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Background: Attention deficit hyperactivity disorder (ADHD) is one of the most
prevalent childhood-onset neurodevelopmental disorders; however, the underlying
neural mechanisms for the inattention symptom remain elusive for children with ADHD.
At present, the majority of studies have analyzed the structural MRI (sMRI) with the
univariate method, which fails to demonstrate the interregional covarying relationship of
gray matter (GM) volumes among brain regions. The scaled subprofile model of principal
component analysis (SSM-PCA) is a multivariate method, which can detect more robust
brain-behavioral phenotype association compared to the univariate analysis method.
This study aims to identify the GM network associated with attention in children with
ADHD by applying SSM-PCA to the sMRI.

Methods: The sMRI of 209 children with ADHD and 209 typically developing controls
(TDCs) aged 7–14 years from the ADHD-200 dataset was used for anatomical
computation, and the GM volume in each brain region was acquired. Then, SSM-PCA
was applied to the GM volumes of all the subjects to capture the GM network of children
with ADHD (i.e., ADHD-related pattern). The relationship between the expression of
ADHD-related pattern and inattention symptom was further investigated. Finally, the
influence of sample size on the analysis of this study was explored.

Results: The ADHD-related pattern mainly included putamen, pallium, caudate,
thalamus, right accumbens, superior/middle/inferior frontal cortex, superior occipital
cortex, superior parietal cortex, and left middle occipital cortex. In addition, the
expression of the ADHD-related pattern was related to inattention scores measured
by the Conners’ Parent Rating Scale long version (CPRS-LV; r = 0.25, p = 0.0004) and
the DuPaul ADHD Rating Scale IV (ADHD-RS; r = 0.18, p = 0.03). Finally, we found
that when the sample size was 252, the results of ADHD-related pattern were relatively
reliable. Similarly, the sample size needed to be 162 when exploring the relationship
between ADHD-related pattern and behavioral indicator measured by CPRS-LV.
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Conclusion: We captured a GM network associated with attention in children with
ADHD, which is different from that in adolescents and adults with ADHD. Our findings
may shed light on the diverse neural mechanisms of inattention and provide treatment
targets for children with ADHD.

Keywords: attention deficit hyperactivity disorder (ADHD), structural MRI (sMRI), gray matter volume, scaled
subprofile model of principal component analysis (SSM-PCA), ADHD-200, gray matter network, inattention

INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of
the most prevalent childhood-onset neurodevelopmental
disorders characterized by inattention and/or hyperactivity and
impulsivity, which impaired the school functioning and academic
achievement of schoolchildren (1). The worldwide prevalence
rate of children with ADHD is 7.2% (2), which arouses more
and more concerns from researchers. Although ADHD is a
highly heterogeneous disorder with three clinical subtypes,
inattention is one of the core symptoms and rarely vanishes
compared to the significant relief of hyperactive/impulsive
symptoms over time (3–5). However, the underlying neural
mechanisms for the inattention symptom of children with
ADHD remain elusive.

For children with ADHD, the anatomical abnormalities in the
brain volume have been widely investigated through structural
magnetic resonance imaging (sMRI), shedding light on the
disease’s mechanisms and treatments. In a recent meta-analysis
of gray matter (GM), children with ADHD showed a decreased
GM volume in the right globus pallidus, putamen, and bilateral
caudate (6). Moreover, based on the ENIGMA-ADHD sample,
the volumes of accumbens, amygdala, caudate, hippocampus,
and putamen were found to be smaller in children with ADHD
(7). So far, the majority of previous sMRI studies have applied
univariate analysis methods, which provide local information but
fail to demonstrate the interregional covarying relationship of
GM volumes among different brain regions (8). However, the
human brain is a complicated network, in which different brain
regions interact with each other functionally and structurally
(9). Moreover, recognizing the importance of understanding
the function, organization, and development of interacting
brain regions for the past few years, recent neuroimaging
research has shifted its focus from discrete neural substrates
to the role of distributed neural networks (10). Focusing on
abnormalities of ADHD-related neural networks rather than
discrete neural substrates coincides with the development trend
of the neuroimaging research. For adults and adolescents,
GM network identified in adults compromising the bilateral
cerebellar tonsil and culmen and GM network identified
in adolescents compromising the left cerebellar region were
significantly associated with inattention (11). Yet, few sMRI
studies have investigated the brain network changes based on
GM in children with ADHD, which may uncover the neural
mechanism of ADHD and provide an objective basis for the
diagnosis of ADHD.

