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Prediction of treatment efficacy 
for prostate cancer using a 
mathematical model
Huiming Peng1, Weiling Zhao1, Hua Tan1, Zhiwei Ji1, Jingsong Li2, King Li1 & Xiaobo Zhou1

Prostate immune system plays a critical role in the regulation of prostate cancer development 
regarding androgen-deprivation therapy (ADT) and/or immunotherapy (vaccination). In this study, we 
developed a mathematical model to explore the interactions between prostate tumor and immune 
microenvironment. This model was used to predict treatment outcomes for prostate cancer with ADT, 
vaccination, Treg depletion and/or IL-2 neutralization. Animal data were used to guide construction, 
parameter selection, and validation of our model. Our analysis shows that Treg depletion and/or IL-2 
neutralization can effectively improve the treatment efficacy of combined therapy with ADT and 
vaccination. Treg depletion has a higher synergetic effect than that from IL-2 neutralization. This 
study highlights a potential therapeutic strategy in effectively managing prostate tumor growth and 
provides a framework of systems biology approach in studying tumor-related immune mechanism and 
consequent selection of therapeutic regimens.

Prostate cancer (PCa) is the most commonly diagnosed non-skin malignancy and the second leading cause 
of cancer-related deaths in American men1. The main treatment modalities for prostate cancer include sur-
gery, radiotherapy and hormone therapy. Androgen deprivation therapy (ADT) is an anti-hormone therapy 
and used to control prostate cancer cell growth by suppressing or blocking production/action of androgens 
in men. Unfortunately, a significant number of primary PCa patients treated with ADT eventually develop 
incurable castration-resistant disease2. The possible mechanism of resistance is due to a switch of tumor 
cells from androgen-dependent or castration-sensitive prostate cancer (CSPC) to androgen-independent or 
castration-resistant prostate cancer (CRPC), and the CRPC cells do not require normal levels of androgen for 
supporting tumor cell growth3–5.

The tumor microenvironment contributes to tumor initiation and progression6. During tumor development, 
tumor and its microenvironment modulate immune cells towards a pro-tumorigenic phenotype and establish an 
immune suppressive niche, therefore facilitate tumor growth and metastasis. The molecular and cellular nature of 
the tumor immune microenvironment has impact in tumor development by altering the balance of suppressive 
versus cytotoxic responses in the vicinity of tumors. Thus, immunotherapy has a daunting task in a host with an 
established cancer7,8. Recent studies have suggested a potential synergy between immunotherapy (vaccination) 
and androgen ablation9. Androgen deprivation showed that removal of androgen in male mice increased lym-
phopoiesis, renewed thymopoiesis, and enhanced immune responses10,11. These data suggest that it would be 
beneficial to prostate cancer patients using combined therapeutic immunotherapy with androgen deprivation. 
The presupposition for gaining maximum benefit using combined therapies is a profound understanding of the 
impact of androgen ablation on the tumor-associated immune system, which will contribute to designs of more 
effective therapeutic regimens for patients with advanced PCa.

To study the systematic effect of ADT to tumor-associated immune responses, in vivo animal models that 
recapitulate the nature of human PCa are needed. Therefore, we have developed a prostate-specific Pten−/− mouse 
model and data analysis showed that this mouse model mimicked the scenario of progressive PCa well12. Both 
effector (CTLs: cytotoxic T lymphocytes) and inhibitory (Tregs: regulatory T cells) immune mechanisms were 
amplified by surgical castration (ADT)13–15. In the prostate-specific Pten−/− mouse model, our colleagues found 
that ADT resulted in apoptotic death of cancerous prostate epithelium and the antigens shed by the dying prostate 
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tumors increased the function of CTLs15. The activation of CTLs was following by an induction of IL-2 and 
expansion of Treg, which led to the inhibition of CTLs in the prostate draining lymph nodes15. These data indi-
cated that although the immune response from the effector cells were augmented by castration in the Pten−/− 
mice, the concomitant secretion of IL-2 and expansion of Tregs as two major types of immune inhibitory brakes 
were responsible for a short-term, but not persistent increase of immune response following ADT. Therefore, 
depletion of Treg or neutralization of IL-2 has potentials in enhancing therapeutic efficacy of combined therapy 
with ADT and immunotherapy for PCa.

Mathematical modeling is a description of a system using mathematical concepts and can provide a powerful 
approach for simulating a complicated system, such as interaction of tumor cells with their environment. Such 
comprehensive study will enhance our understanding of tumor dynamics and develop new approaches/strategy 
for optimization of existing therapies. The systems modeling approaches have been widely used for quantita-
tively understanding complex biological systems (see16–19 and reference therein). Several mathematical models 
have been used to quantify ADT5,20–23 or immunotherapy24–26 in prostate cancer. Although systems modeling 
approaches have not been applied for assessing efficacies of combined therapies with ADT and vaccines for pros-
tate cancer, some approaches have been developed previously for the combined therapies in prostate cancer as 
well as in bone metastatic prostate cancer such as the combined ADT and radiation therapy or chemotherapy27,28. 
Moreover, the combined therapy of ADT and immunotherapy has recently also been implicated as a promising 
therapy for prostate cancer from a biological point of view9,29. Therefore, it is significant to apply systems mode-
ling approaches to explore the combined therapies of ADT and vaccines.

