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ABSTRACT

Genome binning has been essential for characteriza-
tion of bacteria, archaea, and even eukaryotes from
metagenomes. Yet, few approaches exist for viruses.
We developed vRhyme, a fast and precise software
for construction of viral metagenome-assembled
genomes (vMAGs). vRhyme utilizes single- or multi-
sample coverage effect size comparisons between
scaffolds and employs supervised machine learning
to identify nucleotide feature similarities, which are
compiled into iterations of weighted networks and
refined bins. To refine bins, vRhyme utilizes unique
features of viral genomes, namely a protein redun-
dancy scoring mechanism based on the observation
that viruses seldom encode redundant genes. Us-
ing simulated viromes, we displayed superior per-
formance of vRhyme compared to available binning
tools in constructing more complete and uncontam-
inated vMAGs. When applied to 10,601 viral scaf-
folds from human skin, vRhyme advanced our un-
derstanding of resident viruses, highlighted by iden-
tification of a Herelleviridae vMAG comprised of 22
scaffolds, and another vMAG encoding a nitrate re-
ductase metabolic gene, representing near-complete
genomes post-binning. vRhyme will enable a conven-
tion of binning uncultivated viral genomes and has
the potential to transform metagenome-based viral
ecology.

INTRODUCTION

Viruses and bacteriophages (collectively termed viruses) are
pervasive members of essentially all ecosystems. Viruses
form a continuum of symbiotic interactions with their hosts,
from lethal parasitism to essential mutualism (1–3). These

interactions are known to impact biogeochemical and nu-
trient cycling processes, human health, infrastructure and
industries and ecosystem community dynamics (4–7). As a
result of the rising interest in viromics, the previously un-
known members of the virosphere, the range in the encoded
genetic potential of viruses, known viral diversity, and lim-
its of viral genome sizes have been continuously expanding
(8–12).

Metagenomic sequencing can be a mechanism to identify,
recognize, understand, and even harness the information
encoded on viral genomes. Most metagenomes will assem-
ble into many short fragments (scaffolds or contigs) repre-
senting partial genome sequences. The process of binning is
employed to group scaffolds into a putative genome, termed
a metagenome-assembled genome (MAG). With the infor-
mation encoded by a MAG, rather than individual scaf-
folds, stronger inferences of metabolic potential, phyloge-
nies, taxonomy, and community interactions can be gener-
ated (13).

Conversely, viral scaffolds are typically not binned.
Handling complex and often enigmatic viral scaffolds in
metagenomes often poses computational challenges unique
from microbes. One justification to not bin viruses is that
their genomes are small relative to cellular organisms and
the assumption that most scaffolds represent the major-
ity, or the entirety, of an identifiable genome. For dsDNA
viruses, the target of most viral metagenomes, genome sizes
will have a general range of 20–200 kb, with the largest of
viruses being 500–2,000 kb. Since the majority of scaffolds
in most assembled metagenomes are <20 kb in length, it can
be estimated that a single scaffold likely will not represent
an entire viral genome. In fact, benchmarks have shown that
viruses often do not assemble into a single scaffold (14,15).
Further difficulties with binning viral genomes arise due to
viruses not encoding universal single copy or marker genes,
making a standardized approach for all viruses difficult to
create. Additionally, studies incorporating many samples
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for co-abundance comparisons have traditionally been un-
common, and that viral populations are often comprised of
highly heterogeneous genomes that result in fragmented as-
semblies.

Many software tools have been developed for binning
bacterial, archaeal, and eukaryotic metagenomic scaffolds
into MAGs (16–25). These tools employ a wide range of
methodologies, mainly focusing on tetranucleotide frequen-
cies and read coverage abundance variance comparisons be-
tween scaffolds. A significant portion of the tools tailored to
bacteria and archaea also rely on identifying microbial sin-
gle copy genes to inform the construction of bins along with
completeness and contamination estimates. Some tools for
binning microbes are suitable for binning viruses due to
their independence from microbial single copy gene anal-
ysis, namely MetaBat2, VAMB, CONCOCT, and BinSan-
ity. MetaBat2 uses a composite scoring system based on
the geometric mean of tetranucleotide frequencies and cov-
erage abundance of individual scaffolds to generate bins
according to a weighted graph clustering algorithm (17).
VAMB implements unsupervised deep learning variational
autoencoders based on individual scaffold tetranucleotide
frequencies and coverage abundance to generate bins by it-
erative medoid clustering (18,26). CONCOCT uses tetranu-
cleotide frequencies and coverage abundance, reduced by
multidimensional reduction, to cluster scaffolds into bins
with Gaussian mixture models (27). BinSanity uses affin-
ity propagation clustering based on coverage abundances
to bin scaffolds, followed by bin refinement using tetranu-
cleotide frequencies and GC content (24). Despite the abun-
dance of tools for binning bacteria and archaea, there is a
conspicuous dearth of tools available for binning viruses.
Only one tool, CoCoNet (28), has thus far been devel-
oped for binning viral genomes from metagenomes (viral
MAGs or vMAGs). CoCoNet implements an unsupervised
deep learning neural network to identify shared tetranu-
cleotide and coverage abundance patterns between scaffold
pairs, followed by graph clustering of potential pairs into
bins (28).

Here, we present vRhyme, a software tool that incorpo-
rates supervised machine learning based classification of di-
verse sequence feature compositions as well as read cover-
age abundance effect size comparisons to generate weighted
networks of bins. vRhyme leverages unique features of viral
genomes to optimize and refine the binning of vMAGs, in-
cluding overcoming the lack of single copy genes by scoring
protein redundancy based on the observation that viruses
seldom encode redundant genes. vRhyme is capable of bin-
ning viruses from diverse families, host and source envi-
ronment affiliations, varying states of genome fragmenta-
tion, and wide ranges of genome lengths. In benchmark-
ing vRhyme, we show that it is fast, inclusive, and accu-
rate in binning viral scaffolds, with low computational de-
mands, in synthetic and natural metagenomes compared
to other binning software. When applied to human skin
metagenomes, we show that vRhyme enabled a more com-
prehensive analysis of shared viruses and viral features
across a cohort of individuals, and likely better recapitu-
lated natural systems. vRhyme is implemented in Python
and is freely available for download at https://github.com/
AnantharamanLab/vRhyme.