The scaled subprofile model of principal component analysis
(SSM-PCA) is a multivariate method for network analysis

(12), which can detect more robust brain-behavioral phenotype
association compared to univariate analysis methods (13). SSM-
PCA views various brain regions as interrelated and coordinated
nodes of an integrated network (8) and can reveal the brain
pattern characteristics of specific diseases based on sMRI (14–
16). Since SSM-PCA can capture the subtle changes caused
by the disease (8), it may be helpful to capture the abnormal
structural brain network in ADHD. To date, SSM-PCA had been
widely applied to explore the influence of many neurological and
psychiatric illnesses on sMRI, such as Parkinson’s disease (8),
Alzheimer’s disease (17), and Spinocerebellar ataxia type 3 (18).
However, SSM-PCA has not been used for analyzing the GM in
children with ADHD, yet.

Thus, this study aimed to identify the GM network of children
with ADHD (i.e., ADHD-related pattern) by applying the
SSM-PCA approach to sMRI and investigating the relationship
between the ADHD-related pattern and inattention symptom.
According to previous studies, we hypothesized that the ADHD-
related pattern would comprise brain regions in frontal cortex,
basal ganglia, and cerebellum, and the expression of ADHD-
related pattern would relate to inattention scores.

MATERIALS AND METHODS

Participants and Data Acquisition
The data used in this study are publicly obtained from the
ADHD-200 Consortium, which can be downloaded from the
website of NeuroImaging Tools & Resources Collaboratory
Image Repository.1 The ADHD-200 cohort contains 776 subjects
with anatomical images aggregated from 8 independent sites
(age range: 7–21 years). Demographic data including age, sex,
handedness, secondary diagnosis, and medication status are
also available from the website. The diagnosis of ADHD is
based on the Conners’ Parent Rating Scale long version (CPRS-
LV) or DuPaul ADHD Rating Scale IV (ADHD-RS) and is
divided into three subtypes, including inattentive type (ADHD-
I), hyperactive/impulsive type (ADHD-H), and combined type
(ADHD-C). For children measured with CPRS-LV, the diagnosis
of ADHD was based on a T-score greater than or equal to
65 on at least one ADHD-related index (19). For children
measured with ADHD-RS, the diagnosis of ADHD needed to
meet the criterion, namely, six of nine items scored 2 or 3
from at least one ADHD-related item (20). According to a
previous study, we defined the age range of children as 7–
14 years (7).

1https://www.nitrc.org/ir/
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FIGURE 1 | Flowchart of data exclusion for ADHD-200 (ADHD, attention
deficit hyperactivity disorder; TDC, typically developing control subject).

In this study, we only analyzed the T1-weighted sMRI dataset.
The exclusion criteria for the data were as follows: (1) data with
poor image quality; (2) data in the site without the ADHD group
or the typically developing control (TDC) group; (3) data aged
under 7 years or over 14 years; (4) data diagnosed as ADHD-
H; (5) some data were excluded to make group match of age
and sex between ADHD and TDC; and (6) data in the site
with participants less than 10. In total, 358 subjects (76 ADHDs
and 282 TDCs) were excluded, and the number of the excluded
subjects in each step is presented in Figure 1. Finally, 418
participants were included, and the demographic information of
all the participants was presented in Table 1.

Gray Matter Volume Calculation
Computational Anatomy Toolbox 12 (CAT12.7 r17392)
developed by Christian Gaser and Robert Dahnke (Jena
University Hospital, Departments of Psychiatry and Neurology)
is an extension of Statistical Parametric Mapping 12 (SPM123) for
anatomical computation. The segmentation and normalization
were implemented using DARTEL, which utilized a single
constant velocity field to generate diffeomorphic and invertible
deformations. The GM segments of each participant were
non-linearly registered to the automated anatomical labeling 3
(AAL3) (21) template to get the GM volume of each region. The
actual GM volume measured in cubic centimeters is referred to

2http://www.neuro.uni-jena.de/cat/
3http://www.fil.ion.ucl.ac.uk/spm

as the absolute volume. A ratio of the absolute volume to the
total intracranial volume is used for further analysis (22).

