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ABSTRACT 
Jatropha curcas (Linnaeus, 1753) is a plant species in the order Malpighiales and the family 
Euphorbiaceae and is native to the tropical regions of America, such as Mexico and Argentina. 
Currently, this plant species inhabits tropical and subtropical regions of the world. Jatropha has been 
widely used as a biofuel plant to produce high-quality diesel engine fuel. In this study, the complete 
mitochondrial genome sequence of J. curcas was assembled into 561,839 bp circular nucleotides with a 
GC content of 44.6%. The mitochondrial genome of J. curcas comprises 33 known protein-coding 
genes, 22 tRNA genes, three rRNA genes, one ncRNA gene, and 85 open reading frame genes. 
Phylogenetic analysis showed this species is closely related to the castor bean (Ricinus communis).
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Introduction

Jatropha curcas (Linnaeus, 1753) is a monoecious tree or 
shrub that originated in Central America and is widely distrib-
uted in tropical and subtropical regions. J. curcas belongs to 
the order Malpighiales and the family Euphorbiaceae. 
Euphorbiaceae is one of the prominent flowering plant fami-
lies, including several economically important plant species 
such as, rubber trees (Hevea brasiliensis), cassava (Manihot 
esculenta), and castor bean (Ricinus communis) (Ha et al. 
2019; Fayed et al. 2020). As a member of the Euphorbiaceae, 
J. curcas has been widely used as a biofuel plant to generate 
high-quality diesel fuel because it produces seeds that con-
tain significant portions of non-edible oil (Ashraful et al. 
2014; Takase et al. 2015). Jatropha seed oil contains oleic 
(18:1), linoleic (18:2), palmitic (16:0), and stearic acid (18:0), 
along with phorbol ester, a toxic compound, suggesting that 
it is a promising alternative to standard diesel fuel that does 
not compete for food security (Sinha et al. 2015; Gomes et al. 
2022). Furthermore, the evolutionarily conserved succulent 
stem in Jatropha and some Euphorbiaceae plants makes 
Jatropha tolerant to drought stress and arid lands, facilitating 
marginal land use and reducing competition for arable land 
use in food cultivation (Maes et al. 2009; Santos et al. 2015; 
Della Torre et al. 2021).

The complete chloroplast genome sequence has played a 
crucial role in understanding the evolutionary relationships of 
various Euphorbiaceae plants (Zhang, Shi, et al. 2019; Zhang, 
Zhao, et al. 2019; Wang et al. 2020; Iwata et al. 2022). The 

whole reference genome sequences and complete circular 
chloroplast genome sequence of J. curcas have been 
reported recently, providing insights into its evolutionary his-
tory (Asif et al. 2010; Ha et al. 2019). However, the complete 
mitochondrial genome sequence has not been reported in 
Euphorbiaceae, except Ricinus communis (Rivarola et al. 
2011). Here, we report the novel complete mitochondrial 
genome sequence of J. curcas as a second representative 
mitochondrial genome sequence in Euphorbiaceae plants.

Materials and methods

A specimen of J. curcas was determined by D. Burch and 
deposited at the Atlas of Florida Plants (https://florida.plantat-
las.usf.edu/Default.aspx, Richard P. Wunderlin, rwunder@usf. 
edu) under the accession number: 106202 (Figure 1(A)). The 
whole-genome sequence of J. curcas var. Chai Nat, widely 
cultivated in Chai Nat province (latitude 15.18567 and longi-
tude 100.12367) of Thailand, has been reported previously 
(Ha et al. 2019) (Figure 1(B)). To investigate the mitochondrial 
genome sequence of J. curcas, we downloaded raw PacBio 
read sequences (SRR5974849) and Illumina paired-end 
sequences (SRR5974850) from PRJNA399212 of SRA (Ha et al. 
2019). To assemble the mitochondrial genome, we corrected 
and trimmed the PacBio reads using Canu (Koren et al. 2017). 
Sequence reads carrying homologous sequences to the mito-
chondrial genes of Ricinus communis (NC_015141.1) were 
selected using TBLASTX (Camacho et al. 2009). The selected 
reads were initially assembled using FALCON (Chin et al. 
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Figure 1. The specimen and picture of the Jatropha curcas L. The specimen of J. curcas was deposited at the Atlas of Florida Plants, operated by the Institute for 
Systematic Botany at the University of South Florida (https://Florida.plantatlas.usf.edu/Default.aspx) under the accession number: 106202 (A). Picture of J. curcas was 
taken and provided by Won Joo Hwang (B).

