
OR I G I N A L R E S E A R C H

Suppression of CXCL-1Could RestoreNecroptotic

Pathway in Chronic Lymphocytic Leukemia
This article was published in the following Dove Press journal:

OncoTargets and Therapy

Zhao Xu*

Yifeng Sun*

Zheng Wei *

Jifeng Jiang

Jiadai Xu

Peng Liu

Department of Hematology, Zhongshan

Hospital, Fudan University, Shanghai,

People’s Republic of China

*These authors contributed equally to

this work

Purpose: To clarify the role of different cytokines and selenite in the defective necroptotic

pathway of chronic lymphocytic leukemia (CLL).

Patients and Methods: We randomly collected the peripheral blood samples of 11

untreated CLL patients and 10 healthy volunteers, and then separated B lymphocytes from

peripheral blood. Then, real-time polymerase chain reaction (PCR), enzyme-linked immu-

nosorbent assay (ELISA) and Western Blot were performed to detect the expression of

different cytokines, including CXC-motif chemokine ligand 1 (CXCL-1). Finally, we used

flow cytometry to analyze the percentage of surviving cells to figure out whether CLL cells

or normal B lymphocytes underwent necroptosis.

Results: 1) The high expression of CXCL-1 was seen in CLL cells compared with normal

B lymphocytes (p = 0.0001, adjusted p =0.0012); 2) The downregulation of CXCL-1 was

shown in normal B lymphocytes after induction by TNF-α and z-VAD; 3) CLL cells could

restore necroptosis induced by TNF-α and z-VAD after knockdown of CXCL-1; 4) The

transcriptional and translational expression of LEF-1 were downregulated after the knock-

down of CXCL-1 in CLL cells; 5. 3.2μM selenite could help CLL cells restore necroptosis (p

= 0.0102) and inhibit the transcriptional and translational expression of CXCL-1.

Conclusion: CXCL-1 played an important role in the defective necroptosis of CLL cells

and regulated the expression of LEF-1. Selenite could inhibit the expression of CXCL-1 and

help CLL cells restore necroptosis together with TNF-α and z-VAD. Selenite might be the

potential medication of CLL in the future.

Keywords: chronic lymphocytic leukemia (CLL), CXC-motif chemokine ligand 1 (CXCL-

1), selenite, necroptosis

Introduction
Chronic lymphocytic leukemia (CLL) is one of the most common hematological

malignancies worldwide. CLL is characterized by the progressive accumulation of

a monoclonal CD5-positive subgroup of B lymphocytes. The aggregation of these

B cells leads to various clinical manifestations, such as lymphadenopathy, hepatos-

plenomegaly, and bone marrow failure.1 Although the overall survival and progres-

sion-free survival has seen huge improvement among CLL patients with the

emergence of rituximab and ibrutinib,2 CLL is still incurable. A deeper under-

standing of the pathogenesis might be helpful to explore novel strategies for CLL

patients.

When normal B cells fail to undergo apoptosis with the induction of tumor

necrosis factor-α (TNF-α) and caspase inhibitor such as benzyloxycarbonyl-Val-

Ala-Asp-fluoromethyl-ketone (z-VAD),3,4 necroptosis often occurs as the
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alternative programmed cell death pathway. However,

both apoptosis and necroptosis are impaired in CLL

cells, which explains why malignant B lymphocytes

accumulate in CLL patients.5 As the key regulator of

canonical wingless-type (Wnt) pathway, the lymphoid

enhancer-binding factor 1 (LEF-1) is overexpressed in

various hematological malignancies.6–9 The high expres-

sion of LEF-1 in CLL cells downregulates deubiquiti-

nase cylindromatosis (CYLD), a deubiquitinating

enzyme important in the necroptotic pathway.10 CYLD

dismantles the ubiquitination from RIPK1, leading to

necroptosis. The suppression of CYLD by overexpres-

sion of LEF-1 stimulates sustained ubiquitination of

RIPK1, causing the defection of necroptosis and survival

of CLL cells. Therefore, the restoration of necroptosis

will be another aim for CLL treatment strategies.

