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Abstract

Objective: The current study was designed to evaluate the sensitivity, feasibility, and effectiveness of the pallidal index (PI)
serving as a biomarker of brain manganese (Mn) accumulation, which would be used as an early diagnosis criteria for Mn
neurotoxicity.

Methods: The weighted mean difference (WMD) of the PI between control and Mn-exposed groups was estimated by using
a random-effects or fixed-effects meta-analysis with 95% confidence interval (CI) performed by STATA software version 12.1.
Moreover, the R package ‘‘metacor’’ was used to estimate correlation coefficients between PI and blood Mn (MnB).

Results: A total of eight studies with 281 occupationally Mn-exposed workers met the inclusion criteria. Results were pooled
and performed with the Meta-analysis. Our data indicated that the PI of the exposed group was significantly higher than
that of the control (WMD: 7.76; 95% CI: 4.86, 10.65; I2 = 85.7%, p,0.0001). A random effects model was used to perform
meta-analysis. These findings were remarkably robust in the sensitivity analysis, and publication bias was shown in the
included studies. Seven out of the eight studies reported the Pearson correlation (r) values. Significantly positive correlation
between PI and MnB was observed (r = 0.42; 95% CI, 0.31, 0.52).

Conclusions: PI can be considered as a sensitive, feasible, effective and semi-quantitative index in evaluating brain Mn
accumulation. MnB can also augment the evaluation of brain Mn accumulation levels in the near future. However, the
results should be interpreted with caution.

Citation: Li S-J, Jiang L, Fu X, Huang S, Huang Y-N, et al. (2014) Pallidal Index as Biomarker of Manganese Brain Accumulation and Associated with Manganese
Levels in Blood: A Meta-Analysis. PLoS ONE 9(4): e93900. doi:10.1371/journal.pone.0093900

Editor: James Connor, The Pennsylvania State University Hershey Medical Center, United States of America

Received November 6, 2013; Accepted March 9, 2014; Published April 9, 2014

Copyright: � 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the National Natural Science Foundation of China Grant #81072320 and #30760210. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ymjianggxmu@163.com

. These authors contributed equally to this work.

Introduction

Manganese (Mn),naturally exists in rocks, soil, water and food,

is an essential trace element for human beings [1–3]. In the central

nervous system (CNS), Mn serves as a cofactor for key enzymes

such as astrocytic glutamine synthetase, pyruvate carboxylase, and

mitochondrial superoxide dismutase [4–6]. However, exposure to

excess Mn can cause an extrapyramidal syndrome known as

manganism [7], which shows similar dystonic movements to the

Parkinson’s disease (PD). Mn can be transported across the blood-

brain barrier and selectively accumulate in basal ganglia,

putamen, substantia nigra and anterior pituitary, particularly in

the globus pallidus (GP), resulting in serious and irreversible

neurological disorders [6]. Thus, by monitoring the deposition

level of Mn in the brain may provide observation, evaluation, and

intervention of early neurotoxic effects of Mn.

Magnetic resonance imaging (MRI) technology has taken the

advantages of the paramagnetic properties of Mn compound

identified as a potential indirect, noninvasive contrast marker [8–

10] and the identification of neuronal pathways through rodent

brains in tract tracing studies [11]. Brain MRI showed T1-

weighted intensity (T1-WI) abnormal signal enhancement in the

striatum, GP and substantia nigra in Mn-exposed animals [12–14]

and asymptomatic occupationally Mn-exposed workers [15], while

no alteration in the T2-WI signal was found. In addition,

significantly increased T1-WI signal intensities in the GP were

observed in patients with chronic liver diseases [16,17], patients

receiving total parenteral nutrition [18,19], Wilson’s disease and

Rendu-Osler-Weber disease[20,21], suggesting that MRI T1-WI
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may be used as a non-invasive examination to detect Mn

accumulation in the brain.

Many valuable studies have been published on the application

of MRI to detect brain Mn accumulation, but there is no unified

and systematic evaluation criterion. Previous researchers have

used the pallidal index (PI) as a semi-quantitative parameter to

evaluate the Mn accumulation in the brain, which is calculated as

the signal intensity ratio of GP relative to the frontal white matter

(FWM) on T1-WI [22,23]. Although PI is the only indicator for

brain Mn deposit level, it is fraught with potential for subjective

assessment. The signal intensities of GP and FWM are detected by

subjectively selecting regions of interest (ROI) chosen by the

operators using a computer [22]. Furthermore, the relationship

between PI and brain Mn accumulation and blood Mn (MnB),

and whether the Mn level in the brain is a result of early

neurotoxic effect that can be reflected by PI, remain uncertain.

