
ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308302

The TeensyTap Framework for
Sensorimotor Synchronization
Experiments
Floris Tijmen van Vugt1, 2, 3

1 McGill Psychology Department, Montreal, Canada

2 Haskins Laboratories, New Haven, USA

3 Département de Psychologie, Université de Montréal, Canada

sensorimotor synchronization

microcontroller

auditory feedback

metronome

music

Synchronizing movements with an external periodic stimulus, such as tapping your foot along with
a metronome, is a remarkable human skill called sensorimotor synchronization. A growing body of
literature investigates this process, but experiments require collecting responses with high tempo-
ral reliability, which often requires specialized hardware. The current article presents and validates
TeensyTap, an inexpensive, highly functional framework with excellent timing performance. The
framework uses widely available, low-cost hardware and consists of custom-written open-source
software and communication protocols. TeensyTap allows running complete experiments through
a graphical user interface and can simultaneously present a pacing signal (metronome), measure
movements using a force-sensitive resistor, and deliver auditory feedback, with optional experi-
menter-specified artificial feedback delays. Movement data is communicated to a computer and
saved for offline analysis in a format that allows it to be easily imported into spreadsheet programs.
The present work also reports a validation experiment showing that timing performance of Teen-
syTap is highly accurate, ranking it among the gold standard tools available in the field. Metronome
pacing signals are presented with millisecond accuracy, feedback sounds are delivered on average
2 ms following the subjects’ taps, and the timing log files produced by the device are unbiased and
accurate to within a few milliseconds. The framework allows for a range of experimental questions
to be addressed and, since it is open source and transparent, researchers with some technical ex-
pertise can easily adapt and extend it to accommodate a host of possible future experiments that
have yet to be imagined.

Corresponding author: Floris van Vugt, McGill Psychology Department, Ostry Lab,

room 718, 2001 McGill College Avenue, Montreal, QC H3A 1G1.

E-mail: floris.vanvugt@mail.mcgill.ca

ABSTRACT

KEYWORDS

DOI • 10.5709/acp-0304-y

INTRODUCTION

Dancing to music or tapping along with the beat of our favourite tune

seems effortless, but constitutes a remarkably complex human skill.

Aligning our movements with external periodic stimuli is a rare feat

in the animal realm (Patel et al., 2009). This capacity is studied in

sensorimotor-synchronization (SMS) experiments, where participants

are asked to tap their finger along with a periodic signal, for example,

a metronome (Repp, 2005; Repp & Su, 2013). There is an extensive

body of literature investigating this capacity, but most setups use tools

that are expensive and have questionable timing performance (Schultz,

2019). Previously, a platform was introduced based on the Arduino

microcontroller that could deliver highly reliable auditory feedback

(Schultz & van Vugt, 2016). A microcontroller is a small computer,

often only several centimeters in size, that can be programmed to

autonomously collect finger tapping data and communicate these to

a PC or Mac computer. TapArduino is becoming increasingly popu-

lar and has inspired work that has successfully incorporated Arduino

hardware into existing testing setups (Scheurich et al., 2020). However,

TapArduino is limited in that it cannot deliver a metronome pacing

signal and there is no ready-made user interface that allows one to run

an entire experiment.

The current article introduces a framework built around the Teensy

microcontroller, which is capable of presenting a metronome signal,

recording finger taps using a force-sensitive resistor (FSR), and deliv-

ering auditory feedback signals. The framework includes a graphical

user interface which allows specifying the metronome rate and other

parameters on the fly, and allows capturing and saving the data in a

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ac-psych.org

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308303

format that is easy to import into major software packages, thus mak-

ing it possible to run entire experiments using TeensyTap and a PC/

Mac. Taken together, this forms an inexpensive and user-friendly solu-

tion for a host of sensorimotor experiments while requiring only some

technical knowledge and relying exclusively on open-source software.

While TeensyTap can run a variety of experiments as-is, it is not de-

signed to cover all possible experiments in the field without any adjust-

ments. Rather, simplicity of design and transparency were favored to

allow researchers with technical expertise to easily adapt TeensyTap to

other experiments, even ones that have not yet been envisaged at this

time.