Selenite is associated with both necroptosis and pre-

vention of tumor development. Selenite induced reactive

oxygen species (ROS) generation in the necroptotic path-

way of the HeLa cells.11 Besides, the biogenic selenium

nanoparticles stimulated cell death in the prostate adeno-

carcinoma cells by the ROS-mediated activation of

necroptosis.12 Furthermore, selenite is selectively toxic to

tumor cells at a concentration that does not affect normal

cells.13 Thus, selenite might become an ideal chemother-

apeutic medicine in the future.

On the other hand, different cytokines also play an

important role in the pathogenesis of CLL. CLL cells

receive signals from cytokines, which were secreted by

accessory cells in the microenvironment.14 The interaction

between cytokines and its receptors is critical for the

homing and retention of CLL cells.15 However, the rela-

tionship between cytokines and defective necroptosis in

CLL cells remains unclear. In addition, the impact of

selenite on either cytokines or necroptosis has received

little attention.

Our research was designed to illustrate the association

between different cytokines and the defective necroptotic

pathway in CLL cells. Moreover, we managed to discover

the influence of selenite on the cytokines and defective

necroptosis in the CLL cells.

Patients and Methods
Patients
We enrolled 10 healthy volunteers and 11 untreated CLL

patients diagnosed in our hospital between 2017 and 2019.

The protocol was approved by the Review Board of

Zhongshan Hospital of Fudan University. All patients

and volunteers provided written informed consent in

accordance with the Declaration of Helsinki.

Cells and Reagents
Peripheral blood samples were obtained from the patients

and volunteers above. Peripheral blood mononuclear cells

(PBMCs) were isolated from the peripheral blood samples

by Ficoll-isopaque centrifugation. Magnetic cell sorting

(MACS, Miltenyi Biotec, Germany) were performed to

isolate CLL cells and normal B cells. Cells were cultured

in RPMI-1640 medium with 10% heat-inactivated fetal

bovine serum (FBS) in a humidified atmosphere of 95%

air and 5% CO2 at 37°C. TNF-α was from Sigma

(St. Louis, MO, USA) and z-VAD was from Alexis

Biochemicals (San Diego, CA, USA). Antibodies against

LEF-1 were from Abcam (Cambridge, MA, USA) and β-
actin was from Cell Signaling technology (Beverly, MA,

USA). Sodium selenite was dissolved in water treated by

diethyl pyrocarbonate (DEPC) with the concentration of

32μM, 3.2μM, 0.32μM and 0.032μM respectively.

Gene Expression Detection
Total RNA was extracted by Trizol agent (Invitrogen,

Carlsbad, CA, USA) and cDNA was reverse transcribed

by the reverse transcription kit (Thermo Scientific,

Lithuania). The transcriptional expression of CXC-motif

chemokine ligand 1 (CXCL-1), monocyte chemotactic pro-

tein 1 (MCP-1), interleukin 6 (IL-6), granulocyte-

macrophage colony-stimulating factor (GM-CSF),

C-X-C motif chemokine ligand 2 (CXCL-2), C-C motif

chemokine ligand 8 (CCL-8), colony stimulating factor 1

(CSF-1), interleukin 9 (IL-9), C-X-C motif chemokine

ligand 9 (CXCL-9), interleukin 1 receptor, type I (IL-

1R1), interleukin 23 receptor (IL-23R), interleukin 15 (IL-

15), C-C motif chemokine ligand 3 (CCL-3), interleukin 6

receptor (IL-6R), C-C motif chemokine ligand 2 (CCL-2),

C-C motif chemokine receptor 4 (CCR-4), C-X-C motif

chemokine ligand 5 (CXCL-5), interleukin 1 beta (IL-1β),
C-X-C motif chemokine receptor 1 (CXCR-1),

C-X-C motif chemokine ligand 8 (CXCL-8), C-X-C motif

chemokine ligand 10 (CXCL-10), C-X-C motif chemokine

receptor 2 (CXCR-2), and C-C motif chemokine receptor 1

(CCR-1) were analyzed by real-time quantitative polymer-

ase chain reaction (PCR) using a 7500HT fast real-time

PCR system (Applied Biosystem, Foster City, CA, USA).