Therefore, given the diverse findings in previous Mn studies, we

performed a meta-analysis of PI and correlation coefficients

between PI and MnB by pooling data from the current literatures

that used MRI to detect Mn accumulation in the brain Mn-

exposed workers, in order to assess the sensitivity, feasibility and

effectiveness of PI as a semi-quantitative evaluation indicator for

the evaluation of Mn levels in the brain.

Materials and Methods

Inclusion criteria
All of the included studies were required to meet the following

inclusion criteria:

1).The study must be a retrospective study, clinical trial or quasi-

randomized controlled trial.

2).The objects of study

2).The control group of the study was comprised of the healthy

subjects without exposure to Mn or Mn-dioxide in a work

environment with Mn concentrations exceeding 0.15 mg/m3

of the time-weighted average allowable concentration, as

prescribed by the ‘‘Harmful factors of workplace occupation-

ally exposure limits’’. Subjects in the experimental group were

occupational exposure to Mn for a work period of 8 h/d, 5 d/

wk.

3).The MRI examination and PI calculation of the study

3).MRI examinations were performed using a model of whole

body scanner equal to or better than 0.5T (Tesla, magnetic

induction units) for both control and experimental groups. PI

was calculated, with PI defined as the ratio of the signal

intensity of the GP to that of the sub-cortical frontal white

matter on axial T1-weighted 3D FSPGR MR imaging,

multiplied by 100.

4).Means and standard deviations of the PI of the experimental

and control groups or Pearson correlation (r) values of PI and

MnB were reported or provided by the investigators upon

request.

5).When studies shared common sample sources, only results of

the larger study were included to ensure the independence of

datasets.

Exclusion criteria
Studies published only as abstracts, reviews or non-original

reports (unless containing new data), duplicate publications of the

same dataset, those we could not access full texts despite

contacting the author and those that did not meet the inclusion

criteria were excluded.

Search sources and search strategy
Two investigators independently selected and reviewed eligible

studies. We searched the following databases, websites and other

sources from inception through April 2013: MEDLINE, Cochrane

Library, Embase, Chinese Biological Medical Literature (CBM),

Chinese National Knowledge Infrastructure (CNKI), Chinese

Wanfang, and Chongqing VIP databases for epidemiological

studies. References of relevant studies were also screened for

eligibility. Additionally, we manually retrieved or wrote to authors

to ask for unpublished or more complete information. The search

strategy for MEDLINE (via Pub Med) is presented in Table1. This

strategy was adapted for searching other databases.

Data extraction
We created a data extraction form to assemble previously

defined relevant information from the studies, including: a. the

general information of included studies (e.g. number, publication

year, country, etc.); b. study characteristics (e.g. sample size,

average age, trade or craft, etc.); c. the intervention of included

studies (e.g. brain Mn accumulation detection technology,

equipment specifications, computational formula, etc.); d. outcome

variables (e.g. The number of MRI T1-WI signal enhancement,

the mean and standard deviation of PI, Pearson correlation

coefficient and sample size of PI and MnB). Data extraction was

performed independently by two investigators and any disagree-

ments were resolved by consensus between the authors. We

contacted studies’ corresponding authors to obtain missing data

not stated in the reports.

Statistical Analysis
Statistical analyses were conducted using the STATA software

version 12.0 and the R package ‘‘metacor’’. We assessed the

strength of association between PI and brain Mn accumulation by

estimating the weighted mean difference (WMD) along with the

corresponding 95% confidence intervals (CI) and used forest plot

analysis on the results which was conducted using STATA

software version 12.0. The relationship between PI and MnB was

estimated by using correlation coefficients as the effect size

performed using the R package ‘‘metacor’’. Heterogeneity

between studies was evaluated using the Q statistic; the I2 index

was used to estimate the percentage of variation across studies due

to heterogeneity [24]. A random effects model was used if

significant heterogeneity (I2.50%, p,0.1) was observed between

studies; Otherwise, a fixed effects model was adopted. Sensitivity

analysis was performed by removing each study in the meta-

analysis one at a time to detect its influence on pooled OR. We

explored the potential sources of heterogeneity by meta-regression

analysis. Funnel plots and Egger’s test were used to assess

publication bias.