In this study, we developed a novel mathematical model to characterize the effect of ADT on immune system 
and the efficacy of combined therapy with ADT and vaccines. We used a system of ordinary differential equa-
tions (ODEs) to describe dynamics of individual components as well as interactions between components in the 
model system. Our model system consisted of multiple components, such as androgen, CTLs, Tregs, IL-2, CSPCs 
and CRPCs. Androgen and CSPCs were used to model ADT effect and Treg and IL-2 for the inhibitory effect 
of immune system. T cells are the key cells of immune system. CTL can recognize an antigen on tumor cells via 
T cell receptor (TCR) and kill the tumor cells. Tregs are key mediators of tumor immune suppression and ele-
vated numbers of Tregs have been associated with all of major cancers. Naïve T cells must interact with dendritic 
cells (DCs), the professional antigen-presenting cells of the immune system, to become activated. There are two 
types of DCs in lymphoid and they are distinguished based on their functions26,30. IL-2 secreted by CTL leads to 
expansion of Tregs and subsequent inhibits CTL function13–15. Thus, a novel multi-scale and multi-compartment 
model was developed for addressing the interaction of ADT and immune system based on the published ADT 
or immunotherapy modeling approaches5,20–22,24–26. Two compartments used in this model were prostate and 
lymphoid31,32. The model inputs were defined by therapeutic strategies, individuals or combinations. The model 
outputs were defined by tumor burdens, both instantaneous and average over a period of time after treatment. 
The outcome predictions for multiple treatments were achieved by training the parameterized model with in vivo 
experimental data under several treatment conditions in our mouse model. It is worth noting that the basic idea 
of the whole mathematical strategy applied in this study is simple. We used a few known input-output data from 
animal studies to infer a quantitative system and then changed input to predict unknown output from this system. 
Finally, the model-based predictions were used to verify the proposed hypothesis that Treg depletion and/or IL-2 
neutralization are capable to improve the treatment efficacy of combined therapy with ADT and immunother-
apy. Most importantly, our predicted data using the modeling system indicated that Treg depletion had a better 
effect than that by IL-2 neutralization. Overall, this study highlights treatment approaches for effectively reducing 
castration-resistant tumor burden of prostate cancer and provides a framework of systems modeling approach for 
studying tumor-related immune responses.

Results
General mathematical model for predicting therapeutic outcomes in treatment of prostate 
cancer.  We developed an ODE-based mathematical model to predict treatment outcomes for prostate can-
cer as shown in Fig. 1 (also see the Methods). The flowchart displayed in Fig. 1 shows modeling components, 
including dynamics of the disease progression following androgen stimulation and actions of various immune 
cells. Time-associated interplays between tumor and immune cells and the effects of different treatment strategies 
were also taken into consideration. Two types of cancer cells, androgen-dependent/castration-sensitive prostate 
cancer cell (CSPC) and androgen-independent/castration-resistant prostate cancer cell (CRPC), were included 
in this model3–5. Androgen functions as a stimulus to the growth of CSPC, however deprivation of androgen 
can induce CSPC into an androgen-independent phenotype. Immune system is an important component in 
the tumor microenvironment. Interplay between tumor cells and host immune cells is very complicated. In our 
model, we simplify the immune response by focusing on several key components of immune system. Lymphoid 
compartment is used as a representative of the prostate-draining lymph nodes and spleen, and blood vessel com-
partment for tumor-immune communication between prostate compartment and lymphoid compartment was 
not modeled for simplicity. In the modeling system, CTLs represent effector immune function and both Tregs 
and IL-2 represent inhibitory effect of immune system. The ODEs employed in the modeling system are shown in 
Fig. 1 and detailed descriptions of these equations displayed in the section of Methods and Supplementary data. 
This model included four types of basic treatments, including androgen deprivation therapy or castration (CX), 
immunotherapy/vaccination with UV-8101-RE to induce CD8+ T-cell response (V), IL-2 neutralization (AI) 
and Treg cell depletion (AR). We used an exponential decay formula to model CX. One additional variable was 
introduced for modeling the outcomes from other three treatments, in which the drug effects were accompanied 
by an exponential decay. We also use indicator functions to simulate tumor responses to the treatments. Details 
are shown in the lower panel of Fig. 1 (also see the section of Methods as well as Supplementary Text S1).



www.nature.com/scientificreports/

3Scientific Reports | 6:21599 | DOI: 10.1038/srep21599

To parameterize the model, dynamical cell population data obtained from seven experimental conditions were 
used (see Methods for details about the data). In general, tumor weight and populations of CTLs and Tregs in 
prostate tissues and prostate-draining lymph nodes of prostate-specific Pten−/− mice were measured at different 
time points under different experimental conditions. A modified Genetic Algorithm (MGA) was employed to 
estimate unknown parameters in our ODEs system by taking advantage of high performance computing capac-
ity in Texas Advanced Computing Center (TACC). The objective function minimized by MGA was defined as 
the sum of squared errors between simulation data and experimental data in all of seven conditions. MGA is 
an improved implementation of GA with an additional procedure of GA parameter selection (see Methods for 
details). The goodness of GA parameter selection is shown in Fig. 2A. The left table shows the candidates of 
GA parameter settings, including total 243 possible parameter sets, as well as the selected settings with the best 
estimation performance. We compared the fitting errors between candidate group and selected GA parameter 
settings. The candidate group and selected group had 243 and 500 errors, respectively. The selected group was 
obtained through 500 times repeated estimation with random initial seeds in GA while other GA parameters 
were fixed with selected GA parameter settings. Our analysis showed that the performance of parameter estima-
tion had a statistically significant improvement with GA parameter selection. With the selected GA parameter 