The primers of different cytokines are shown in Table 1.
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Relative transcriptional expressions were calculated by the

method of ΔΔCT.
A Western Blot was performed based on the procedure

described previously to evaluate the translational

expression of LEF-1.16 β-actin was used to ensure equiva-

lent protein loading. The concentrations of CXCL-1 of

supernatants after cell transfection were determined by

enzyme-linked immunosorbent assay (ELISA) test by

using ELISA kit (Solarbio, Beijing, China).

Flow Cytometry
Cell apoptosis and necroptosis were assessed by the PI-

FITC apoptosis detection kit I (BD Pharmingen, Franklin

Lakes, NJ, USA) as described previously.4

Cell Transfection
Small interfering RNA (siRNA) of CXCL-1, MCP-1, or

LEF-1 and negative control siRNA (nc siRNA) for cell

transfection were synthesized by Biotend (Shanghai, China).

Besides siRNA, 30ng/mL TNF-α and 20μM z-VAD might

also be added to induce necroptosis if necessary. PBMCs

were transfected by siRNA with an ultimate concentration

of 100nM according to the manufacturer’s protocol. The

transfected clones were detected after 24-hour transfection.

Statistical Analysis
Differences of cytokines and LEF-1 expression between

groups were assessed via Student’s t-test. The differential

expression of cytokines between CLL cells and normal

B lymphocytes was adjusted for multiple testing by using

False Discovery Rate. All statistical tests were two-sided,

and the analysis was made by R software, version 3.6.0 (R

Core Team, R Foundation for Statistical Computing). P <

0.05 was considered to be statistically significant.

Results
CXCL-1 and MCP-1 Might Have

a Correlation with Defective Necroptosis

of CLL Cells
First, we isolated CLL cells and normal B lymphocytes from

peripheral blood samples of 3 untreated CLL patients and 3

healthy volunteers, respectively. Then, real-time RT-PCR

was performed to detect the expression of 23 different

cytokines or their receptors associated with various

malignancies.17–37 Only the relative expression of CXCL-1

(P = 0.0001, adjusted P =0.0012), MCP-1 (P = 0.0003,

adjusted P = 0.0023), IL-6 (P = 0.0001, adjusted P =

0.0477) and GM-CSF (P = 0.0083, adjusted P = 0.0012)

was significantly upregulated in CLL cells compared with

normal B lymphocytes (Figure 1A and B). On the other

hand, necroptotic pathway is defective in CLL cells.4 To

Table 1 Primers of Cytokines Associated with Malignancies

Cytokine Primer

CXCL-1 Forward, 5ʹ- GAAAGCTTGCCTCAATCCTG-3’

CXCL-1 Reverse, 5ʹ-CCCTGGGTTTTCCTGATTTT-3’

MCP-1· Forward, 5ʹ- CAGCTCTGGGAACACACTCA-3’

MCP-1· Reverse, 5ʹ- GAGTCACCGTCTCTGGAAGC-3’

IL-6 Forward, 5ʹ- GCAGAAAAAGGTGGGTGTGT-3’

IL-6 Reverse, 5ʹ- GCAGAAGAGAGCCAACCAAC-3’

GM-CSF Forward, 5ʹ- TCATGAGACAGGAGCTGTGG-3’

GM-CSF Reverse, 5ʹ- GCCTTAGGGAAGGAGGTGAC-3’

CXCL-2 Forward, 5ʹ- GCAGGGAATTCACCTCAAGA-3’

CXCL-2 Reverse, 5ʹ- GGATTTGCCATTTTTCAGCA-3’

CCL-8 Forward, 5ʹ- TCACCTGCTGCTTTAACGTG-3’

CCL-8 Reverse, 5ʹ- ATCCCTGACCCATCTCTCCT-3’

CSF-1 Forward, 5ʹ- CCCAGTGTCATCCTGGTCTT-3’

CSF-1 Reverse, 5ʹ- GCAGTTCCACCTGTCTGTCA-3’

IL-9 Forward, 5ʹ- CCTCTGACAACTGCACCAGA-3’

IL-9 Reverse, 5ʹ- CATGGCTGTTCACAGGAAAA-3’

CXCL-9 Forward, 5ʹ- GCAAGGAACCCCAGTAGTGA-3’

