
sensitive pseudoknot prediction method for all pseudoknots
among all tested methods, and the PLMM_DPSS_lowest is
also the most precisely sensitive tool for predicting ‘typical’
(H-type with loop 2 size < 2) pseudoknots.

We believe that evaluations of the five methods require
more than just comparing their results in Table 4 through
Table 7. For a fair comparison, all other methods have
considered the nonpseudoknot scenarios for each given
sequence, while PLMM_DPSS considers only whether
pseudoknot structures could possibly exist for a given
sequence. The PLMM_DPSS is different from other structure
prediction tools: it answers the question ‘Is there any possi-
bility for this region to contain pseudoknots, and if so,
what are these possible pseudoknots for future structure
experiments?’ rather than ‘What is the most likely structure
for this region?’

CONCLUSIONS

The PLMM_DPSS algorithm predicts pseudoknots by
employing an innovative neighboring-region-interference-
free pseudoknot-stem searching approach. This method
allows PLMM_DPSS to provide all possible pseudoknots
that conform to the PLM model for a given sequence.
PLMM_DPSS has been proven to be more sensitive than
four leading pseudoknots prediction tools used for compari-
son. The test results have also shown that for most H-type

short loop 2 Pseudobase entries, the true pseudoknots are
those with the lowest PK-stem energy-sum. PLMM_DPSS
can also be integrated with Mfold to predict both H-type
and complicated pseudoknots. We expect that in the future,
the PLM model will be more comprehensive and
PLMM_DPSS will take into account the noncrossing stem
regions and be evolved into an efficient, reliable and specific
tool for predicting pseudoknot-included RNA secondary
structures.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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