Figure 1.  Model construction for predicting treatment outcomes of prostate cancer. The upper panel 
shows the interaction diagrams between tumor cells and the immune microenvironment. The prostate tumor 
includes castration-sensitive prostate cancer (CSPC) and castration-resistant prostate cancer (CRPC) in 
prostate compartment and the tumor-related immune system consists of dendritic cells (DCs), cytotoxic T cells 
(CTLs) and T regulatory cells (Tregs) in both prostate compartment and lymphoid compartment. The arrow 
and hammer head represent promotion and inhibition in the interaction, respectively. Mathematical formulas 
(15 ordinary differential equations) in the right corner of upper panel are used to describe the dynamics of 
the system. The first four formulas are used for modeling four types of treatments included in this study, 
i.e., castration (CX), vaccination (V), IL-2 neutralization (AI) and Treg depletion (AR). The definition and 
modeling procedure of four treatments are shown in the table of lower panel. In the column of implementation, 
both of the initial value and indicator function are given with value 1 when the corresponding treatment is 
implemented, otherwise both of the values are 0, except for the initial value of Androgen which is given a value 
1 (A0 =  1) for all cases in the model system.
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settings, the parameter estimation was re-evaluated 500 times and then an optimized parameter set was achieved 
(see Supplementary Table S2 for details). Fig. 2B shows the fitting results between experimental and simulation 
data using our quantitative model with optimized parameters. The dynamics of other variables in the modeling 
system are presented in Fig. S2. In general, a good fitting performance between experimental and simulation 
data suggests that the proposed algorithm for parameter estimation is effective in training big ODEs systems. 
The results in Fig. 2B show that our established model is capable to reproduce cellular dynamics for all of seven 
treatment conditions simultaneously, suggesting our established model is powerful in predicting the outcomes 
from combined therapies. Parameter identifiability analysis was conducted by calculating coefficients of variation 
(CVs) of model parameters (see Methods for details) and only one out of 25 estimated model parameters was 
non-identifiable (Fig. S3 and Table S2).

Evaluation of model performance using cross-validation.  Cross-validation technique is usually used 
for evaluating performance and accuracy of a model. We employed this technique in our study. First, we divided 
all of observations into two complementary subsets. One subset was used for model training and another set 
for model testing and validation. The goal of this study is to predict other treatment outcomes and efficacies 

Figure 2.  GA parameter selection and data fitting. (A) GA parameter selection in MGA. The left table 
shows the candidates and selection for GA parameter settings and the two subfigures on the right display the 
comparisons of fitting errors before and after parameter selection. The normalized histograms of fitting errors 
are based on 243 data points (the number of candidates of GA parameter sets) for candidate case and 500 data 
points (the number of replicates of parameter estimation based on selected GA parameters) for selection case. 
The p-value was calculated by unpaired and two-tailed student’s t-test. (B) Data fitting. The blue lines show the 
predicted results and black dots are data points collected from experimental data. Horizontal rows include five 
types of variables (“-P” represent in prostate and “-L” in lymphoid) and vertical columns embrace seven types 
of experimental conditions. In each subplot, the y-axis represents relative number of cell population and x-axis 
represents the time in weeks post-treatment. Note that the plot presents all the variables including those whose 
time series data were even not collected or incomplete for simplicity purpose of presentation, and the initial 
conditions, which have all been set to 1, were not included in the calculation of error during parameter fitting.
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using a mathematical modeling established through the experimental data from seven treatments conditions. 
An optimal way to evaluate the predictive power of a model is through cross-validation. Therefore, we decided 
to determine whether or not the data obtained from any of six treatments out of seven were able to accurately 
predict the outcomes from the remaining one. We did seven cross-validations in total (see Methods for details). 
In each of cross-validation, one treatment was taken out as a testing sample after the model training process was 
completed. In order to evaluate the stability and reliability of our model’s prediction power, the training process 
was repeated for 100 times with random seed in the parameter estimation algorithm. Cross-validation results are 
shown in Fig. 3. There was a good consistency between the prediction and experimental data and majority of the 
experimental data fall within 95% confidence area, indicating the predictive capability of our model was high. The 
overall area of the confidence region also demonstrated the stability and reliability of the model-based prediction. 
The confidence areas were acceptable for majority of variables except CTL-P (CTL in prostate) in the treatment 
group containing CX and V and AR. Note that the predictions show oscillations over time which is a common 
phenomenon in ODE-based modeling and the trends remain consistent with the results shown in Fig. 2B. To fur-
ther confirm the predictive capability of this model, we also conducted an alternative cross-validation, in which 
only one set of experimental data instead of all data from one treatment condition was used as a testing sample 
for model prediction (Fig. S4). The predictive power was similar to that observed above. These results indicated 
that our model achieved high accuracy and reliability in predicting outcomes of combined treatments. Therefore, 
we believe that the established model has potential to be used as a tool in predicting outcomes of other treatment 
combinations.