CXCL-9 Reverse, 5ʹ- TTTGGCTGACCTGTTTCTCC-3’

IL-1R1 Forward, 5ʹ- GAACAAGCCTCCAGGATTCA-3’

IL-1R1 Reverse, 5ʹ- TCCTGCAACGGGTAGTTTCT-3’

IL-23R Forward, 5ʹ- CATGACTTGCACCTGGAATG-3’

IL-23R Reverse, 5ʹ- GCTTGGACCCAAACCAAGTA-3’

IL-15 Forward, 5ʹ- ATTTTGGGCTGTTTCAGTGC-3’

IL-15 Reverse, 5ʹ- ACTTTGCAACTGGGGTGAAC-3’

CCL-3 Forward, 5ʹ- TGCAACCAGTTCTCTGCATC-3’

CCL-3 Reverse, 5ʹ- TTTCTGGACCCACTCCTCAC-3’

IL-6R Forward, 5ʹ- AGCTCAGATATCGGGCTGAA-3’

IL-6R Reverse, 5ʹ-GGACTCCTGGATTCTGTCCA-3’

CCL-2 Forward, 5ʹ-CCCCAGTCACCTGCTGTTAT-3’

CCL-2 Reverse, 5ʹ-TGGAATCCTGAACCCACTTC-3’

CCR-4 Forward, 5ʹ-GTGGTGGTTCTGGTCCTGTT-3’

CCR-4 Reverse, 5ʹ-AGCCCACCAAGTACATCCAG-3’

CXCL-5 Forward, 5ʹ-GCAAGGAGTTCATCCCAAAA-3’

CXCL-5 Reverse, 5ʹ-TTGTTTCCACCGTCCAAAAT-3’

IL-1β Forward, 5ʹ-GGGCCTCAAGGAAAAGAATC-3’

IL-1β Reverse, 5ʹ-TTCTGCTTGAGAGGTGCTGA-3’

CXCR-1 Forward, 5ʹ-TTTGTTTGTCTTGGCTGCTG-3’

CXCR-1 Reverse, 5ʹ-AGTGTACGCAGGGTGAATCC-3’

CXCL-8 Forward, 5ʹ-GTGCAGTTTTGCCAAGGAGT-3’

CXCL-8 Reverse, 5ʹ-CTCTGCACCCAGTTTTCCTT-3’

CXCL-10 Forward, 5ʹ-CTGTACGCTGTACCTGCATCA-3’

CXCL-10 Reverse, 5ʹ-TTCTTGATGGCCTTCGATTC-3’

CXCR-2 Forward, 5ʹ- ACATGGGCAACAATACAGCA-3’

CXCR-2 Reverse, 5ʹ-TGAGGACGACAGCAAAGATG-3’

CCR-1 Forward, 5ʹ- TTTGGTGTCATCACCAGCAT-3’

CCR-1 Reverse, 5ʹ-GCCTGAAACAGCTTCCACTC-3’
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figure out whether these cytokines were associated with

necroptosis, we managed to induce necroptosis of normal

B lymphocytes from other 6 healthy volunteers with TNF-α
and z-VAD. Besides necroptosis, the expression of CXCL-1

and MCP-1 were downregulated after induction of TNF-α
and z-VAD (Figure 1C). Therefore, CXCL-1 and MCP-1

might associate with necroptotic pathway.

CLL Cells Restored Necroptosis After

Knockdown of CXCL-1 Rather Than

MCP-1
Through flow cytometry, we were able to estimate whether

CLL cells underwent necroptosis. Nc siRNAwith TNF-α and
z-VAD or only CXCL-1 siRNA could not induce necroptosis

of CLL cells. However, siRNA of CXCL-1 with TNF-α and

z-VAD restored necroptotic pathway of CLL cells (Figure

2A, P = 0.0004). Similarly, neither nc siRNA with TNF-α

and z-VAD nor only MCP-1 siRNA could induce necroptosis

of CLL cells. Even after the induction of MCP-1 siRNA

together with TNF-α and z-VAD, the percentage of surviving

CLL cells did not change significantly (Figure 2B).