MATERIALS AND METHODS

Coverage processing

The input for read coverage information is variable: paired
or unpaired short reads, SAM alignment file, BAM align-
ment file, or a pre-calculated coverage table. For short reads
input, reads will be aligned to input scaffolds using either
Bowtie2 (29) or BWA (30); Bowtie2 is run with the param-
eters –no-unal –no-discordant, the latter being for paired
reads only, and BWA is run with the mem algorithm. All
reads should be quality filtered before being used as input.
The resulting SAM alignment file, or an input SAM align-
ment file, will be converted into BAM format using Sam-
tools (31). BAM alignment files, either generated by the
vRhyme pipeline or as user input, will then be processed.
As such, any input combinations of short reads, SAM or
BAM alignment files are compatible. BAM alignment files,
if not already provided as input, are sorted and indexed us-
ing Samtools.

The Python package Pysam (https://github.com/pysam-
developers/pysam) is then used to fetch aligned records
within sorted and indexed BAM alignment files for pro-
cessing and coverage calculations. First, aligned reads are
filtered according to the percent identity alignment, as cal-
culated by the sum of the number of gaps g and the number
of mismatches m in the alignment divided by the length of
the alignment l. The default is a 97% identity alignment.

percent identity alignment = l − g − m
l

· 100

Aligned reads passing the set threshold are used to calcu-
late the total coverage of each nucleotide base per scaffold,
inclusive of bases with a coverage of zero. Finally, the cov-
erage values at the terminal ends of scaffolds are masked
to increase coverage fidelity by considering erroneous read
alignment at partial scaffold ends. The default is to ignore
all coverage values within the first and last 150 bp of the
scaffold. The average and standard deviation of coverage
per scaffold is calculated according to respective, individual
base coverages. All alignment filtering and coverage calcu-
lations are handled natively within vRhyme. This final step
yields a coverage table comprised of the average and stan-
dard deviation of coverage per scaffold per input sample.
This coverage table, or a user-generated table of the same
format, can be used as input for vRhyme in place of reads
or SAM/BAM alignment files.

Next, scaffold coverages across all k samples are pairwise
compared using the effect size of coverage differences. First,
all average coverages are increased by a pseudo-count of
0.1 to avoid coverages of zero (pseudo-counts are excluded
from coverage table). Effect size is calculated by the Cohen’s
d effect size metric equation (32). Cohen’s d is calculated as
follows, where X̄i and X̄j are average read coverages and σi
and σ j are standard deviations of the coverages for a scaf-
fold pair i and j:

dk,i, j = X̄i − X̄j√
σ 2

i +σ 2
j

2

For each pairwise comparison, an effect size value dk is
generated per sample k across all samples n. Values exceed-
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ing the effect size threshold, set by vRhyme presets, generate
an additive penalty weight p. The average effect size across
all samples X̄d , with any added penalties, is normalized to
the number of input samples, yielding a normalized effect
size d ′, which considers higher statistical power to more
sample comparisons:

X̄d,i, j =
∑n

k=1 dk,i, j

n
+ pi, j

d ′
i, j = X̄d,i, j

log10 (n) + 1

The normalized and penalized d ′ values are compared to
a normalized preset effect size threshold and all pairwise
comparisons passing the set criteria are considered as co-
occurring by coverage. Any scaffold not found to co-occur
with another is discarded. For computational efficiency, a
pre-filter is applied where only the best (i.e. lowest d ′) n pairs
per individual scaffold are retained, where n is ‘–max edges’
multiplied by 3.

Nucleotide processing

All co-occurring scaffolds by read coverage are compared
by seven nucleotide content metrics. The pairwise distance
calculations per metric are used as inputs to supervised ma-
chine learning models for classification. All nucleotide fea-
tures and distances are calculated natively within vRhyme.

The first feature, codon usage (CU), is calculated from
nucleotide open reading frames (i.e. genes). Predicted genes
can be used as input, otherwise vRhyme will automate pre-
diction using Prodigal (33) (-m -p meta). In-frame trinu-
cleotide counts c for each of the 64 codons k (step of 3 bases)
along a scaffold are divided by the total count of observed
codons. The final codon, if representing a stop, is ignored.
Counts are inclusive of zero counts but exclusive of ambigu-
ous (e.g. N) bases. The following yields a CU frequency vec-
tor Fi for each codon k in scaffold i .

Fk = ck∑64
k=1 ck

Fi = (F1, F2, F3 . . . Fk)

The next three features (GC content, CpG content, and
GC-skew) are calculated per scaffold from individual scaf-
fold bases. GC content Ngc is calculated by the sum of all
G and C bases, divided by the sum of all bases (A, T, C and
G). CpG content Ncpg is calculated by the sum of all CG di-
nucleotides per scaffold (step of 1 base) divided by the sum
of all bases. GC-skew Nskew is calculated by subtracting the
total of C bases from the total G bases, divided by the sum
of G and C bases.

Ngc = C + G
C + G + A+ T

Ncpg = CG
C + G + A+ T

Nskew = G − C
G + C

The last three features––relative tetranucleotide fre-
quency (RTF), tetranucleotide usage deviation (TUD), and
tetranucleotide zero’th order Markov method (ZOM) – are
calculated from whole scaffold tetranucleotide frequencies
(step of 1 base) of the forward and reverse strands (34). A
total of 136 possible tetranucleotides are considered after
combining identical, reverse complement, and palindromic
sequences. Counts are inclusive of zero counts but exclusive
of ambiguous (i.e. N) bases.

For RTF, all counts t for each of the 136 tetranucleotides
k along a scaffold are divided by the total count of observed
tetranucleotides. The following yields a tetranucleotide fre-
quency vector Ti for each tetranucleotide k in scaffold i .

Tk = tk∑136
k=1 tk

Ti = (T1, T2, T3 . . . Tk)

For TUD, expected nucleotide frequencies E are first cal-
culated by dividing the count of each base b by the sum of
all bases in the scaffold. Next, observed counts per base Ob
per tetranucleotide k are calculated by the sum of each base
inclusive of zero counts. For each unique tetranucleotide,
expected frequencies per base are raised to the power of ob-
served frequencies multiplied by two to yield a deviation
value Db per base. The deviation values for all four bases
are multiplied the count of total observed tetranucleotides
and the count of the given tetranucleotide to yield a TUD
value per tetranucleotide. The following yields a TUD fre-
quency vector TU Di for each tetranucleotide k in scaffold
i .