Evaluation of the model performance using tumor sizes as treatment outcomes.  To determine 
the biological significance of this model, we examined the accuracy of our model in predicting tumor size as 
outcomes. Two types of tumor sizes were used as treatment outcomes. One was instantaneous tumor size at 5 
weeks and another one average tumor size over 0~5 weeks after treatment. Based on the established model using 
experimental data obtained from seven treatment conditions (Fig. 2), we calculated and compared the tumor 
sizes at and during 5 weeks after treatments. The changes in tumor sizes at and during 5 weeks following 7 differ-
ent treatment conditions were similar as shown in Fig. 4A,B. The Pearson correlation coefficient (PCC) was 0.98 
and p-value . −E5 94 05, indicating a good correlation between two types of tumors. Moreover, our analysis 
showed two tendencies for the treatment outcomes. ADT/CX itself inhibited tumor growth. Combination of ADT 
with either IL-2 neutralization (AI) or Treg depletion (AR) enhanced the role of ADT. The treatment efficacy of 
ADT plus Treg depletion was better than that of ADT plus IL-2 neutralization. The general tendency was CX +  A
R >  CX +  AI >  CX >  SX (control). Immunotherapy/vaccination (V) enhanced the treatment effect of ADT and 
addition of Treg depletion achieved even better outcomes. The treatment efficacies with vaccination were CX +  

Figure 3.  Evaluation of model performance. The plotted lines show the average dynamics from 100 replicates 
of simulation, and shadow areas indicate the corresponding 95% confidence intervals calculated from normal 
distribution statistics. For each cross-validation, one treatment was taken out as a testing sample after the model 
training process was completed. The black dots are the data points obtained from animal experiments. SX, 
sham-treated control; CX, castration; AR, Treg depletion; AI, IL-2 neutralization. In each subplot, the y-axis 
represents relative number of cell population and x-axis represents the time in weeks post-treatment.
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V +  AR >  CX +  V >  SX +  V >  SX. In order to determine if these predictions were statistically significant, we 
repeated model training process over 100 times. The results were shown in Fig. 4C,D. Student’s t-test indicated 
that the ranked efficacies for various treatments were statistically significant (p-value < 0.05) in terms of two types 
of tumor growths (Table S3).

To further confirm the reliability of the established model or stability of the model-based outcome prediction, 
we conducted local sensitivity analysis for model parameters by measuring the impact of small perturbation (5% 
increasing) of individual parameters on outcomes (see Methods for detail). The dynamics of tumor sizes follow-
ing parameter perturbations are shown in Fig. S5. The sensitivity of individual parameters calculated from tumor 
dynamics are presented in Fig. 5, showing that all parameters are within 5% sensitivity (i.e. the perturbation of 
outcome is not beyond 5%) except for the 4th parameter r p2 (proliferation rate of CRPC) and 5th parameter ra2 
(apoptosis rate of CRPC). The sensitivity analysis confirmed the stability of established model and the 
model-based outcome prediction. Parameter sensitivity analysis (Fig. 5) also revealed a consistent pattern 
between two types of treatment outcomes (marked with blue or red colors in Fig. 5, with = .PCC 0 99 and p-value 
= 8.0E–159 for the overall data).

Model-based prediction of overall treatment efficacies.  Based on the successful evaluation of two 
types of treatment outcomes discussed above, now we decided to apply our established model to predict the over-
all outcomes for other combined treatments. We have four individual treatment conditions, including ADT, vac-
cination, IL-2 neutralization and Treg depletion. Combination of these 4 treatment conditions with the 
non-treated control group (SX) produced a total of 16 possible regimens. Seven out of 16 regimens were used in 
our early sections for model construction and evaluation of treatment outcomes. The remaining 9 of them had not 
been used so far. Taking advantage of the predictive capability of our established model, we decided to use this 

Figure 4.  Predicting the effects of combined treatments on tumor growth. The effects of treatments on 
instantaneous (at 5 weeks post-treatment) and average (over 0 ~ 5 weeks post-treatment) tumor growth are 
showing in (A,B), respectively. A consistent pattern (see main text) for these two types of outcomes was 
demonstrated. (C–D) The derived pattern was confirmed with statistical significance through 100 replicates 
in model training process. The data are presented as mean  ±  s.d. The asterisk shows the significant difference 
(p-value < 0.05) of the comparison between the considered two conditions. The complete comparison among 
all seven treatment conditions are provided in Table S3. The p-value was calculated by unpaired student’s t-test 
with two-tailed setting. SX, sham-castration or non-treated control; CX, castration; AR, Treg depletion; AI, IL-2 
neutralization.
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model to predict the treatment outcomes for all of the combined therapeutic conditions (see Methods for detail). 
The tumor dynamics for all 16 possible treatments are shown in Fig. S6. We calculated the predicted tumor size 
from 16 treatment conditions as shown in Fig. 6, Comparing the instantaneous (Fig. 6A) and average tumor size 
(Fig. 6B), the tumor growth inhibition pattern under 16 treatment conditions was similar. The Pearson correla-
tion coefficient for two types of predicted outcomes were .0 99 and p-value3.12E–13, which were consistent with 

Figure 5.  Sensitivity analysis of the model parameters. The local sensitivity (z-axis) for an individual 
parameter (x-axis) under a certain treatment condition (y-axis) was calculated from the established model with 
a 5% increase on the parameter value. The parameter is listed in Table S2. The treatment conditions are labeled 
as 1 (SX), 2 (CX), 3 (CX +  AI), 4 (CX +  AR), 5 (SX +  V), 6 (CX +  V) and 7 (CX +  V +  AR). SX, sham-treated or 
non-treated control; CX, castration; AR, Treg depletion; AI, IL-2 neutralization. The blue columns represent the 
sensitivity analysis using instantaneous tumor size as an outcome and red ones for average tumor size.