Therefore, knockdown of CXCL-1 rather than MCP-1

could help induce the necroptotic pathway of CLL cells.

Knockdown of CXCL-1 Downregulated

LEF-1 in CLL Cells
Measured by flow cytometry, the percentage of surviving

CLL cells increased after knockdown of LEF-1 by siRNA

with TNF-α and z-VAD (Figure 3A, P = 0.0001). This

phenomenon had already been observed in other research,

in which LEF-1 was the core element in the defective

necroptosis of CLL cells.4 Furthermore, TNF-α/z-VAD

induced necroptosis could also be restored in CLL cells

after CXCL-1 was knocked down by siRNA (Figure 3A,

Figure 1 The screen of different cytokines that might associate with necroptotic pathway. (A) real-time RT-PCR analysis of 23 cytokines or their receptors was performed

using peripheral blood samples of 3 healthy volunteers (Con1, Con2, Con3) and 3 untreated CLL patients (CLL1, CLL2, CLL3). PBMCs were isolated by Ficoll centrifugation,

then CLL cells and normal B lymphocytes were segregated from PBMCs by MACS. (B) Volcano plot of the different cytokine expression was shown. The differentially

expressed cytokines with log fold change >1 were plotted as red; Cytokines with log fold change >1 but without significantly differential expression (P > 0.05) were plotted

as blue; Others were plotted as black. The relative expression of CXCL-1 (P = 0.0001, adjusted P =0.0012), MCP-1 (P = 0.0003, adjusted P = 0.0023), IL-6 (P = 0.0001,

adjusted P = 0.0477) and GM-CSF (P = 0.0083, adjusted P = 0.0012) was significantly upregulated in CLL cells compared with normal B lymphocytes. (C) The expression of

IL-6, CXCL-1, MCP-1 and GM-CSF from normal B lymphocytes of other 6 healthy volunteers was shown before (red) and after (blue) the induction of TNF-α and z-VAD.

Besides necroptosis, TNF-α and z-VAD also induced the downregulation of CXCL-1 and MCP-1. Therefore, CXCL-1 and MCP-1 might have correlation with necroptosis.
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P = 0.0008). Therefore, both LEF-1 and CXCL-1 were

important in the necroptotic pathway of CLL cells.

We were able to discover the relationship between

LEF-1 and CXCL-1. After knocking down CXCL-1 by

siRNA, the expression of LEF-1 was downregulated

(Figure 3B, P = 0.0397) and Western Blot showed the

similar results (Figure 3D). However, both transcriptional

and translational expression of CXCL-1 did not change

significantly after knockdown of LEF-1 (Figure 3B and

C). This phenomenon demonstrated that CXCL-1 was in

the upstream of LEF-1, and the expression of LEF-1 was

decreased after knockdown of CXCL-1.

Sodium Selenite Restored Necroptosis of

CLL Cells and Downregulated the

Expression of CXCL-1
Sodium selenite with different concentrations (0.032μM,

0.32μM and 3.2μM) was added to the CLL cells together

with TNF-α and z-VAD. Then, RT-PCR was performed to

evaluate the expression of CXCL-1 and LEF-1. We found

that sodium selenite downregulated the expression of

CXCL-1 but had little influence on LEF-1 (Figure 4A).

Measured by flow cytometry, the percentage of surviv-

ing CLL cells was calculated after adding sodium selenite

with TNF-α and z-VAD. Only 3.2μM sodium selenite

significantly induced necroptosis of CLL cells (Figure

4B, P = 0.0102), but 3.2μM sodium selenite had little

impact on normal B lymphocytes (Figure S1). Western

Blot and ELISA confirmed the fact that 3.2μM sodium

selenite downregulated the translational expression of

CXCL-1 (P = 0.032) but had little impact on LEF-1

(Figure 4C).

Discussion
Necroptosis always occurs when cell apoptosis is defective

and the mechanism induced by TNF-α is fully understood.