Figure 2. Map of Jatropha curcas mitochondrial genome. The genes annotated outside the circular genome are in the forward orientation, whereas the genes inside 
the circle are in the reverse orientation. Genes with asterisk mark indicate cis-splicing genes.
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2016). A total of nine contigs carrying the mitochondrial 
genes were identified. The assembled contigs were submitted 
as seed sequences to the short read assembly using 
NOVOPlasty (Dierckxsens et al. 2017). The assembled 
sequence was assessed by coverage and sequencing depth 
(https://www.protocols.io/view/generating-sequencing-depth- 
and-coverage-map-for-o-4r3l27jkxg1y/v1) (Supplemental fig-
ure 1). To validate the complete circular form of J. curcas 
mitogenome, sequence alignment and mapping depth 
around the merged position were examined using Samtools 
and IGV (Li et al. 2009; Thorvaldsd�ottir et al. 2013) 
(Supplemental figure 2). Gene prediction and annotation 
were performed using MFannot (https://megasun.bch.umon-
treal.ca/apps/mfannot/) for protein-coding genes and transfer 
RNAs and GeSeq annotator for ribosomal RNAs (Tillich et al. 
2017). A map of the complete mitochondrial genome 
sequence and genes was generated using 
OrganellarGenomeDRAW (Greiner et al. 2019). A molecular 
phylogenetic tree was constructed using the maximum-likeli-
hood method with Jones–Taylor–Thornton (JTT) matrix-based 
model and 1000 bootstrap replications using MEGA software 
(Kumar et al. 2018).

Results

The complete mitochondrial genome of J. curcas spans 
561,839 bp in length with 44.6% GC content and encodes 
144 genes, including 33 known protein-coding genes, 22 
tRNA genes, three rRNA genes, one ncRNA gene, and 85 
open reading frame genes (ORFs) (Figure 2). Among the 33 

known protein-coding genes, nad1 and cox1 (first copy) car-
ried two exons, and nad4 and nad7 carried 4 and 5 exons, 
respectively (Supplemental figure 3). There were 15 dupli-
cated gene pairs, including atp1, atp9, cox1, trnP, and 11 orf 
genes (orf99, orf101, orf105, orf107, orf110, orf111, orf114, 
orf115, orf118, orf142, and orf183), and four sets of triplicated 
orf genes (orf102, orf108, orf109, and orf130). Interestingly, 
two ORF genes (orf106 and orf103) were quadruplicated and 
hexaplicated, respectively. A set of trnM genes was presented 
as pentaplicated genes. The remaining 87 genes are pre-
sented as single copies.

A total 18 genes, including atp1 (second copy), atp4, atp6, 
ccmC, ccmF, cob, cox1 (first copy), cox2, cox3, nad4, nad6, 
nad7, nad9, orf206, orf294, orf326, orf653, and rps3 have sub-
stantially conserved over 11 plant species including nine 
Malpighiales plants and two outgroup plants: Arabidopsis 
thaliana (Sloan et al. 2018), Brassica napus (Handa 2003), 
Bruguiera sexangula (Zhang, Bai, Zhang 2020), Bruguiera x 
rhynchopetala (Zhang, Bai, Liu 2020), Populus alba (Brenner 
et al. 2019), Populus tremula (Kersten et al. 2016), Ricinus com-
munis (Rivarola et al. 2011), Salix cardiophylla (Chen et al. 
2020), Salix dunnii (He et al. 2021), and Salix wilsonii (Han 
et al. 2022). The phylogenetic tree showed that J. curcas was 
closely related to R. communis (Figure 3).