Figure 6.  Model-based prediction of overall outcomes . The plots show the predicted treatment outcomes for 
all 16 possible treatment conditions, including instantaneous tumor size (A) and averages tumor size (B). The 
treatment conditions are listed based on their efficacies from low to high, expressed as percentage of inhibition 
relative to non-treated control. The predictions for the seven treatment strategies previously shown in Fig. 4 are 
marked with red stars. SX, sham-treated or non-treated control; CX, castration; AR, Treg depletion; AI, IL-2 
neutralization.
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our findings in the early sections. The results revealed a general order of the treatment efficacies for 16 conditions 
using two types of tumor size as outcomes. There were also a few inconsistencies. ADT plus IL-2 neutralization 
(CX +  AI) ranked two positions higher and vaccination plus Treg depletion (V +  AR) one position lower in the 
type I outcome (instantaneous tumor size) than that in the type II outcome (average tumor size). Interestingly, the 
predicted rank of Treg depletion was much higher than IL-2 neutralization. Among 4 treatments with a single 
condition, Treg depletion was ranked number 1 followed by vaccination, ADT and IL-2 neutralization. Among a 
total of 6 regimens with two combined therapies (CX +  V, CX +  AI, CX +  AR, V +  AI, V +  AR and AI +  AR), 
three of them contained Treg depletion (V +  AR, CX +  AR and AI +  AR) and ranked top 3 positions as shown in 
Fig. 6. The remaining three were combined with IL-2 neutralization (AI +  AR, V +  AI and CX +  AI) and ranked 
at the positions of 3, 4 and 5, respectively. We listed the ranking positions for of the treatments containing Treg 
depletion or IL-2 neutralization based on tumor-size-related outcomes in Table 1. One-tailed student’s t test 
(unpaired) analysis showed that Treg depletion was ranked significantly higher than IL-2 neutralization. Both 
Treg depletion and IL-2 neutralization have an inhibitory role of CTL, thereby to benefit therapeutic outcomes of 
prostate cancer treatment. The relative therapeutic efficacies of Treg depletion to IL-2 neutralization had not been 
investigated so far. Our analysis indicated that Treg depletion had a higher efficacy than IL-2 neutralization as an 
adjuvant therapy in the treatment of prostate cancer.

Synergistic effect of Treg depletion, ADT and vaccination.  Based on the data shown above, we 
hypothesized that Treg depletion has a more synergistic role than IL-2 neutralization when combined with other 
treatments. To test our hypothesis, we assessed the synergistic effects of Treg depletion and IL-2 neutralization 
using tumor growth sizes as outcomes. The combined effect were evaluated using Bliss combination index (CI) 
and defined CI <  1 as synergistic, CI = 1 as additive and >CI 1 as antagonistic33,34. The index CI  was calculated 
based on the model-predicted tumor inhibition rate (see Methods for detail). The CI  values related to the type I 
tumor growth for all of the combined treatment conditions were shown in Fig. 7 in a heatmap format. The CI  
values for type II tumor growth were presented in Fig. S7. Pearson correlation test showed a very strong associa-
tion between type I and Type II outcomes, with = .PCC 0 99 and p-value = . −E5 64 20. The CI  values for Treg 
depletion- and IL-2 neutralization-related treatments were less than 1, indicating that both Treg depletion and 
IL-2 neutralization had synergistic effects to other treatment conditions. We compared the CI  values on the 3rd 
and 4th rows of the heatmap and found that Treg depletion had a stronger synergistic impact than IL-2 neutrali-
zation (the smaller CI  value the stronger synergy effect). Student’s t test (One-tailed and unpaired) showed that 
the difference was statistically significant between Treg depletion and IL-2 neutralization (p-value < 0.001). More 
interestingly, the top three antagonistic combinations (CI >  1.1) were CX +  V, CX +  (V +  AI) and (CX +  AI) +  V 
and the top three synergistic combinations (CI <  0.8) (CX +  V) +  AR, (CX +  V +  AI) +  AR and 
(CX +  V) +  (AR +  AI) (Fig. 7). Note that there is difference between the notations of A +  B +  C and (A +  B) +  C 
for the combined treatments. A +  B +  C represents three-treatment combination. The (A +  B) in the (A +  B) +  C 
is counted as one treatment here, therefore, (A +  B) +  C represents two-treatment combination. Notice that the 
combination index used in this study is applicable for (A +  B) +  C but not for A +  B +  C. If we took AI out from 
the top three antagonistic combinations mentioned above, all of them would be converted into CX +  V; similarly, 
the top three synergistic combinations turned into CX +  V +  AR. This result suggests that the combination of 
ADT with vaccination (CX +  V) has a strong antagonistic effect and addition of Treg depletion (AR) to the com-
bined treatment with ADT and vaccination produced a good synergistic impact. Therefore, Treg depletion is 
capable to reverse the antagonistic effect from combined treatment with ADT and vaccination. These findings 
were also supported by the synergic analysis based on the type II outcome shown in Fig. S7.

Comparison of therapeutic efficacy and synergistic effects of four treatment approaches.  In 
the previous section, we have revealed that Treg depletion may have a better treatment/synergistic effect than IL-2 
depletion. To further confirm if the performance of Treg depletion was better than IL-2 neutralization, as well as 
ADT and vaccination, we evaluated the overall effects of four types of treatments. First, we compared the effects 
of ADT, vaccination, Treg depletion and IL-2 neutralization, either alone or combined with other treatments, on 
tumor growth. As shown in Fig. 8A, the treatment efficacy in terms of percentage of tumor growth inhibition was 
Treg depletion (AR) >  vaccination (V) >  ADT (CX) >  IL-2 neutralization (AI). Then we compared the average 
outcomes from all of the treatments containing ADT, vaccination, Treg depletion or IL-2 neutralization, respec-
tively. For example, the Treg depletion shown in Fig. 8B represented the average of 8 Treg-containing treatments 
displayed in Fig. 6A. The tendency of treatment efficacies was similar to what we observed in Fig. 8A. We also 
compared the synergistic effects of either an individual (Fig. 8C) or average outcomes from the treatments con-
taining ADT, vaccination, Treg depletion or IL-2 neutralization (Fig. 8D). The synergistic combination index was 
calculated based on CI values reported in Fig. 7 for type I outcome and in Fig. S7 for type II outcome (limited to 