Eb = b
C + G + A+ T

for b = A, T, C, G

Ob =
4∑

k=1

b for b = A, T, C, G

Db = Eb
(2·Ob) for b = A, T, C, G

TU Dk = DA · DT · DC · DG ·
136∑
k=1

tk · tk

TU Di = (TU D1, TU D2, TU D3 . . . TU Dk)

For ZOM, the same expected Eb nucleotide frequencies
per base b are used. For each tetranucleotide k, the count t
of the given tetranucleotide is divided by the product of each
of the present tetranucleotide’s bases’ expected frequencies
to yield a ZOM frequency vector ZOMi for each tetranu-
cleotide k in scaffold i .

ZOMk = tk
Eb1 · Eb2 · Eb3 · Eb4

ZOMi = (ZOM1, ZOM2, ZOM3 . . . ZOMk)

Pairwise distance calculations for GC, CpG and GC-
skew are made by the absolute value difference in the re-
spective metric’s content between two scaffolds. For exam-
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ple, the following is the pairwise distance PGC in GC content
between scaffolds i and j .

Pi, j = ∣∣GCi − GCj
∣∣

Pairwise distance calculations for CU, RTF, TUD and
ZOM are made by cosine distances. For each value vi and
v j , corresponding to the same tetranucleotide k, in fre-
quency vectors of scaffolds i and j , with vector averages
of V̄i and V̄j , cosine similarity Si, j is calculated. Cosine dis-
tances between two scaffolds are calculated for CU, RTF,
TUD and ZOM individually.

Si, j =
∑n

k=1

(
vik · v jk

)
√

(
∑n

k=1

(
vik · V̄i

)
)
2 · (

∑n
k=1

(
v jk · V̄j

)
)
2

The result of distance calculations is a vector Mi, j of
length seven for each pairwise comparison between scaf-
folds i and j .

Mi, j = (
NGC, NCpG, Nskew, SCU, SRTF , STU D, SZOM

)

Machine learning model training and testing

NCBI databases (RefSeq (35) and Genbank (36), release
July 2019) were queried for ‘prokaryotic virus’ and genomes
>10 kb in length were retained. In addition, the IMG/VR
database (release July 2018) (37) was downloaded, and se-
quences were limited to a minimum length of 10 kb. For
the IMG/VR dataset, VIBRANT (38) (v1.2.1, -virome) and
CheckV (39) (v0.6.0) were used to obtain circular and/or
complete sequences. The resulting NCBI and IMG/VR
datasets were dereplicated by 95% identity using the method
described here (–derep only –derep id 0.95 –frac 0.70 –
method longest) and combined, resulting in a total of
11,881 putatively complete genomes. The sequences repre-
senting complete genomes in the combined dataset were
split into non-overlapping fragments of 15 kb with a min-
imum length of 10 kb. A total of 39,105 fragments were
generated for training and testing machine learning mod-
els, with 38,732 represented in the training and 30,618 rep-
resented in the testing datasets (Supplementary Figure S1a).

The machine learning models were generated based on
the Mi, j vectors described above using the generated 39,105
genome fragments. Filtering of pairwise comparisons be-
fore training and testing was made according to vRhyme de-
fault parameters (–max gc 0.20 –min kmer 0.60). The pair-
wise comparison matrix was split 75:25 for training and test-
ing, respectively. Fragment pairs were labeled as ‘same’ or
‘different’ for supervised machine learning according to if
the paired fragments originated from the same or different
source genomes. An equal number (69,632) of ‘same’ and
‘different’ pairs were used for training by randomly drop-
ping excess ‘different’ comparisons. For testing, a set of
38,685 ‘different’ and 7,736 ‘same’ pairs were used. There
were no redundant pairs between the training and testing
datasets.

Scikit-Learn (v0.24.2) (40) was used to generate ma-
chine learning models using a grid search approach to
optimize parameters. Several models and algorithms were
considered, including MLPClassifier, ExtraTrees, KNeigh-
bors, SVC, Gradient Boost, Decision Tree and Random
Forest classifiers. Iterative training and testing yielded

MLPClassifier (alpha = 0.001, beta 1 = 0.7, beta 2 = 0.8,
hidden layer sizes = (5,25,50,75,100,100,75,50,25,5),
learning rate init = 0.0001, max iter = 1250,
n iter no change = 15, tol = 1e-08) and Extra-
TreesClassifier (max depth = 10, max features = 7,
n estimators = 1500) as the most robust.

Machine learning and network processing

Each scaffold pair is classified by the two machine learning
models separately to yield two probability values of ‘same’,
one per model. The probability values are averaged to yield
p̄. Any pair with p̄ below the preset threshold is discarded.
Then, d ′ calculated previously for the pair is divided by p̄ to
yield a network edge weight w.

w = d ′

p̄

Any pair with w below the preset threshold is retained for
network clustering. As before, for computational efficiency,
only the best (i.e. lowest w) n pairs per individual scaffold
are retained, where n is ‘–max edges’. Weighted networks,
representing unrefined bins, are created where each node is
a scaffold and each edge is a weighted connection between
paired scaffolds. Networks are refined using MiniBatchK-
Means implemented in Scikit-Learn with the following pa-
rameters: n clusters = s+1, batch size = h, max iter = 100,
max no improvement = 5, n init = 5. Batch size h is 25%
of the number of nodes with a minimum of 2 and maximum
of 100. The number of clusters s is defined by the number
of nodes with a clustering coefficient value below the preset
constant 0.36 but not 0. For each node i , the clustering co-
efficient Ui is calculated as follows, where Li is the degree of
the node and Ri is the number of edges between the neigh-
bors of i :

Ui = 2 · Li

Ri · (Ri − 1)

Refined networks are split into distinct, separate net-
works according to s. Here, each connected network rep-
resents a putative bin.