Multisite Effect Correction
Since the ADHD-200 cohort consists of datasets from different
institutions, imaging data suffer from site, collection time, and
data acquisition parameter variability across data collections. The
site effect was removed using the ComBat function available
in MATLAB4 (23, 24). The ComBat is a popular batch-effect
correction tool used in genomics (25), which also performs well
for multisite effect correction for neuroimaging (23, 24). During
Combat, the diagnosis, age, and sex were treated as interested
biological variables, and a default non-parametric prior method
was used in the empirical Bayes procedure.

Statistical Analysis
Scaled Subprofile Model of Principal Component
Analysis on Gray Matter Volume
An in-house developed SSM-PCA toolbox was used for
performing SSM-PCA on GM volume from the ADHD-200
dataset (26). As the GM volume varied a lot among brain regions,
it was normalized by z-transformation among subjects before
SSM-PCA. The general process of SSM-PCA is as follows: (1)
the GM volume of the ADHD and the TDC groups was placed
together in an M × N dimensional data matrix, where M is the
number of brain regions and N is the number of the sum of
ADHD and TDC participants, and each column represented the
GM volume of all the brain regions of a participant; (2) each
column was centered to zero by subtracting the mean of each
column; (3) each row was centered to zero by subtracting the
mean of each row, and then the subject residual profile (SRP) was
obtained; (4) the reduced singular value decomposition (SVD)
was utilized to factorize the SRP:

U6VT
= SVD (SRP) (1)

where U is an M × N matrix composed of the left unit-
normalized orthogonal singular vectors as columns, 6 is an
N × N diagonal matrix composed of singular values σk,
where k is the component number, and V is an N × N
matrix composed of the right unit-normalized orthogonal
singular vectors as columns; and (5) the group invariant
subprofile (GIS; i.e., patterns) and subject scaling factor (SSF;
i.e., patterns’ expressions in each subject) can be computed
by:

GISik = Uik (2)

SSFjk =
∑M

i = 1

(
SRPij × GISik

)
(3)

where i is the region number and j is the subject number (6).
The ratio of variance corresponding to each GIS to the total
variance was calculated and named the variance accounting
for (VAF).

Each value in the GIS matrix indicates a weight representing
the contribution of a region to the corresponding pattern.

4https://github.com/Jfortin1/ComBatHarmonization
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TABLE 1 | Demographic information of all the participants (ADHD, attention deficit hyperactivity disorder; TDC, typically developing control subject; C, ADHD-Combined;
I, ADHD-Inattentive; CPRS-LV, Conners’ Parent Rating Scale long version; ADHD-RS, DuPaul ADHD Rating Scale IV).

ADHD (N = 209) TDC (N = 209) Statistics

Male/Female (n) 162/47 150/59 χ2 = 1.82; p = 0.18

Age (mean ± SD years) 10.81 ± 2.11 10.84 ± 1.90 t(416) = -0.17; p = 0.87

Subtype (C/I) 130/79 – –

Subject number measured by CPRS-LV/ADHD-RS 108/66 90/76 χ2 = 2.15; p = 0.14

Inattention scores of CPRS-LV (mean ± SD) 71.42 ± 9.81 45.62 ± 5.34 t(196) = 23.46; p < 0.001

Inattention scores of ADHD-RS (mean ± SD) 28.48 ± 3.47 15.33 ± 3.66 t(140) = 21.95; p < 0.001

FIGURE 2 | The percentage of the variance accounting for (%VAF) for each pattern.

TABLE 2 | The two-sample t-test results of SSFs of the first 10 patterns between ADHD and TDC group.