Treatments (candidates)

Type I outcome (Inst) Type II outcome (Aver)

AR (rank) AI (rank) AR (rank) AI (rank)

Single treatment (n =  4) 1 4 1 4

Two-combination (n =  6) (1, 2, 3) (3, 4, 5) (1, 2, 3) (3, 4, 6)

Three-combination (n =  4) (1, 2, 3) (2, 3, 4) (1, 2, 3) (2, 3, 4)

Statistical test p-value =  0.0035 p-value =  0.0033

Table 1.  AR is significantly ranked higher than AI from model-based prediction.
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the CI ’s <  1). A smaller synergistic combination index means a better synergistic effect. As shown in Fig. 8C, the 
treatment with Treg depletion obtained the best synergy and followed by vaccination, ADT and then IL-2 neutral-
ization. A same order was also seen in Fig. 8D. In summary, our model-based multiple evaluations suggested Treg 
depletion has a better efficacy and synergistic effect in the treatment of prostate cancer, when compared with 
other three treatment conditions.

Discussion
In this study, we have used mathematical approaches to predict prostate tumor progression and treatment out-
comes in a microenvironment containing immune system and other compartment. To fully characterize the 
impact of ADT on the immune system, a prostate-specific Pten−/− mouse model was developed in our institute. 
A significant increase in the function of antigen-specific CD8+ T cells was found early after ADT and the effector 
function was then reduced to the same level as that in the non-castrated mice14. To determine the mechanism 
responsible for transient increase in effector function, investigation of the effect of ADT on CTL response to a 
well-defined immunodominant tumor antigen in non-tumor-bearing C57BL/6 mice indicated that the enhanced 
the proportion of antigen-specific CD8+ T cells in the spleen following ADT declined by 5 weeks accompa-
nied with an increased proportion of Tregs in the ADT and immunized animals. Treg expansion was blocked 
in Pten−/− mice by IL-2 neutralization in vivo. These findings indicated that ADT-induced activation of CTLs 
resulted in an induction of IL-2 and Treg expansion, leading to inhibition of CTLs in the prostate draining lymph 
nodes15. Therefore, our mathematical model was developed for prediction if removal of the inhibitory brakes of 
CTLs would improve the treatment efficacies of advanced prostate cancer in a microenvironment with multiple 
compartments. We predicted the outcomes from seven treatment conditions based on the in vivo data obtained 
from the prostate-specific Pten−/− mouse model treated with multiple conditions. The model was trained with 
those experimental data. Our analysis showed that the treatment efficacy of Treg depletion was higher than that 
from IL-2 neutralization using tumor size as outcomes. The reason why Treg depletion is more effective than 
IL-2 neutralization may be due to the complicity of the interaction network topology, as well as the quantitative 
properties of the interactions in the proposed model shown in Fig. 1. An intuitive explanation would be that Treg 
depletion acts directly to reduce the Treg population; whereas IL-2 neutralization affects the Treg population 
indirectly. Since IL-2 neutralization will first cause a negative effect on the CD8+ and CD4+ T cell populations, as 
a result of that it will reduce the Tregs, Treg depletion may be preferable in reducing the regulatory effect of Tregs 
to complement ADT. Our mathematical model has provided a quantitative assessment for this hypothesis. Both 
of them have inhibitory effect on Tregs and indirectly reduce the function of CTLs. Therefore, our prediction 
suggests that Treg depletion is more beneficial than IL-2 neutralization does as an adjuvant or complementary to 

Figure 7.  Analysis of interactions among treatments . The heatmap plot shows the symmetric matrix of Bliss 
combination indexes (CI ’s) for all possible treatment combinations using instantaneous tumor size as outcome. 
The blank boxes indicate inapplicable combinations. The value of Bliss ( , )CI x y  for treatment x and treatment y 
(see definition on the top of the figure) was calculated based on the individual treatment effects ( f x and f y) and 
combined treatment effect ( f xy). The treatment effect was defined as the percentage inhibition of instantaneous 
tumor size. For example, the combination of CX and V on top-left corner of the matrix has a .CI value 1 278 
calculated by

= + − = . + . − . . . = . .+
⁎CI CX V f f f f f( , ) ( )/ (28 8% 30 4% 28 8% 30 4%)/39 5% 1 278CX V CX V CX V



www.nature.com/scientificreports/

1 0Scientific Reports | 6:21599 | DOI: 10.1038/srep21599

the combined immunotherapy and ADT for prostate cancer. This study provides a framework of systems biology 
approach in studying tumor cell-associated immune mechanisms and consequent therapeutic strategy selection.