Score processing

Each binning iteration is given a score I according to pro-
tein redundancy, total bins, and the number of scaffolds
binned. To calculate protein redundancy, all proteins within
a bin are clustered using Mmseqs2 (41) (linclust –min-seq-
id 0.5 -c 0.8 -e 0.01 –min-aln-len 50 –cluster-mode 0 –seq-
id-mode 0 –alignment-mode 3 –cov-mode 5 –kmer-per-seq
75). Any proteins clustered within a bin, excluding those
along the same scaffold, are considered redundant. The
iteration with the maximum score is selected as the final
representative. I is calculated as follows:

Ir =
n∑

bin=1

proteins clusteredbin − number of clustersbin

total proteinsbin

Is = sca f f olds binned
input sca f f olds
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Ib = number of bins
sca f f olds binned

I = Is − Ib
2 −

(
3 ·

√
2 · Ir

)

Dereplication

vRhyme implements Nucmer (42) and MASH (43) for
the dereplication of scaffolds. First, scaffolds are roughly
grouped using MASH (sketch -k 31 -s 1000; dist) to re-
duce the pairwise comparison space. Next, all possible pairs
of scaffolds within each resulting group are aligned us-
ing Nucmer (-c 1000 -b 1000 -g 1000). Regardless of the
comparison method (‘–method’), any pair of scaffolds with
100% identity over 100% coverage are first reduced to the
longest representative. For all percent coverage calculations
in dereplication, coverage is of the shortest scaffold. For ‘–
method longest’ the longest scaffold in pairs meeting the set
percent identity (e.g. 97%) and percent coverage (e.g. 60%)
thresholds is taken as the representative. For ‘–method com-
posite’, scaffold pairs meeting the percent identity and per-
cent coverage thresholds are joined over the region of se-
quence overlap to yield artificially chimeric scaffolds. Any
alignments exceeding the sensitivity values for merging over
complex alignments, such as low identity scaffold ends with-
out overlap, are not joined. After scaffold pairs are joined,
identical cycles of MASH, Nucmer, and composite joining
are completed until no further alignments are detected. For
all methods, reverse complement sequence alignments are
considered and adjusted accordingly.

Performance validation datasets and metrics

Scaffolds used to benchmark performance were acquired
from nine separate publicly available datasets derived from
eight unique metagenomes (one metagenome was split
into two separate datasets). The metagenomes were ac-
quired from marine (44,45), freshwater (46–48), human gut
(49), and soil environments (50,51). Details on the stud-
ies, scaffolds, reads, and accession numbers can be found in
Supplementary Table S1. Each dataset was processed sepa-
rately. First, VIBRANT (v1.2.1) was used to predict viruses.
From these viruses, VIBRANT and CheckV were used to
identify circular scaffolds representing complete genomes.
Next, scaffolds were dereplicated by 97% identity using the
method described here (–derep only –derep id 0.97 –frac
0.70 –method longest). The non-redundant scaffolds were
randomly fragmented into sequences ranging from 2 kb to
20 kb in length. A total of 999 scaffolds (i.e. putatively com-
plete genomes) were used to generate 4,324 fragments of at
least 2 kb in length. Full benchmarking was performed on
the 4,324 fragments and validation of complete genome bin-
ning was performed on the 999 scaffolds representing com-
plete genomes (Supplementary Figure S1b). Only 255 of the
performance benchmarking fragments had significant se-
quence similarity to fragments used to train the machine
learning models (Supplementary Figure S1c).

Since the circular scaffolds (sources) were estimated to be
complete genomes, any of the fragments originating from
the same source were expected to create a single bin, bins

containing fragments from multiple sources were consid-
ered as contaminated, fragments from the same source in
different bins were considered as split genomes, and frag-
ments representing an entire source (singletons) were not
expected to bin. The following equations are for genome-
(source) and bin-based performance metrics, where Be is
the expected number of bins (i.e. sources with at least two
fragments), Bg is the number of bins generated, Ge is the
expected number of binned fragments (i.e. fragments rep-
resenting Be sources), Bo is the total number of bins con-
taining a single source, Gt is the total number of fragments
binned, Gb is the number of unique sources binned, Go is
the number of sources contained in a single bin, Gs is the
total number of singletons, and G p the number of binned
singletons.

binned singletons = G p

Gs

genome recall = Gt − Gs

Ge

genome precision = Go − G p

Gb

genome spli tting = Gb − Go

Gb

bin precision = Go

Bg

bin contamination = Bg − Bo

Bg

genomes total = Gb

Be

bins total = Bg

Be

bins : genomes = Bg

Gb − Gs

genomes : bins = Gb − Gs

Bg

genomes score = 2 · (
Go − G p

)
(
2 · (

Go − G p
)) + G p + Gb − Go

bins score = 2 · Go

(2 · Go) + (
Bg − Bo

)

To validate binning further, each pairwise connection be-
tween fragments within a bin was evaluated according to
each fragment’s nucleotide length. These standard perfor-
mance metrics were evaluated per bin using true positive
T P, true negative TN, false positive F P, and false negative
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F N connections. The following equations are for pairwise
nucleotide-based performance metrics:

recall = T P
T P + F N

precision = T P
T P + F P

accuracy = T P + TN
T P + F P + TN + F N

speci f ici ty = TN
TN + F P

F1 = 2 · precision · recall
precision + recall

Performance benchmarking

The performance of vRhyme (v1.0.0) was compared to
MetaBat2 (17) (v2.12.1, -s 4000 -m 2000), CONCOCT (27)
(v1.0.0, -l 2000), VAMB (18) (v3.0.2, -i 2 -m 2000 -t 40),
CoCoNet (28) (v1.0.0, –min-ctg-len 1000 –min-prevalence
1), and BinSanity (24) (v0.5.4, -x 2000). Additional bin-
ning tools, namely MaxBin2 (16), MyCC (19), SolidBin
(20) and DASTool (22), perform microbial single copy gene
analysis and were not applicable, or did not function, for
viruses. For VAMB, the starting batch size had to be ad-
justed to accommodate the relatively small size of the input
datasets, and all but three datasets failed to run. The cover-
age tables for each of the tools were generated from sorted
BAM files using each tool’s respective method, except for
VAMB for which the same coverage table as MetaBat2 was
used. The sorted BAM files were generated using Samtools
(v1.13) with reads quality filtered by Sickle (v1.33) aligned
by Bowtie2 (v2.3.5.1, –no-unal –no-discordant).