Results

Study Selection
Our literature search identified 388 relevant articles. After

screening the titles and abstracts, 145 were selected for full text

assessment. Of these 145 studies, 129 were excluded: 28 were non-

human studies, experimental subjects of 42 studies were not Mn-

exposed workers, 23 had not used MRI technology, 36 studies did

not calculate the PI, the PI calculation of 2 studies did not meet the

inclusion criteria. After initial eliminations, 16 studies appeared to

meet inclusion/exclusion criteria. Among the included studies, 6
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[25–30] studies were found to share common sample sources with

3 other studies [31–33]. Those studies with largest sample size

were used in our meta-analysis. 2 studies [23,34] did not provide

standard deviation or mean PI. Finally, 8 articles in total [15,

31–33,35–38] were accepted for our meta-analysis. The reference

lists did not provide any additional articles. A total of 7 of the

included studies [15,31–33,35–37] had reported the Pearson

correlation coefficient between PI and MnB (Figure 1).

Study characteristics
8 articles were identified as meeting the inclusion criteria. There

were 281 cases of occupationally Mn-exposed workers. The

research on occupationally Mn-exposed group came from

Germany, Korea, China, South Africa and the United States,

while the research on the chronic liver disease group came mainly

from Japan, Canada, Korea and China. The minimum average

age of the subjects of the included studies was 9 years old and the

maximum was 56.2 years old. All of the included studies were

retrospective studies and used over 0.5T MRI to record

measurements of brain Mn accumulation. The experimental

subjects were smelters and welders. Of the included studies, 7

studies reported the Pearson correlation coefficient of PI and MnB

(n = 255) (Table 2).

The meta-analysis results of PI
The heterogeneity statistic (I2) values (I2 = 85.7%, p,0.0001)

was observed to be more than 50%; using the random effect

model, meta-analysis showed that the WMD combined effect of PI

is 7.76 (95% CI 4.86, 10.65). The result of the combined effect test

(Z = 5.25, p,0.0001) showed that there was significant difference

in the PI between the control and experimental groups. In the

forest plot, the horizontal line skewed to the right, indicating that

the PI of the experimental group was higher than that of the

control group (Figure 2).

Test of heterogeneity
The heterogeneity was very high. Therefore, we performed a

meta-regression analysis to identify the sources of heterogeneity by

country, experimental group subjects, MRI models, and average

age. However, when we categorized the heterogeneity by these

factors none significantly contributed to the observed heterogeneity.

Sensitivity analysis
Sensitivity analysis was performed by the sequential removal of

individual studies and cumulative statistics for all comparisons of

all subjects showed that the summary results did not change

significantly, indicating good stability of the included studies.

Publication bias
Funnel plots and Begg’s test were performed to assess

publication bias. The data suggested that there was publication

bias of the included studies (Begg’s test p = 0.063, Egger’s test

p = 0.014).

Table 1. The search strategy for MEDLINE.

Number Search expression

#6 #1 AND #2 AND #3 AND #4 AND #5

#5 manganese exposure or occupational manganese exposure

#4 globus pallidus

#3 T1-weighted image or T1-weighted signal

#2 MRI or magnetic resonance imaging

#1 manganese

Note: #6 indicates a search of the literature for ‘‘use MRI detects occupational
Mn-exposed caused brain Mn accumulation’’.
doi:10.1371/journal.pone.0093900.t001

Figure 1. Results of search, selection and inclusion of studies in the review.
doi:10.1371/journal.pone.0093900.g001
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Meta-analysis results of PI–MnB relationship
The result of the heterogeneity statistic in both of groups

showed no heterogeneity between the included studies (I2 = 0%,

p = 0.535), which indicated that the most appropriate pooling

model is the fixed effect model. A fixed effect meta-analysis

included 7 studies. The strength of subjects ascribing PI was

correlated with MnB (r = 0.42; 95% CI, 0.31, 0.52; Z = 6.91,

p,0.0001; Figure 3).

Discussion

Cumulative studies have been devoted to investigate the

underlying mechanisms of the extrapyramidal neurological

damage caused by Mn. It is certain that Mn can pass through

the blood-brain barrier and accumulate in the brain, and it is a

paramagnetic material which can shorten the T1 relaxation

times(T1-RT) and symmetrically enhance the signal intense in the

Mn accumulation target, GP [39–41]. Mn can primarily and

selectively accumulate in the GP, followed by deposition in the

substantia nigra, striatum, pineal gland, olfactory bulb and

substantia nigra pars compacta [42–44]. The autopsy results from

patients with cirrhosis showed significantly higher Mn levels in the

GP, caudate nucleus, substantia nigra and ventral tegmental area

of the midbrain than those of controls [22]. Compared with

normal signal intensity patients, the Mn level in GP was

accompanied by signal enhancement of MRI T1-WI by up to10

times in GP of cirrhosis patients. These results suggested that GP

T1-WI signal enhancement was mainly due to the accumulation of

Mn in GP [45–47]. Furthermore, the characteristic high signals

were also frequently observed in experimental Mn poisoning of

non-human primates [14,48–50], asymptomatic workers exposed

to Mn [15,31,32,34] and manganism patients [51]. The consis-

tency of areas of brain Mn accumulation and areas of MRI T1-WI

high signal intensity indicate that it is sensitive and specific for

MRI positioning brain Mn accumulation.