The current article describes the design of the TeensyTap frame-

work and presents the results of an experiment validating the timing

accuracy of the device. External recordings of finger taps and sounds

delivered by TeensyTap were made in order to establish when the onset

of sounds and taps actually happened (ground-truth), so that it could

be compared with what TeensyTap reported back to the experimenter.

Specifically, we investigated (a) how accurate the metronome signal is

in time, (b) how quickly the device produces a feedback sound when

the subject taps on the force-sensitive resistor, and (c) how reliable the

tap timings are that are logged by the device.

METHODS

TeensyTap Framework

TeensyTap is based on the Teensy 3.2 microcontroller (developed by

PJRC, https://pjrc.com/teensy; for another example use of this control-

ler see Romano et al. 2019) combined with the Audio Adapter Board

and a force-sensitive resistor (see Figure 1, Panel A). The force-sensi-

tive resistor is a small surface on which the subject taps their finger,

causing a change in electrical resistance that is measured by Teensy.

The Teensy device connects through a USB cable to a computer (PC

or Mac) running a Python user interface that allows the experimenter

to choose, among other things, the metronome rate and whether audi-

tory feedback should be delivered for every trial (see Figure 1, Panel

B). Subjects wear headphones that are connected to the Teensy audio

board through which they hear the metronome as well as a feedback

sound from their own taps (if selected). Subjects tap their finger on the

FSR, a small pad that is connected to the Teensy, which is able to detect

when (and with how much force) the subject taps. The Teensy relays

this timing information, as well as the timing of metronome clicks,

back to the experimenter’s Python interface where it is saved for offline

analysis. A demonstration video for the usage of this setup is available

here: https://www.youtube.com/watch?v=WwA4infAf5g (this video

starts from when the platform has already been built; for details on

how it is built, see the Installation and Source Code section below).

The tapping data can be imported into a spreadsheet program. The

format is space-separated text (popular spreadsheet programs will of-

fer this option when the file is opened) and results in a table format

shown in Table 1. Each row corresponds to an event, which is a click

(metronome pacing signal), tap (detected finger tap by the subject) or

feedback (presentation of feedback signal). For each event, an onset

time is provided (in milliseconds from an arbitrary start time). For

finger taps, further details are provided: offset time (the time the

finger lifted from the FSR), the time at which the maximum pressure

(max_force_t) was attained (in between tap onset and offset) as well as

what that maximum force was (max_force, in arbitrary units that can

be converted into Newtons).

Installation and Source Code
The TeensyTap source code, the blueprints for how to build it, and

Python software for the user interface are made available freely and

open-source at http://www.github.com/florisvanvugt/teensytap.

Acquiring and building TeensyTap requires the steps listed in Table 2.

HARDWARE
The Teensy 3.2 and the Audio Adapter Board are available for

purchase at low cost from electronics stores worldwide. In addition,

a 4.2 kOhm resistor is required, as well as some basic electric wires,

headphones, and a USB cable that connects the Teensy to the PC/Mac.

These can usually be found in a laboratory workshop or purchased

for minimal fees. The Teensy and audio board need to be soldered to-

gether, which requires basic soldering skills. Beyond this, no technical

expertise is required, as the remaining steps involve software instal-

lation and are demonstrated step-by-step in the instructional videos

(see Table 2).

SOFTWARE
A computer (PC or Mac) with Python installed is required. The

software installation is straight-forward and requires less than 15

minutes, starting from scratch as shown in the following video: https://

www.youtube.com/watch?v=wIUFWRm3EA0. It involves installing

the Arduino IDE and Teensyduino, both available for download for

free from the corresponding developers’ websites. The experimenter

can then download the TapArduino code from the above Github page,

upload it to the Teensy device using the automated software provided,

and run the Python graphical user interface (GUI) to run the experi-

ment and collect the data. All these steps are shown in the video linked

above.