Metagenomic datasets and analyses

Publicly available metagenomes from marine (52), agricul-
tural soil (53), and human skin (54) environments were
used. Details on the studies, reads used, and accession
numbers can be found in Supplementary Table S1. Viruses
were predicted from each metagenome using VIBRANT
and only the identified virus scaffolds were binned using
vRhyme. For the human skin datasets, 270 metagenomes
from a cohort of 34 individuals with eight body sites per
individual were used (antecubital fossa (Af), alar crease
(Al), back (Ba), nare (Na), occiput (Oc), toe-web space
(Tw), umbilicus (Um) and volar forearm (Vf)). Reads
were filtered for quality, adapters, and host-contamination
as described previously (54) using fastp (55) (v0.21.0, –
detect adapter for pe) and KneadData (v0.8.0). MegaHit
(56) (v1.2.9) was used to generate individual metagenomic
assemblies for each sample, corresponding to the micro-
biome of a particular body site for a specific participant
at a given timepoint. After predicting viruses, all viruses
per body site were combined and dereplicated (–method
longest) before binning.

It is important to note that for bins, scaffolds had to be
linked with Ns in order to run CheckV analysis since there is
no mode to input bins. For all benchmarking using CheckV,
the tool was modified to run Prodigal with the -m flag to ac-
commodate linking vMAGs and not predicting open read-
ing frames across the appended strings of Ns connecting
scaffolds. For taxonomy of the validation dataset, a pub-
licly available custom reference database of NCBI viruses
was used as previously described (57). In brief, DIAMOND
(58) (v0.9.14) BLASTp (59) (v2.6.0) was used to identify the
most likely taxonomic affiliation of a sequence.

Additional datasets and benchmarking

Additional publicly available datasets were used to assess
the performance of vRhyme under different scenarios and
conditions. To assess binning of related types of viruses
within the same sample, a total of 101 publicly available
crAssphage sequences (60) were dereplicated using vRhyme
(–derep id 0.97 –frac 0.70 –method longest) to 86 non-
redundant scaffolds. The non-redundant scaffolds were ran-
domly fragmented as described previously into 791 frag-
ments. To assess binning of megaphages and eukaryotic
viruses with large genomes, the 540 kb Prevotella phage
Lak C1 (61) was randomly fragmented into 51 fragments,
and four different eukaryotic viruses (62,63) with genome
lengths ranging from 154 kb to 201 kb were each randomly
fragmented into 11 to 19 fragments. To assess binning of ac-
tive and dormant prophages, VIBRANT was used to pre-
dict prophage regions for 10 active prophages from three
different hosts and 24 dormant prophages from five differ-
ent hosts. Activity or dormancy was determined accord-
ing to respective studies described elsewhere (64–66) and
validated using PropagAtE (67) (v1.1.0). Whole prophage
scaffolds from the same host genome were binned together.
Details on the studies, reads used, scaffolds, and accession
numbers can be found in Supplementary Table S1.

To validate protein redundancy, NCBI databases (RefSeq
and Genbank, release July 2019) were queried for ‘prokary-
otic virus’ as before and genomes greater than 3 kb in
length were retained. Likewise, NCBI databases (RefSeq
and Genbank, release September 2021) were queried for
‘eukaryotic virus’ and genomes greater than 20 kb in length
were retained. Proteins were predicted using Prodigal (-p
meta) for 15,238 prokaryotic and 557 eukaryotic viruses.
Protein redundancy was calculated per genome based on
the method described for vRhyme, with the exception that
proteins could be redundant if encoded along the same
scaffold.

Effect of number of samples

The effect of the number of input samples on vRhyme per-
formance was done by stepwise increasing the number of
BAM files used to calculate coverage from one to the max-
imum number of samples for a given dataset. To do this,
samples were arranged in descending order, starting at the
sample with the greatest total coverage across all scaffolds
and were stepwise combined, ending with the sample with
the lowest coverage.
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Visualizations

All plots and visualizations were done using Matplotlib
(68) (v3.2.0) and Seaborn (69) (v0.11.0). Genome align-
ment visualizations were made using EasyFig (70) (v2.2.2)
and Geneious Prime 2019.0.3. Genome alignments to
identify percent sequence identity were made using
progressiveMauve (71) (development snapshot 2015–
02-25). vConTACT2 (72) (v0.9.19, –rel-mode Diamond
–db ‘None’ –pcs-mode MCL –vcs-mode ClusterONE,
ClusterONE (73) v1.0) was used to construct protein
clustering networks and visualized using Cytoscape (74)
(v3.7.2).

RESULTS

vRhyme overview and workflow

The vRhyme workflow is done in five steps: read cover-
age processing, sequence feature extraction, supervised ma-
chine learning, iterative network clustering, and bin scor-
ing (Figure 1). The base input to vRhyme are the assembled
scaffolds or contigs to be binned (hereafter scaffolds) with
a set minimum size of 2 kb. For optimal results, only vi-
rome scaffolds or predicted virus scaffolds should be used
as input, though vRhyme can function with the input of
an entire metagenome. An initial dereplication step to re-
move redundant input scaffolds is optional. Next, scaffolds
are compared pairwise by read coverage composition per
sample, which is a proxy for relative abundance. vRhyme
performs optimally with an input of multiple samples (i.e.
coverage files) for more robust coverage co-occurrence es-
timations, but it will function with a single sample input
with a minor decrease in performance. Statistically dissimi-
lar scaffolds by coverage composition are screened out and
the remaining potential pairs are compared by nucleotide
feature similarity. Seven total nucleotide and gene features
are used to classify pairs as similar versus dissimilar us-
ing two supervised machine learning models (decision trees
and neural network). Following this step, potential con-
nections are made between scaffolds based on similarity in
read coverage and nucleotide features. These connections
are used to create weighted networks that are further re-
fined into genome bins using KMeans clustering. The en-
tire process of read coverage comparison, nucleotide feature
machine learning, and weighted network refinement is per-
formed over several binning iterations in parallel. vRhyme
has 15 built-in presets of thresholds for Cohen’s d, machine
learning model probabilities, and network edge weights.
The number of presets used is equivalent to the number of
binning iterations completed. A list of all presets and their
hierarchy can be found in Supplementary Table S2. Each
bin within all binning iterations is scored according to pro-
tein redundancy, a proxy for contamination, and the best
binning iteration by sequences binned, bins generated, and
redundancy metrics is selected. The bins within this best
binning iteration are reported along with relevant meta-
data, including number of members and total protein re-
dundancy. Alternative binning iterations are likewise saved
if manual inspection and selection of a different iteration is
desired.