Discussion and conclusions

We report the novel complete mitochondrial genome 
sequence of J. curcas as a second representative plant spe-
cies in the Euphorbiaceae family. The complete mitochondrial 

Figure 3. Unrooted phylogenetic tree of mitochondrial genome sequences of Malpighiales. The phylogenetic tree was constructed using the maximum-likelihood 
(ML) method with Jones–Taylor–Thornton (JTT) matrix-based model and 1000 times bootstrap replications. The protein sequences of mitochondrial genes from nine 
Malpighiales and two outgroup plants (Arabidopsis thaliana and Brassica napus) were used. Bootstrap values indicate the topology of the tree. The asterisk mark 
indicates the plant species investigated in this study.
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genome sequence of J. curcas and its whole genome sequen-
ces provide an essential resource for phylogenomic analysis 
and will help elucidate the evolutionary relationship between 
the Malpighiales and the Euphorbiaceae family soon.

Acknowledgements

We especially thank Won Joo Hwang for providing a picture of Jatropha 
curcas.

Author contributions

S.S. and J.H. conceptualized the study and conducted bioinformatics 
analyses. The manuscript was prepared by S.S. and revised by J.H.

Ethical approval

Any data from NCBI SRA does not need ethical approval.

Disclosure statement

The authors declare no conflict of interest.

Funding

This study was supported by the ‘2022 Research Grant’ from Kangwon 
National University [202203110001] to S.S. and a National Research 
Foundation of Korea (NRF) Grant funded by the Korean Government 
(MSIT) [No. 2021R1C1C1004233] to J.H.

ORCID

Sangrea Shim http://orcid.org/0000-0002-2439-0803 
Jungmin Ha http://orcid.org/0000-0003-4088-3736 

Data availability statement

The data that support the findings of this study are openly available in 
GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under accession no. 
OQ603497. The associated BioProject, SRA, and Bio-Sample numbers are 
PRJNA399212, SRR5974849, SRR5974850, and SAMN07527279, 
respectively.

References

Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, 
Shahir SA, Mobarak HM. 2014. Production and comparison of fuel 
properties, engine performance, and emission characteristics of bio-
diesel from various non-edible vegetable oils: a review. Energy 
Convers Manage. 80:202–228. doi: 10.1016/j.enconman.2014.01.037.

Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty 
CS, Sawant SV, Tuli R. 2010. Complete sequence and organisation of 
the Jatropha curcas (Euphorbiaceae) chloroplast genome. Tree Genet 
Genomes. 6(6):941–952. doi: 10.1007/s11295-010-0303-0.

Brenner WG, Mader M, M€uller NA, Hoenicka H, Schroeder H, Zorn I, 
Fladung M, Kersten B. 2019. High level of conservation of mitochon-
drial RNA editing sites among four Populus species. G3. 9(3):709–717. 
doi: 10.1534/g3.118.200763.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, 
Madden TL. 2009. BLASTþ: architecture and applications. BMC 
Bioinformatics. 10(1):421. doi: 10.1186/1471-2105-10-421.

Chen X, Zhang L, Huang Y, Zhao F. 2020. Mitochondrial genome of Salix 
cardiophylla and its implications for infrageneric division of the genus 

of Salix. Mitochondrial DNA B Resour. 5(3):3485–3486. doi: 10.1080/ 
23802359.2020.1827065.

Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, 
Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016. 
Phased diploid genome assembly with single molecule real-time 
sequencing. Nat Methods. 13(12):1050–1054. doi: 10.1038/nmeth.4035.

Della Torre F, Ferreira BG, Lima JE, Lemos-Filho JP, Rossiello ROP, França 
MGC. 2021. Leaf morphophysiological changes induced by long-term 
drought in Jatropha curcas plants explain the resilience to extreme 
drought. J Arid Environ. 185:104381. doi: 10.1016/j.jaridenv.2020. 
104381.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly 
of organelle genomes from whole genome data. Nucleic Acids Res. 
45(4):e18. doi: 10.1093/nar/gkw955.

Fayed A, Soliman M, Faried A, Hassan M. 2020. Taxonomic evaluation of 
Euphorbiaceae sensu lato with special reference to Phyllanthaceae as 
a new family to the Flora of Egypt. Biol Forum. 11:47–64.
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