The current interface allows the experimenter to specify the param-

eters of each trial: the metronome rate (inter-onset-interval between

metronome clicks, i.e. IOI, in milliseconds), how many metronome

clicks should be presented during a given trial (i.e., the duration of

the trial), whether an auditory feedback sound should be presented at

each tap (yes/no), whether it should come after a pre-specified delay

(in ms), and after how many metronome clicks the feedback delay

should come into effect; and whether there should be a continuation

phase where the metronome stops but the subject continues tapping

(Wing & Kristofferson, 1973). Once the experimenter presses the

green “Go” button, all the parameters of the experiment are commu-

nicated through USB to the Teensy and it starts running the trial. A

beep sound indicates to the subject when the trial ends. The TeensyTap

device communicates the time of each metronome click, the onset and

http://www.ac-psych.org
https://pjrc.com/teensy
https://www.youtube.com/watch?v=WwA4infAf5g
http://www.github.com/florisvanvugt/teensytap
https://www.youtube.com/watch?v=wIUFWRm3EA0
https://www.youtube.com/watch?v=wIUFWRm3EA0

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308304

offset of each finger tap, as well as the timing of the auditory feedback

(since it may be experimentally delayed). This data is written in a table

format to a space-separated text file by the Python interface and can

be imported easily for offline analysis in Python, R, Matlab, or other

software. Since Teensy uses its internal clock to determine when events

happened (in technical terms, to assign timestamps), possible delays in

USB communication or overhead caused by processes inadvertently

happening on the host computer do not affect the reliability of the

measurements.

Since TeensyTap is fully open-source, it can be easily modified to

suit the needs of specific experiments. For example, the experimenter

can change the sounds that are played (metronome click, tap feedback)

by replacing them with a wave file (.wav) of their choice.

Validation Experiment Setup

A validation experiment was carried out to determine whether the

sounds produced by TeensyTap and the data it reports about the onsets

of the taps were reliable. In this validation experiment, a CGN521E

microphone (AKG Harman, Los Angeles, USA) was placed a few

centimeters from the force sensor to capture the sound made by the

subject tapping their finger. The microphone signal was captured by

a Fireface 800 interface (RME, Haimhausen, Germany) which also

simultaneously measured the Teensy stereo audio output. The three

tracks (two tracks from Teensy and one mono input from the micro-

phone) were captured on a separate Windows PC running Audition

3.0.1 (Adobe Inc., San Jose, USA) and saved as wave files for offline

FIGURE 1.

The TeensyTap device. Panel A: Top view of TeensyTap, which consists of a Teensy microcontroller and the Audio Adapter Board,
soldered together, connected with headphones and a PC/Mac through a USB cable. The subject taps their finger on a force sensitive
resistor (FSR). Panel B: Graphical interface running on the PC/Mac that allows the experimenter to select the desired metronome
rate, number of metronome clicks, as well as whether auditory feedback should be presented or not. The green “Go” button launches
the trial. During the trial, Teensy reports detected taps as well as metronome clicks and delivered auditory feedback, which is also
saved to a file for offline analysis, and can be readily imported in a spreadsheet program to yield a report, as shown in Table 1. Panel
C: Schematic of the wiring of the Teensy Tap, which connects to a force-sensitive resistor (FSR) through a resistor.

http://www.ac-psych.org

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308305

analysis (see Figure 2, Panel A for an excerpt of what was recorded). A

separate Linux PC was used to send instructions to TeensyTap through

the Python graphical user interface and save the finger tap timing logs

that were produced.

First, to validate the timing accuracy of the metronome signal, the

Teensy was programmed to produce 1000 metronome clicks for each

of the following metronome interval durations: 100, 200, 300, 400, 600,

800, and 1000 ms. During this time, no finger taps were produced.

The metronome sound used was the 30ms duration woodblock wave

sound included by default in TeensyTap (see Figure 2, Panel A for its

waveform).

Second, to validate the timing accuracy of the auditory feedback for

the finger taps, the Teensy was programmed to produce 1000 metro-

nome clicks at an interval of 250 ms and the experimenter tapped their

finger on the pad as closely as possible in time to the metronome, in

the same way that a subject would be instructed to do during a typical

sensorimotor synchronization experiment. This procedure was then

repeated with the metronome set at 500 ms. The feedback sound used

was a 30ms 440 Hz pure sine wave included by default in TeensyTap.