Assessment of binning quality

To evaluate vRhyme, we first benchmarked vRhyme against
reference datasets and compared the performance to sev-
eral available binning tools, all of which are built for mi-
crobes. Many binning tools and wrapper software were
not suitable for viral binning due to reliance on micro-
bial single copy genes. We were able to successfully com-
pare vRhyme to MetaBat2 (17), VAMB (18), CoCoNet
(28), CONCOCT (27) and BinSanity (24) on nine datasets
curated from metagenomic data (see Methods). The nine
datasets were comprised of 999 non-redundant and puta-
tively complete viral genomes that were split into 4,324 se-
quence fragments of varying lengths between 2 kb and 20
kb. Of these, 1,118 fragments were less than 5 kb, 1,361 were
greater than 5 kb and <10 kb, and the remaining 1,854 were
greater than 10 kb. The average length was 9.4 kb. Although
these fragments were derived from datasets not represented
in the machine learning training dataset, we first verified
that the fragments were distinct and would not result in a
bias associated with an overfitted machine learning model.
Based on BLASTn similarity at 70% identity and 60% over-
lap, only 255 (∼6%) of the 4,324 fragments were represented
in the machine learning model training dataset, with all but
two of the represented fragments being from the same hu-
man gut dataset.

A total of 17 different evaluation metrics were used, in-
cluding five traditional metrics for recall, precision, accu-
racy, specificity, and F1 score (Figure 2). The five tradi-
tional metrics were calculated according to the true positive,
true negative, false positive, and false negative rates of bin-
ning fragments together from the same or different source
genomes (Supplementary Table S3a). Note that the ma-
chine learning models were not benchmarked individually
since performance is measured based on the entire pipeline.
vRhyme yielded the highest F1 score, the harmonic aver-
age of precision and recall, with an average of 0.87 across
all nine datasets. MetaBat2 and VAMB performed equally
with F1 scores of 0.81 and 0.82, respectively, but impor-
tantly VAMB only successfully binned three of the nine
datasets due to input size requirements. vRhyme likewise
yielded the highest, or equal to highest, average precision
(0.94), accuracy (0.90) and specificity (0.96) compared to
all benchmarked tools. Compared to MetaBat2, VAMB and
CoCoNet, vRhyme likewise yielded the greatest average re-
call (0.80). CONCOCT and BinSanity yielded the greatest
average recall values (0.96 and 0.91, respectively) but at the
expense of precision (0.45 and 0.44, respectively). At least
for viral genomes, CONCOCT and BinSanity were found to
not be suitable binning options. VAMB had suitable perfor-
mance on the three datasets with enough input sequences,
but VAMB is likely not an option for many applications
of binning viral genomes due to requiring many input se-
quences (e.g. tens of thousands (18)) for optimal perfor-
mance. Based on these metrics, vRhyme performed excep-
tionally in binning viral genomes but did not considerably
improve on the performance of MetaBat2.

The remaining 12 evaluation metrics were calculated ac-
cording to complete genomes and individual bins. These
included evaluating if genomes were placed into a single
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Figure 1. Flowchart of vRhyme workflow and methodology. Scaffolds are compared pairwise by read coverage effect size differences using single or multiple
samples (top-left), followed by sequence feature distance comparisons (top-right). Multiple iterations of network clustering of putative bins are generated
with edge weights representing normalized coverage effect size and supervised machine learning probabilities of sequence feature similarity (center). The
bins are refined by KMeans clustering, and the best set of bins from a single iteration are identified after identifying protein redundancy and scoring
(bottom).
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Figure 2. Benchmarking performance metrics of vRhyme compared to MetaBat2, VAMB, CoCoNet, CONCOCT and BinSanity. Each boxplot represents
the results of nine different datasets, except for VAMB in which three datasets are shown. In total, 999 non-redundant genomes artificially split into 4,324
sequence fragments are shown. For some plots, a dotted line is shown at 1.0 to indicate optimal performance. CONCOCT and BinSanity are partially
shown on the Genome-to-Bin Ratio plot for better visualization; each yielded an average ratio >2.0.
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or separate bins, and if bins contained fragments from
a single or multiple source genomes. These metrics were
better able to show the distinct performance of vRhyme
compared to the other tools (Supplementary Table S3b).
Namely, vRhyme was better able to reduce the following:
placement of genomes into separate bins, placement of frag-
ments from multiple source genomes into a single bin, and
binning circular scaffolds representing entire genomes. Im-
portantly, this was not at the cost of reduced fragment recall
by vRhyme. To combine these metrics, we created a genome
score and bin score that considered recall and precision
as a substitution for F1 score. For genome scores and bin
scores, respectively, vRhyme (0.89 and 0.96) outperformed,
or was equivalent to, MetaBat2 (0.77 and 0.93) and VAMB
(0.90 and 0.93). Again, it is important to note that VAMB
only successfully binned three of the nine datasets. For Co-
CoNet, CONCOCT, BinSanity, genome scores (0.66, 0.74
and 0.70, respectively) and bin scores (0.65, 0.48 and 0.18,
respectively) reflected the propensity to ‘over bin’ distinct
genomes together into one bin. CoCoNet did not bin any
sequence in two of the datasets, and after removal of these
zero-values, the average genome score and bin score for Co-
CoNet both increased to 0.84.

Furthermore, we evaluated how well vRhyme bins com-
pare to the input, unfragmented genomes. First, using
CheckV (39) we show a distinct change in genome com-
pleteness estimation in the binned versus unbinned se-
quence fragments. vRhyme was able to recapitulate the
completeness of the input genomes (Figure 3A). This is
supported by a similar observation in the length of the in-
put genomes versus the bins (Figure 3B). Moreover, we
estimated the taxonomy of the input genomes, fragments,
and binned vMAGs. We identified a distinct decrease in
the ability to identify taxonomy of the fragments, which
were rescued by binning (Figure 3C). The identifiable dif-
ference in the vMAGs is a lack of Microviridae. Yet, this
is to be expected since the small genome size of Microviri-
dae (<10 kb) typically results in near-complete scaffolds
that appropriately remain unbinned. Finally, we evaluated
whether vRhyme could distinguish the source scaffolds.
To do this, each of the nine datasets were binned, but
the scaffolds were not fragmented. The expected result is
that none of the circular scaffolds should bin together.
Although vRhyme did bin ∼11% of the whole scaffolds,
it was a marked improvement on VAMB and CoCoNet
(Figure 3D).