SSF1 SSF2 SSF3 SSF4 SSF5 SSF6 SSF7 SSF8 SSF9 SSF10

p-value 0.01 0.79 0.75 0.51 0.44 0.0008 0.91 0.43 0.37 0.04

T-value 2.58 0.27 0.33 0.65 −0.77 −3.39 0.12 −0.78 −0.89 −2.09

Cohen’s d 0.25 0.02 0.03 0.06 −0.08 −0.33 0.01 −0.08 −0.09 −0.20

For example, the p-value of 0.01 meant the t-test result for the expression of the first pattern (i.e., SSF1) between the ADHD and TDC groups (ADHD, attention deficit
hyperactivity disorder; TDC, typically developing control subject; SSF, subject scaling factor).

Regions with relatively large weights in the pattern constitute the
“network” called in some papers (12, 26).

Gray Matter Network: Attention Deficit Hyperactivity
Disorder-Related Pattern
According to the elbow point of the VAF curve of all the
patterns, the first 10 patterns were used for further analysis.
Then, the difference between the ADHD group and TDC group
was assessed by performing the two-sample t-test on the first 10
SSFs with controlling for age and sex and found that the first,
sixth, and tenth SSFs showed a significant difference between
the two groups (p < 0.05). Finally, an ADHD-related pattern
was identified by a linear combination of the first, sixth, and
tenth patterns. According to previous research (27), the linear
combination coefficient was calculated by conducting a logistic

regression analysis on the SSFs of the first, sixth, and tenth
patterns to maximize the difference between the two groups.
The sign of the ADHD-related pattern was defined such that
patients with ADHD had elevated mean expression relative
to the controls.

Relationship Between Attention Deficit Hyperactivity
Disorder-Related Pattern and Behavioral Indicator
As the datasets come from different scanning sites and the
behavior scales vary among sites, the sample was divided into
three subsamples, i.e., 198 participants measured by CPRS-LV,
142 participants measured by ADHD-RS, and 78 participants
without inattention scores. Then, the Spearman correlation was
performed to investigate the relationship between inattention
scores and the expression of ADHD-related pattern on the two
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subsamples measured by CPRS-LV and ADHD-RS, separately.
The above statistical analysis was based on Statistical Product and
Service Solutions (SPSS 21.05).

Sample Size Effect on the Analysis
As studies with a small sample size are vulnerable to
sampling variability (13), here, we investigated the influence
of sample size on the results of this study. Since participants
consisted of three subsamples, stratified sampling was used
according to the population ratio of three subsample datasets,
namely, 3:2:1 (CPRS-LV: ADHD-RS: participants without the
inattention scores).

The detailed steps to investigate the sample size effect on the
analysis were as follows: (1) first, a certain number of participants
were randomly selected from the ADHD group and the TDC
group to form a new sample. Due to the limitation of the number
of subjects in each group, the maximum sample size was 198.
Here, the sample size of each group was set as 54:18:198, and
18 subjects consisted of 9 subjects measured by CPRS-LV, 6
subjects measured by ADHD-RS, and 3 subjects without the
inattention scores. (2) The SSFs of the ADHD-related pattern of
the selected subjects were used to perform the group difference
and correlation analysis with inattention scores from CPRS-LV
and ADHD-RS. Steps 1 and 2 were repeated 1,000 times.

RESULTS

Gray Matter Network: Attention Deficit
Hyperactivity Disorder-Related Pattern
The VAF of each pattern is shown in Figure 2, and the elbow
point of the VAF curve was 10, so the first 10 patterns were
used for further analysis. The first, sixth, and tenth SSFs of
the first 10 patterns showed a significant difference between
the ADHD group and TDC group (p < 0.05) (Table 2).
After a linear combination of these three patterns, the ADHD-
related pattern significantly discriminates the ADHD and TDC
groups [t(416) = 4.80, Cohen’s d = 0.47, 95% CI = (0.27, 0.66);
p = 2.27 × 10−6] (Figure 3B). The topography of z-transformed
ADHD-related pattern with a threshold of |z| > 1 is shown in
Figure 3A. Positive z-value represented an increased GM volume
in the ADHD group than in the TDC group, mainly including
the bilateral thalamus, superior temporal cortex, and cerebellum
crus I. Inversely, a negative z-value represented a decreased GM
volume in the ADHD group than in the TDC group, mainly
involving putamen, pallium, caudate, superior/middle/inferior
frontal cortex, superior occipital cortex, superior parietal cortex,
right accumbens, and left middle occipital cortex.