Nowadays, there are a few methods applied to detect Mn levels

in humans, including analysis of Mn levels in teeth [52], urine [53]

and hair [54,55], NMR T1 measure proton relaxation times of

local GP [7], serum or whole blood Mn levels measured by atomic

absorption spectrometry [56];MRI depicted brain Mn deposition

[57], etc. However, MRI examination is the best method for

obtaining information on brain anatomy, function and metabolism

[58]. PI measurement has been widely used to estimate tissue Mn

level in the brain due to its simplicity of measurement [59,60]. In

addition, PI has a longer half-life than MnB and is a better

predictor of neurobehavioral performances [31]. Furthermore, PI

showed a significant dose-response relationship with MnB in Mn-

exposed non-human primates [49], patients with manganism, and

asymptomatic Mn-exposed workers [31].

However, issues still exist regarding using PI as a biomarker to

diagnose the early neurotoxic effects of Mn. Previous studies

suggested that PI might be less sensitive to lower, subclinical levels

of Mn exposure than other brain tissue (e.g., Olfactory Bulbs)

[34,49]. Choi et al [33] found that using PI as a semi-quantitative

index of target site dose was limited over a narrow range of Mn

level due to the non-linear nature of its dose–response relationship.

Nevertheless, studies also showed that PI has strong correlations

with environmental Mn exposure levels, exposure hours, and

neurobehavioral performances [25,37,60,61]. The small sample

sizes, races and the wide ranges of variance of MR indices may

create those inconsistent phenomenons. Our meta-analysis sub-

stantially approved that MRI technology has specificity in

detecting brain Mn accumulation caused by occupationally

Mn-exposed. The PI of the experimental group was higher than
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that of the control, suggesting that PI could semi-quantitatively

reflects MRI T1-WI signal enhancement which was valuable for

the detection of brain Mn deposition. In addition, the PI–MnB

relationship in meta-analysis showed that the PI correlated

strongly with MnB levels further confirmed the significance of PI

in evaluating Mn levels in the brain, and MnB may also be used to

strengthen this evaluation.

Figure 2. The forest plot of the PI in the experimental group comparing with the control group.
doi:10.1371/journal.pone.0093900.g002

Figure 3. The forest plot of the PI–MnB relationship.
doi:10.1371/journal.pone.0093900.g003
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Heterogeneity
Previous study stated that it was difficult to avoid heterogeneity

in meta-analysis [62]. With regard to our studies, we mentioned

several problems that may be responsible for heterogeneity: a.

Different geographical locations of the included studies: six studies

were from East Asia (China and Korea), while others were from

Germany and South Africa; b. MRI models: MRI models in all of

the included studies were over 1.0T MRI models, while one study

used a 0.5T MRI model; c. Ascertainment of experimental group

subjects: one of the experimental groups from one of the included

studies in the occupationally Mn-exposed group came from dry

battery factory workers, while others came from welders or

smelters; d. Different sample sizes: one of the included studies [35]

had small sample sizes below 10.

Limitations
Results from our meta-analysis must be viewed cautiously due

to its own limitations. Firstly, we only selected English and Chinese

published or unpublished literature, thus linguistic bias exists.

Secondly, given the limitation of local libraries and hospitals we

only selected the literature for which original full-text was likely to

be found, which would cause selection bias. Thirdly, PI may be

affected by pulse sequences as well as Mn exposure. Last but not

least, there were publication bias and large statistical heterogeneity

could be found among our included studies, which might induce

the existence of bias factors. Despite only identifying 8 studies for

PI meta-analysis and 7 studies for PI and MnB correlation meta-

analysis, which used different MRI models, unequal sample sizes

and different subjects of experimental groups; as the original data

were not available for further analysis, the results should be

interpreted with caution. In spite of these limitations, we have tried

to moderate and explain them.

Summary
In summary, our results showed that PI of the experimental

groups was higher than those of the controls and there were

significant correlations between PI and MnB levels confirmed that

PI is a sensitive, reliable and effective semi-quantitative indicator

to evaluate the Mn accumulation levels in the ‘‘target organ’’

(brain tissue) and ‘‘target’’ (GP). It can be used as a biomarker to

diagnose the early neurotoxic effects of Mn.
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