Benchmarking vRhyme on marine viromes

We next applied vRhyme to the Global Ocean Virome
2 (GOV2) database (52) and compared the results to
MetaBat2 and CoCoNet. For metagenomic datasets such
as GOV2 the expected number of scaffolds to bin and the
number of bins is unknown. First, all scaffolds from the
GOV2 database were limited to scaffolds at least 5 kb in
length and dereplicated by 98% identity. Of the 108,947 in-
put scaffolds, vRhyme binned 56,642 scaffolds into 13,175
bins, MetaBat2 binned 57,800 scaffolds into 11,826 bins,
and CoCoNet binned 91,842 scaffolds into 9,914 bins. De-
spite the number of bins generated being relatively similar,
the number of scaffolds binned was quite different. How-

ever, vRhyme yielded 15,106 redundant proteins whereas
MetaBat2 (29,334) and CoCoNet (71,364) yielded more, in-
dicating that vRhyme was likely more precise and generated
fewer contaminated bins (Figure 4A). In support of this,
vRhyme generated 1,266 bins with two or more redundant
proteins whereas MetaBat2 (1,648) and CoCoNet (2,743)
generated more. When these likely contaminated bins were
removed, vRhyme binned 48.251 scaffolds into 11.909 bins,
MetaBat2 binned 33,351 scaffolds into 10,178 bins, and Co-
CoNet binned 35,380 scaffolds into 7,171 bins (Figure 4B).
Based on protein redundancy, vRhyme was capable of bin-
ning far more viral scaffolds and generating more bins of
low contamination compared to MetaBat2 and CoCoNet.
Note, we identified bins with ‘low contamination’ to be 0–1
redundant proteins based on a benchmark of prokaryotic
and eukaryotic viral genomes from NCBI databases (Sup-
plementary Figure S2). Contamination was not estimated
using CheckV as that metric does not consider contamina-
tion of multiple viral genomes, but rather contamination of
non-viral sequences.

We also estimated the completeness of the 11,909 low
contamination vRhyme bins and the individual 48,251 scaf-
folds that generated those bins using CheckV. The binned
scaffolds individually yielded 25,969 (53.8%) completeness
values with an average of 14% complete, 79 estimated to
be 100% complete, 22,282 (46.2%) with ‘NA’ complete-
ness, and 27,295 (56.6%) with ‘no viral genes detected’. The
scaffolds within each bin, after being linked into vMAGs,
yielded 8,393 (70.5%) completeness values with an average
of 48% complete, 775 estimated to be 100% complete, 3,516
(29.5%) with ‘NA’ completeness, and 4,039 (33.9%) with
‘no viral genes detected’ (Figure 4C–E). There was an in-
crease in the number of vMAGs (195, 1.6%) versus individ-
ual scaffolds (16, 0.03%) that were estimated to be ‘longer
than expected’, potentially due to a marginal rate of multi-
ple genomes being binned into a single vMAG (Figure 4F).
Overall, vRhyme generated vMAGs with greater average
completeness to aid in downstream analyses and interpre-
tations, even with high complexity or large datasets such as
GOV2.

Discovery of vMAGs in human skin metagenomes

To demonstrate the ability of vRhyme to aid metagenome
analyses and discovery, we applied vRhyme to 270 human
skin metagenomes (54). Viruses were predicted from a co-
hort of 34 individuals with eight body sites (Af, Al, Ba, Na,
Oc, Tw, Um and Vf) sampled per individual (see Methods).
From all individuals, 10,601 viral scaffolds were identified
and binned, across eight different body sites individually,
into a total of 849 vMAGs representing 2,794 viral scaf-
folds. Although bins with redundant proteins may in fact
be a single genome or partially redundant copies of a single
genome, we ignored all vMAGs with greater than one re-
dundant protein for analysis to yield 762 vMAGs represent-
ing 2,413 viral scaffolds, leaving the remaining 8,188 as dis-
crete viral scaffolds (Supplementary Table S4) (Figure 5A).
The taxonomic classification of UViGs pre-binning, UViGs
and low redundancy vMAGs post-binning, and vMAGs-
only displayed that most bins were constructed of genomes
from the class Caudoviricetes, similar to the observed tax-
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Figure 3. Impact of binning with vRhyme on the benchmarking datasets. For (A–C), the putatively complete unsplit input genomes, generated sequence
fragments, binning sequence fragments, and vRhyme bins (vMAGs) are compared. (A) Estimation of genome completeness using CheckV. (B) Sequence or
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the binning of complete genomes. The expectation is that complete genomes should remain unbinned as uncultivated virus genomes (UViGs).

onomy pre-binning (Supplementary Figure S3). The bins
were comprised of an average of 3.2 scaffolds each. In total
we identified seven bins, representing separate body sites,
that were present across at least 30 individuals (Figure 5B).
In addition, two bins of unique characteristics were identi-
fied and examined in detail.

The first such bin contained 22 members (Tw bin 8), more
than what would be expected for a viral bin, and aligned
to a reference Herelleviridae phage (Staphylococcus phage
phiSA BS2) (Figure 5c). Herelleviridae infecting abundant
Staphylococcus on the skin are likely to be highly relevant to
skin ecology and disease (75). Before binning, each of the 22
members were identified by CheckV as low-quality genome
fragments with individual completeness estimations rang-
ing from 1.8% to 7.1%. The fragments averaged 5.2 kb in
length and ranged from 2.6 kb to 10.0 kb. After binning,
the final bin was 115 kb in length and identified as a high-
quality genome with 100% completeness by CheckV. The
reference phage genome is 143 kb, suggesting the true com-
pleteness of the bin is likely 80% to 100%. All CheckV re-
sults for the skin metagenomes can be found in Supplemen-
tary Table S5.