Relationship Between Attention Deficit
Hyperactivity Disorder-Related Pattern
and Inattention Scores
As shown in Figure 4, the expression of the ADHD-related
pattern was positively related to inattention scores of CPRS-
LV (n = 198, r = 0.25, p = 0.0004). Similarly, the expression

5https://www.ibm.com/cn-zh/analytics/spss-statistics-software

of the ADHD-related pattern was significantly associated with
inattention scores of ADHD-RS (n = 142, r = 0.18, p = 0.031).

Sample Size Effect on the Analysis
Figure 5 shows the changing tendency of p-values with the
sample size. The difference in SSF of the ADHD-related pattern
between ADHD group and TDC group became more and more
significant with the expansion of the sample size. The expression
of the pattern showed significant differences between the two
groups when the sample size was 180. In addition, when the
sample size was 252, the p-value for SSF reached a plateau and
its range became smaller and smaller. Similarly, the expression
of the pattern was significantly associated with inattention scores
measured by CPRS-LV when the sample size was 162. Due to the
small sample size of subjects measured by ADHD-RS, the sample
size effect of ADHD-RS remained elusive. In general, these results
showed that sampling variability decreased and the associations
stabilized along with increasing sample sizes.

DISCUSSION

In this study, we performed SSM-PCA on GM volume
from ADHD-200 datasets and captured the ADHD-related
pattern, which mainly included the putamen, pallium, caudate,
thalamus, right accumbens, superior/middle/inferior frontal
cortex, superior occipital cortex, superior parietal cortex, and
left middle occipital cortex. In addition, the expression of
the ADHD-related pattern was significantly associated with
inattention scores.

Gray Matter Network: Attention Deficit
Hyperactivity Disorder-Related Pattern
As shown in the ADHD-related pattern, our results highlight the
importance of basal ganglia (caudate, putamen, and accumbens)
and bilateral superior/middle/inferior frontal cortex in ADHD.
These regions demonstrated a significant reduction of GM
volume in ADHD relative to TDC. These findings are in line
with our hypotheses and similar brain areas and GM volume
changes have been reported in previous studies (6, 7, 28–
33). Moreover, the basal ganglia are a key component of the
dopaminergic mesolimbic system (34, 35) and play a crucial role
in goal-directed behaviors, motivation and reward processing,
and motor control, all of which are known to be deficient in
ADHD (10, 36, 37). The frontal cortex has been shown to
play a key role in cognitive processes, which are related to the
impairment of maintaining and shifting attention in ADHD
(38, 39).

This study finds increased GM volumes in the thalamus,
superior temporal cortex, and cerebellum lobule I. For the
thalamus, our result is consistent with a previous study in
patients with ADHD-I from the ADHD-200 datasets (40).
Furthermore, the thalamus is likely associated with arousal and
motivation (41) and the underarousal and sleep disturbance
are common co-occurring symptoms of ADHD (42). Therefore,
the thalamus should be taken seriously in the treatment
of ADHD. Reduced cerebellum (i.e., cerebellum lobule V)
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FIGURE 3 | The z-transformed ADHD-related pattern (with |z| > 1) (A) and its expression distribution in the ADHD and TDC groups (the slices displayed from
−15 mm to +80 mm at axis view) (B). Positive and negative z-values represented increased and reduced GM volumes in the ADHD group than TDC group,
respectively. ****p < 0.0001. ADHD, attention deficit hyperactivity disorder; TDC, typically developing control subject.

FIGURE 4 | Relationships between the expression of ADHD-related pattern and inattentive scores measured by CPRS-LV (A) and ADHD-RS (B) (ADHD, attention
deficit hyperactivity disorder; CPRS-LV, Conners’ Parent Rating Scale long version; ADHD-RS, DuPaul ADHD Rating Scale IV).