The immune system controls cancer development by eliminating cancer cells as they develop. However, can-
cers can find ways to subvert the immune system. In addition, naturally occurring “brakes” in the immune system 
shut down anti-tumor responses. In order to design better treatment approaches for castration-resistant and 
metastatic diseases, it is critical to understand how anti-tumor responses develop and shut down. There are many 
treatment methods for cancers currently but it is virtually impossible to test the efficacy of multiple treatment 
methods in a time and cost-efficient manner. In order to pinpoint the best treatments with the highest likelihood 
of success, we have performed predictive analysis of therapeutic outcomes using the mathematical model built 
based on the experimental data from the Pten−/− mouse model. The mathematical model took into consideration 
of both anti-tumor and inhibitory arms of the immune system in the tumor and lymph nodes of animals. The 
accuracy and robustness of the developed model was verified using cross-validation technique. Thus, this systems 
approach will guide the generation of better treatments for advanced prostate cancer by predicting which treat-
ments are likely to improve cancer responses to the therapies. In the future work, we will validate our findings in 
the Pten−/− mouse model and test our model using data obtained from human prostate cancer patients.

There are two major limitations in this current work. First, T helper cell types, especially T helper 17 cells 
(Th17), were not considered in the current model. We will address individual components of T help cells in 
response to castration in the future studies. It has been reported that Tregs and/or Th17 (rather than Th2 T cells) 
were involved in the development or progression of prostate cancer35; both CD4+ and CD8+ T cells were observed 
in prostate glands, and the CD4+ T cells consisted Th17 and Tregs cell populations2. Second, a limited numbers 
of dynamic data for lymphoid compartment were collected in the current study. Increased number of lymphoid 
tissue samples will be helpful in improving model accuracy in our future research.

We believe that our studies have shed lights in exploring the immune mechanisms and exploiting the effec-
tive interventions. To further understand how inhibitory pathways are generated and maintained, it is critical to 

Figure 8.  Comparison of treatment efficacies and synergistic role for individual approaches . The overall 
treatment efficacy for ADT (CX), vaccination (V), Treg depletion (AR) and IL-2 neutralization (AI) was plotted 
as percentage of tumor growth inhibition (A–B) and synergistic combination index (C–D) with a single (A,C) 
or combined treatments (B,D) using instantaneous or average tumor size as outcomes. For the combined 
treatments, the value of AR represents an average measure of total 8 AR-containing treatments, as those for 
ADT, CX and V. For unmixed combination index in (C), the value of AR is the average of 4th row in Fig. 7 or Fig. 
S6, as those for ADT, CX and V. For mixed combination index in (D), the value of AR is the average of all 7 AR-
related rows in Fig. 7 or Fig. S6, as those for ADT, CX and V. The blue bars represent the values calculated based 
on the instantaneous tumor size and the red bars on the average tumor size.
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identify other key molecules produced by Treg and CTL. Furthermore, pinpointing the signaling pathways acti-
vated by these interactions will reveal potential therapeutic targets. To reach this purpose, computational systems 
bioinformatics could be developed along with the following potential procedures: 1) generate RNA Sequencing 
(RNA-Seq) data and liquid chromatography–mass spectrometry (LC-MS) data from isolated immune cells, 
including CTLs and Tregs, in a prostate-specific Pten−/− mouse model before/after castration; 2) identify the 
significantly enriched pathways in individual CTLs and Tregs after castration using RNA-Seq data; 3) identify the 
top regulated candidates in each cell type to determine cell-cell interactions and their corresponding intracellular 
pathways with RNA-Seq and LC-MS data; and 4) determine the signaling pathways in Tregs activated in response 
to IL-2 in the tumor microenvironment, and define the intracellular pathways that utilize IL-2 and the newly 
identified targets, by combining the enriched pathways with phosphoproteomics data analysis.

Methods
Ethics statement.  Animal model was carried out in accordance with Wake Forest School of Medicine 
(WFSM), Winston Salem, NC, Animal Care and Use Committee guidelines and regulations. All experimental 
protocols were approved by the Institutional Animal Care and Use Committee at WFSM, Winston Salem, NC.

Animal model and experimental data.  The prostate-specific Pten−/− mouse model was used in this study 
which has been established well in our institute13,14. This model was created many years ago12 and has been widely 
used in prostate cancer related research which mimics natural aspects of human prostate cancer development36. 
In the in vivo experiments13,14, total seven treatments were performed, which were respectively called in this study 
SX, CX, CX +  AI, CX +  AR, SX +  V, CX +  V and CX +  V +  AR. SX stands for sham-castration, CX for castration, 
V for vaccination, AI for IL-2 neutralization, AR for Treg depletion, and “+ ” for treatment combination. CX was 
treated by surgical removal of both testicles, V by injection of UV-8101-RE sarcoma cells37 which works similarly 
with FDA approved prostate cancer vaccine Provenge (or Sipuleucel-T) by programming host immune system 
to seek out cancer spreading in the body and attack it as if it were foreign, AI by injection of S4B6 antibody and 
AR by injection of PC61 antibody. All the treatments were given at the age of 14 week old for each treatment 
condition and then multiple variables were measured and analyzed at 16.5 week or 19 week (2.5 week or 5 week 
after treatment). Up to five types of variables were measured for each treatment condition, consisted of tumor 
weight and populations of CTL and Treg in prostate tissues and lymphoid (summary of prostate-draining lymph 
nodes and spleen). The tumor weight was used in our model to represent the tumor cell population (i.e., the sum 
of CSPC and CRPC). Using this proximate calculation is due to the following three reasons. First, the tumor 
weight roughly reflects the weight of total tumor cells. The immune cells infiltrating into tumor are trivial in both 
cell numbers and volume when compared to the tumor cells. Second, the tumor size (or tumor cell population) 
is proportional to the tumor weight. Third, in our mathematical model we used the relative tumor size (relative 
to the initial time point) but not the absolute tumor size to describe the dynamic change of the tumor over times. 
The animal model development and treatment protocols are given in detail in Fig. S1 and the corresponding 
experimental data are provided in Table S1.