The second bin of interest contained four members (Vf
bin 113), with one encoding a nitrate reductase (narG) aux-
iliary metabolic gene (AMG) (Figure 5D). The narG was
positioned as the last gene on a scaffold, and conventional
approaches for AMG validation would suggest discarding
the AMG as likely bacterial contamination. However, bin-
ning aided in the validation of the AMG as likely to be cor-
rect. The first line of evidence was the lack of any integrase
or lysogenic viral signatures on any of the four binned scaf-
folds, suggesting the AMG is not from bacterial contamina-
tion resulting from host integration. Second, alignment of
all four scaffolds to the nearest reference genome (Siphoviri-
dae isolate ctiXA4) displayed that the AMG was situated at
the intersection of two scaffolds within the genome rather
than at a genome end. CheckV identified each member as
low-quality with completeness values of 11.6% to 28.0% for
the respective 7.4 kb to 16.8 kb scaffolds. The bin was es-
timated to be of medium-quality with a completeness of
74.9%, or 92% based on the length of the closest reference
genome. Moreover, one of the four scaffolds lacked char-
acteristic viral annotations to aid with manual inspection
or analyses such as phylogeny, yet binning with the other
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Figure 4. Benchmark binning and genome completeness evaluation of GOV2. Comparison of vRhyme, MetaBat2, and CoCoNet (A) raw results and (B)
low contamination filtering results by the number of scaffolds binned and identified redundancy. For vRhyme only, CheckV was used to identify (C) the
estimated completeness values, (D) number of ‘NA’ completeness values, (E) number of ‘no viral genes’ scaffolds/vMAGs and (F) number of ‘longer than
expected’ scaffolds/vMAGs for the low contamination results of individual binned scaffolds as well as vMAGs.

scaffolds containing viral hallmark and nucleotide replica-
tion annotations was able to validate the scaffold as viral
and place it in better genomic context for analysis. There-
fore, binning was able to not only generate a more com-
plete sequence, but also validate the presence of an un-
derstudied and ecologically important AMG. Using vCon-
TACT2 (72), we clustered all of the individual, unprocessed
viral scaffolds (Figure 5E) in addition to the bin with the
complete binning results (low-contamination bins plus un-
binned scaffolds) (Figure 5F). Clustering of the individual
scaffolds placed all four scaffolds of the bin into a single
cluster distinct from other groups, yet as anticipated none
of the scaffolds of the bin were connected. Clustering of the
binning results yielded more connections between scaffolds
and vMAGs and better placed the bin within evolution-
ary and community relationship contexts. Complete vCon-
TACT2 networks can be found in Supplementary Figures
S4 and S5.

DISCUSSION

Binning viral scaffolds into vMAGs is uncommon, with
most or all remaining as discrete virus operational tax-
onomic units (vOTUs) or uncultivated virus genomes
(UViGs) (76). We believe adopting a more genome-centric

approach for UViGs will enable innovative discoveries, such
as the construction of large or highly heterogenous vi-
ral genomes that often assemble into dissimilar fragments.
Here, we have presented vRhyme and demonstrate that the
‘one scaffold, one virus’ convention can skew interpreta-
tions of a virosphere and the interactions of its viral com-
munity members. To address this, vRhyme enables the bin-
ning of viral genomes into vMAGs using a virus-centric ap-
proach, unique from existing binning software, in an easy
to use and reproducible command line tool.

In addition to performance benchmarks on artificial and
real metagenomes, we evaluated the robustness of vRhyme
by binning artificially fragmented NCLDV, megaphage,
large eukaryotic viruses, crAssphage, active and inactive in-
tegrated prophages, and microbial genomes (Supplemen-
tary Information, Supplementary Table S6). vRhyme was
largely capable of precisely binning these unique and com-
plex viral datasets. However, notable exceptions were dif-
ficulties with separating multiple inactive (non-replicating)
prophages from the same host genome as well as binning
non-viral genomes, though the latter was an anticipated
limitation. Moreover, we displayed that vRhyme is efficient
and likely precise in binning large and complex datasets us-
ing GOV2 and agricultural soil viromes (53) (Supplemen-
tary Information, Supplementary Table S7). In total, we
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hope that with the availability of vRhyme as a reliable bin-
ning tool, vMAG construction will become a common prac-
tice and adopted into existing frameworks of studying viral
ecology, host associations, community interactions, evolu-
tion, and biogeochemical cycling.

To further evaluate the computational capabilities of
vRhyme or potential restraints, we assessed the effect of the
coverage calculation methods, the number of input cover-
age samples and the effect of user-modifiable parameters on
performance, as well as the runtime, memory usage and re-
producibility of binning (Supplementary Information). We
found that vRhyme performs optimally with multiple in-

put samples for more robust coverage variance compar-
isons, though the optimal value depends on how the dataset
or metagenome was constructed (Supplementary Table S8,
Figure S6). For example, a metagenome assembled from
a single, standalone sample may perform suitably. As for
modifying parameters, vRhyme likely will yield optimal re-
sults with the default settings due to the coverage calcula-
tion method employed and built-in binning iterations (Sup-
plementary Table S9, Figure S7). Furthermore, the runtime
of vRhyme for average sized viral datasets was on the scale
of seconds. The GOV2 dataset, the largest dataset evalu-
ated, finished in 93 min with 2.3 GB of memory using 15
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CPU threads (Supplementary Table S10, Figure S8). Lastly,
the methods employed by vRhyme allow it to be fully repro-
ducible. Overall, we found the necessary requirements to be
relatively low and even possible on personal laptop systems.

There are several important considerations in the binning
of vMAGs that are unique from microbial MAGs. First, any
viral scaffold not contained within a bin (vMAG) should be
considered as a vOTU or UViG. This aligns with the ‘one
scaffold, one virus’ convention which is likely true for many
viral genomes, especially circular and complete genomes. In
the skin datasets presented here, ∼23% of the viral scaffolds
were binned into low contamination vMAGs and the re-
maining ∼77% should still be utilized in analyses as discrete
scaffolds. Second, an entire metagenome can be used as in-
put to vRhyme, or viral binning in general, with the caveat
that contamination of bins with non-viral sequences may
be higher with the added advantage that fewer viral scaf-
folds may be missed. For example, many phage genomes
are arranged in cassettes such that structural, nucleotide
replication, lysis and auxiliary genes form distinct regions.
If these regions were to assemble into separate scaffolds,
virus identification may only identify a portion of the scaf-
folds, such as missing an auxiliary region, whereas binning
may place them all together into a single vMAG. When ap-
plied to a synthetic dataset of predominately non-viral se-
quences, MetaBat2 performed better than vRhyme (Sup-
plementary Information, Supplementary Table S11). Third,
accurate read coverage profiles are crucial for accurate bin-
ning. This is true for all binning software that depend on
differential coverage and is especially true for distinguishing
bins of integrated prophages from a single host population.
vMAGs representing prophages generated by vRhyme will
likely represent the greatest fraction of redundant, contam-
inated bins.

DATA AVAILABILITY

vRhyme and all auxiliary scripts are freely available
as open-source Python code at https://github.com/
AnantharamanLab/vRhyme.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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