FIGURE 5 | The relationship between sample size and p-value for group difference of SSFs of the ADHD-related pattern between ADHD group and TDC group (A),
correlation coefficient between ADHD-related pattern’s expression and inattention scores from CPRS-LV (B), and ADHD-RS (C) (ADHD, attention deficit hyperactivity
disorder; TDC, typically developing control subject; CPRS-LV, Conners’ Parent Rating Scale long version; ADHD-RS, DuPaul ADHD Rating Scale IV).

and middle temporal cortex volume have been reported in
children with ADHD (43–47); however, our results illustrated
increased GM in cerebellum crus I and superior temporal cortex.
Such inconsistency may result from the subject heterogeneity,
as differences between different ADHD subtypes have been

demonstrated (48–50). Contrary to previous studies, which
included all the subtypes, we excluded the ADHD-H subtype. In
addition, the age difference between used subjects may also lead
to such inconsistency. Duan et al. investigated GM networks of
two cohorts (adults and adolescents) and found that adolescent
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patients showed different GM volume changes than that of adult
patients (11).

Relationship Between Attention Deficit
Hyperactivity Disorder-Related Pattern
and Inattention Scores
In our study, the expressions of ADHD-related pattern were
significantly associated with inattention scores measured
with two different scales (i.e., CPRS-LV and ADHD-RS).
Our findings are consistent with the previous studies
(11, 51). Castellanos et al. showed that GM volumes of
caudate, frontal cortex, temporal cortex, and cerebellum
were correlated with the score of attention problems in
children with ADHD (51). The brain regions mentioned
earlier were also captured in the ADHD-related pattern here.
For adults and adolescents, GM network compromising the
cerebellar tonsil and culmen identified in adults and GM
network compromising the left cerebellar region identified in
adolescents were significantly associated with inattention (11).
In this study, we also found that GM network compromising
cerebellar regions was associated with inattention scores in
children with ADHD. Different from adults and adolescents,
our results illustrated increased GM volumes in cerebellum
crus I and highlighted the reduced GM volumes in basal
ganglia and superior/middle/inferior frontal cortex in
children with ADHD.

Comparison Between Attention-Related
Gray Matter Networks in Children,
Adolescents, and Adults With Attention
Deficit Hyperactivity Disorder
In adolescents with ADHD, previous research identified an
attention-related GM network compromising the bilateral
cerebellar tonsil and culmen (11). In adults with ADHD,
the attention-related GM network consists of the left
cerebellar region (11). In contrast, in children with ADHD,
the attention-related GM network mainly includes the
putamen, pallium, caudate, thalamus, right accumbens,
superior/middle/inferior frontal cortex, superior occipital
cortex, superior parietal cortex, and left middle occipital
cortex. The abovementioned evidence illustrates that the
brain regions involved in attention evolve with age, which
indicates that different neural mechanisms of attention deficit
disorder are possible and inattention may not be a single
syndrome (52). Clinically, different treatment options exist
and the practical experience is the impossibility of only one
medical treatment (52). Collectively, the current diagnosis
of ADHD is still based on behavior performance, which
may be the result of diverse causes and etiologies. Thus, the
development of effective biological test is emergent for its
diagnosis and treatment.

Sample Size Effect on the Analysis
This study not only focused on the ADHD-related
pattern but also investigated the effect of sample size
on the whole data analysis. Our results showed that

the difference between the ADHD group and the TDC
group was enhanced with the expansion of sample size
and reached stable with a sample size greater than
252. Similarly, when exploring the relationship between
ADHD-related pattern and behavioral indicator measured
by CPRS-LV, the sample size needs to be larger than
162. The required sample size is much less than that
needed in univariate analysis methods (13). These results
demonstrated that SSM-PCA can detect robust brain-behavioral
phenotype association.

LIMITATIONS

This study also has some limitations. First, the inattention
scores of participants from different sites in the ADHD-
200 dataset were measured with different scales (i.e., CPRS-
LV and ADHD-RS), which forces us to investigate the
correlation between inattention scores and ADHD-related
pattern expression, separately. Second, to test the robustness of
our results, replication on other datasets is necessary. Third,
due to the small number of subjects in the subtypes of ADHD-
I and ADHD-C, we analyzed all the data together; however,
it is important to further investigate the subject heterogeneity
between these two ADHD subtypes regarding attention-related
GM pattern, separately.

CONCLUSION

We obtained a GM network associated with attention in children
with ADHD, which is different from that in adolescents and
adults with ADHD. Our findings may shed light on the diverse
neural mechanisms of inattention and provide treatment targets
for children with ADHD.
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