Model construction and model training.  The mathematical model was constructed using ODEs to 
describe the dynamic interactions between tumor cells and immune cells under multiple treatment conditions. 
The details of equations are provided in Supplementary Text S1. In general, the model system includes 15 ODEs 
and 25 unknown parameters. The unknown model parameters need to be estimated through model training 
based on the above-mentioned experimental data. An algorithm called Modified Genetic Algorithm (MGA) was 
proposed to estimate those parameters by taking advantage of high computing performance (parallel computing 
in TACC-Texas Advanced Computing Center). The objective function minimized by MGA was defined as the 
sum of squared errors between simulation data and experimental data. MGA is an improved implementation of 
conventional GA38 with an additional procedure: GA parameter selection, i.e., selection of parameter settings in 
GA including generation number, population size, crossover probability, mutation probability, distribution index 
for crossover and distribution index for mutation. The reason why we have to select GA parameters is based on 
the fundamental fact that the GA parameters do depend on the problem to solve and there is no a universally best 
parameter set that you can find automatically for all problems. The procedure of parameter estimation proposed 
in this study is followed. First, a set of candidates (243 combinations) of GA parameters were first set up based 
on the empirical ranges of individual GA parameters. The candidate combinations of the GA parameters are pro-
vided in Fig. 2A. Then, for each candidate, GA was performed to obtain the fitting error. Finally, the optimal GA 
parameter setting was selected from the candidates through one-by-one selection of individual GA parameters 
by comparing each three patterns of fitting errors. After GA parameter selection was fulfilled, the final estimates 
of model parameters were eventually obtained by running GA one more time. The estimated parameters are 
provided in Table S2.

Model parameter identifiability analysis.  Coefficient of variation (CV) based on bootstrapping 
approach39 was used to study how many parameters are identifiable16,40. CV is a normalized measure of disper-
sion of a probability distribution of a variable, which is defined as the ratio of the standard deviation to the mean. 
Briefly, we first re-sampled the experimental data for 100 times using bootstrapping approach. Then, based on the 
re-sampled data, we obtained 100 sets of estimated parameters using the proposed optimization algorithm MGA. 
Finally, based on the estimated parameters sets, we calculated the CVs for all parameters and defined the number 
1 as the threshold to determine the identifiability for model parameters16. The results for 25 model parameters are 
provided in Fig. S3 and Table S2.
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Model cross-validation.  The cross-validation was used to evaluate how accurately our established model 
will perform41. In the cross-validation technique, the observations are first partitioned into two complementary 
subsets and then one subset is used to train the model and the other to test and validate the model. In this study, 
we performed two types of cross-validations. One is called leave one condition out cross-validation, in which we 
first leave out one treatment condition from total seven conditions (leave out one condition means leaving out 
all observations or data from that condition) the and then use the remaining conditions to predict the leave-out 
condition. The other is called leave one data box out cross-validation, in which we leave out only one data box 
(data related to one variable, up to three time points) in one condition instead of the whole data in that condition 
compared to the first type cross-validation. In each cross-validation, calculations were repeated 100 times (by 
randomly setting the search seed in GA in parameter estimation) in order to check out the stability of the model 
prediction. The results are provided in Fig. 3 and Fig. S4, respectively.

Model parameter sensitivity analysis.  Parameter sensitivity analysis is a tool to quantitatively determine 
the effect of specific parameters on the output. To understand the relationship between system responses and 
variations in individual model parameters, local parameter sensitivity analysis was performed in this study42,43. 
Briefly, we increased the estimated value for each individual parameter by 5% and then checked the response 
of the system outputs to determine the corresponding parameter sensitivity. The system output was defined by 
tumor size either instantaneous value at 5 week after treatment or the average value over 0–5 weeks after treat-
ment. The results for 25 model parameters are provided in Fig. 5 and Fig. S5.

Model-based synergy analysis of combined treatments.  The Bliss combination index ( CI) was used 
to evaluate the effect of combination treatment33,34. The combination index ( , )CI x y  of treatment x and treatment 
y was defined based on both the individual treatment effects ( f x and f y) and the combined treatment effect ( f xy), 
by a formula = + −CI x y f f f f f( , ) ( )/x y x y xy. The combination treatment effect of treatment x and treatment y 
was then defined as either synergistic if ( , ) <CI x y 1 or additive if ( , ) =CI x y 1 or antagonistic if ( , ) >CI x y 1. 
The individual treatment effect was defined by the tumor inhibition percentage based on either the instantaneous 
tumor size at 5 week after treatment or the average tumor size over 0–5 weeks after treatment, which are shown in 
Fig. 6. The results of synergy analysis for all possible combined treatments are provided in Fig. 7 and Fig. S7.

Software.  The programs for parameter estimation and all model simulations were written in the program-
ming language C, which were performed by parallel computing in TACC-Texas Advanced Computing Center, 
and the results were visualized using either MATLAB software (The Mathworks, Natick, MA, USA) or RStudio 
software (RStudio, Boston, MA, USA). The GA implementation code was adapted from the single-objective GA 
code in C developed by Professor Kalyanmoy Deb’s group at Kanpur Genetic Algorithms Laboratory. The original 
GA source code was downloaded free charge from Prof. Deb’s lab website (http://www.iitk.ac.in/kangal/codes.
shtml). The ODEs were numerically solved by using an ODE solver package DLSODE in Fortran language44. The 
DLSODE was downloaded free charge from Prof. Hindmarsh’s lab website (https://computation.llnl.gov/casc/
odepack/).
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