The combination of TNF-α and TNF receptor recruits

various proteins to form complex I, including cellular

inhibitor of apoptosis (cIAP) and receptor-interacting pro-

tein 1 (RIP1). RIP1 was added the lysine 63-linked ubi-

quitin by cIAP.36 When the ubiquitin on RIP1 is removed

by CYLD, the apoptotic pathway is activated.3

Furthermore, normal B lymphocytes undergo necroptosis

when apoptosis is inhibited by caspase inhibitor, such as

z-VAD.37 However, neither necroptosis nor apoptosis

could be induced in CLL cells even with the cooperation

of TNF-α and z-VAD. This phenomenon is due to the

downregulation of CYLD expression caused by the upre-

gulation of LEF-1, which might be one reason of CLL

pathogenesis and drug resistance.4

Figure 2 CXCL-1 rather than MCP-1 had correlation with necroptotic pathway of CLL cells. PBMCs were isolated by Ficoll and CLL cells were isolated by MACS.

Percentage of necroptosis cells was detected by flow cytometry. (A) The percentage of survival CLL cells was over 99% after adding 30ng/mL TNF-α and 20μM z-VAD (left

panel) or CXCL-1 siRNA (middle panel). However, the percentage of survival CLL cells decreased significantly after adding TNF-α, z-VAD and siRNA of CXCL-1 (right

panel), indicating that high expression of CXCL-1 had correlation with defective necroptosis in CLL cells. (B) The percentage of survivaing CLL cells did not change

significantly after adding TNF-α and z-VAD (left panel), siRNA of MCP-1 (middle panel) or both of them (right panel), demonstrating that MCP-1 was not associated with the

necroptotic pathway of CLL cells.

Dovepress Xu et al

OncoTargets and Therapy 2020:13 submit your manuscript | www.dovepress.com

DovePress
6921

https://www.dovepress.com/get_supplementary_file.php?f=256993.docx
http://www.dovepress.com
http://www.dovepress.com


On the other hand, some certain cytokines in the CLL

microenvironment also contribute to defective apoptosis of

CLL cells.38–40 However, very few articles focused on the

impact of cytokines on the defective necroptotic pathway

of CLL cells. We considered that some cytokines regulated

the expression of LEF-1 to participate in the pathogenesis

of defective necroptosis in CLL cells.

As a member of CXC family, CXCL-1 plays an impor-

tant role in the angiogenesis, survival and metastasis of

various solid malignancies. The high expression of CXCL-

1 is observed in different malignant tumors, such as mel-

anoma, prostate cancer, breast cancer and pancreatic

carcinoma.41–44 CXCL-1 inhibitor might become

a member of CLL treatment strategies in the future but it

still needs further research.

Besides, MCP-1, IL-6 and GM-CSF also regulate

the pathogenesis and metastasis of many malignant

tumors. MCP-1 interacts with CCR2 receptor on the

circulating fibroblast precursors of hematopoietic stem

cells. The inhibition of MCP-1/CCR2 pathway was

confirmed to reduce the tumor burden.17,45,46 IL-6

secreted by tumor cells promotes the development of

tumor cells and inhibits the anti-tumor effect of CD4+

T lymphocytes.18,19,47 Furthermore, the monoclonal

antibody of IL-6 enhances the efficacy and extends

the indication of cancer immunotherapies including

anti-PD-L1 antibody.48 GM-CSF combined with FLt3

ligand promotes the proliferation and activation of

tumor-infiltrating dendrite cells with anti-tumor

effect.49 However, GM-CSF also enhances the prolif-

eration and metastasis of various malignant tumors,

including skin carcinoma, glioma, head and neck squa-

mous cell carcinoma, and lung cancer.50–53

In our research, the upregulation of CXCL-1, MCP-

1, IL-6 and GM-CSF was observed in CLL cells com-

pared with normal B lymphocytes. However, only

CXCL-1 and MCP-1 of normal B lymphocytes were

downregulated after induced by TNF-α and z-VAD,

which also led to necroptotic pathway. This phenom-

enon demonstrated that the downregulation of CXCL-1

and MCP-1 might have correlation with necroptotic

pathway. Then, we knocked down CXCL-1 and MCP-1

by siRNA respectively, and only the inhibition of

CXCL-1 rather than MCP-1 helped restore necroptosis

Figure 3 CXCL-1 activated LEF-1 in CLL cells to inhibit necroptosis. PBMCs were isolated by Ficoll and CLL cells were isolated by MACS. (A) Percentage of survival CLL

cells was detected by flow cytometry. CLL cells did not undergo necroptosis with the induction of negative control siRNA (nc siRNA), 30ng/mL TNF-α and 20μM z-VAD.

The percentage of survival CLL cells was 94.6%. (left panel) However, percentage of survival CLL cells significantly decreased after adding siRNA of CXCL-1 (P = 0.0008,

middle panel) or siRNA of LEF-1 (P = 0.0001, right panel) with TNF-α and z-VAD, which indicated both CXCL-1 and LEF-1 played an important role in the defective

necroptotic pathway of CLL cells. (B) The expression of LEF-1 and CXCL-1 were verified by real-time RT-PCR. The red bar indicated the expression of LEF-1 or CXCL-1

after adding nc siRNA, TNF-α and z-VAD; The gray bar referred to the expression of LEF-1 or CXCL-1 after adding siRNA of CXCL-1, TNF-α and z-VAD; The blue bar

showed the expression of LEF-1 or CXCL-1 after adding siRNA of LEF-1, TNF-α and z-VAD. P-values were shown in the histogram when P < 0.05. The expression of LEF-1

was downregulated (P = 0.0397) when CXCL-1 was knocked down, but the expression of CXCL-1 did not change significantly after knockdown of LEF-1. (C) The

translational expression of CXCL-1 was measured by ELISA. The red bar referred to the expression of CXCL-1 after CLL cells were treated by nc siRNA, TNF-α and

z-VAD; The gray bar demonstrated CXCL-1 expression after CXCL-1 was knocked down by siRNA; The blue bar showed the CXCL-1 expression when LEF-1 was

downregulated by siRNA with the induction of TNF-α and z-VAD. There existed no significantly statistical difference between the concentration of CXCL-1 before and after

adding LEF-1 siRNA. (D) Measured by Western Blot, the translational expression of LEF-1 was downregulated after inhibiting the expression of CXCL-1 or LEF-1 by siRNA.
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of CLL cells. Next, we clarified the fact that CXCL-1

located the upstream of LEF-1, which had been con-

firmed as the key protein in the defective necroptotic

pathway of CLL.4 Therefore, the high expression of

CXCL-1 in CLL cells upregulated the expression of

LEF-1 to cause defective necroptosis.

Sodium selenite induced necroptosis by promoting the

generation of ROS and was very selective to tumor

cells.11,54 Our research first discovered that sodium sele-

nite both inhibited the expression of CXCL-1 and restored

the defective necroptotic pathway of CLL cells together

with TNF-α and z-VAD. However, selenite had little

impact on expression of LEF-1, which might be explained

as the indirect influence or the existence of another

necroptotic pathway controlled by CXCL-1. Therefore,

selenite will be promising in the treatment of CLL

patients, and the combination of selenite and other new

drugs, such as ibrutinib, still needs further research.

Conclusion
CXCL-1 played an important role in the defective necroptosis

of CLL cells and regulated the expression of LEF-1. Selenite

inhibited the expression of CXCL-1 and helped CLL cells

restore necroptosis together with TNF-α and z-VAD. Selenite

might be the potential medication of CLL in the future.
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Figure 4 Sodium selenite helped restore necroptosis of CLL cells and inhibit the expression of CXCL-1. PBMCs were isolated by Ficoll and CLL cells were isolated by

MACS. (A) real-time RT-PCR was performed to detect the expression of CXCL-1 (left) and LEF-1 (right). P-values were also shown in the histogram. Sodium selenite

inhibited the expression of CXCL-1 but had little impact on the expression of LEF-1 (B) Flow cytometry was performed to detect the percentage of CLL survival cells

before (left) and after (right) adding sodium selenite with different concentrations with TNF-α and z-VAD. Only 3.2μM sodium selenite helped restore necroptosis of CLL

cells (P = 0.0102). (C) The translational expression of CXCL-1 measured by ELISA was downregulated with the contribution of 3.2μM sodium selenite, TNF-α and z-VAD

(P = 0.032). However, the translational expression of LEF-1 did not change significantly before and after adding 3.2μM sodium selenite measured by Western Blot.
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