The Teensy code was modified for this experiment so that the feed-

back and metronome sounds were presented to separate stereo chan-

nels so that they could be more easily distinguished offline, instead of

both sounds being presented to both ears as is done by default. After

the experiment, the audio recordings were imported into Python. In

the recording of the Teensy audio output, the sound onsets were estab-

lished by detecting peaks in the cross-correlation time series between

the recorded signal and the wave file of the tap feedback or metronome

sound (see Figure 2, Panel A). The physical taps were then searched

for in a window of 10 ms preceding each feedback sound (since the

feedback sounds could be determined robustly) and were defined as

the time when the audio signal exceeded 10 standard deviations away

from the mean of the baseline signal just prior to the tap. The onsets

identified in this way were verified visually using a display similar to

that shown in Figure 2, Panel A.

The offline validation analysis then computed the timing between

subsequent metronome onsets and compared it with the metronome

interval that TeensyTap was programmed to produce. In the validation

analysis, the delay between tap and feedback was computed as the time

that elapsed between the onset of the physical tap and the onset of the

subsequent auditory feedback sound. It was also investigated whether

simultaneously occurring sounds would impair TeensyTap’s timing ac-

curacy. For example, if the device is busy playing one sound (such as

the metronome sound), would other sounds (such as the tap feedback

sound) occur with less reliable timing? Thus, we investigated whether

tap feedback sounds that occurred close in time to the metronome

sound would be delayed by correlating the absolute tap-to-metronome

time with the tap-to-feedback time.

RESULTS

Timing accuracy of the produced metronome signal: The intervals

between metronome clicks produced by TeensyTap were within 1ms

of the to-be-produced interval across all metronome rates (see Table

3, Figure 2 Panel B). Furthermore, there was no bias, since the differ-

ence between the desired and actually produced metronome interval

was not statistically significantly different from zero, t(7034) = 1.30,

p = .19).

Timing accuracy of the tap feedback: On average, TeensyTap pro-

duced the auditory feedback o 1.79 ms (SD = .53) after the physical tap

(see Figure 2, Panel C).

Accuracy of the tap timing reported by TeensyTap: The tap times

detected from the microphone signal were compared against the tim-

ing reported by TeensyTap in the log file saved to the PC. There was a

strong correlation between these two intervals (r > .99, p < .00001, see

Figure 2, Panel D). Importantly, there was no bias in interval reported

by TeensyTap: The difference between the logged and the true tap in-

TABLE 2.
Steps Required To Build And Set Up Teensytap

Step 1:
Acquire

hardware

Teensy microcontroller, audio adapter, force sensor, resistor
and wires
https://github.com/florisvanvugt/teensytap#hardware

Step 2: Build
hardware
(~1 hour)

Solder audio adapter on to Teensy microcontroller, solder
wires between force sensor and resistors Solder audio
adapter on to Teensy microcontroller, solder wires between
force sensor and resistors

Step 3: Install
software
(15 min)

Install Arduino IDE and Teensyduino (prerequisites), and
the TeensyTap source code
https://www.youtube.com/watch?v=wIUFWRm3EA0

Step 3a:
Enable

millisecond
resolution

(5 min)

If millisecond resolution is required for your application,
make a few lines change to the source code.
https://www.youtube.com/watch?v=DVS2NKvLXm0

Step 4: Run
experiment

Run the TeensyTap source code to collect data https://www.
youtube.com/watch?v=WwA4infAf5g

TABLE 1.
Sample Data as Delivered By Teensytap. Teensytap Provides
Data in Text Format that Can Be Imported Directly into a
Spreadsheet Program to Yield a Table as Shown Here

Message
number

type onset_t offset_t
max_

force_t
max_force

1 click 199561 NA NA NA
2 feedback 199754 NA NA NA
3 tap 199754 199817 199787 438
4 click 200161 NA NA NA
5 feedback 200256 NA NA NA
6 tap 200256 200339 200302 470
7 feedback 200735 NA NA NA
8 click 200761 NA NA NA
9 tap 200735 200848 200773 585

10 feedback 201289 NA NA NA
11 click 201361 NA NA NA
12 tap 201289 201390 201291 563
13 feedback 201891 NA NA NA
14 click 201961 NA NA NA
15 tap 201891 202008 201950 580
16 feedback 202493 NA NA NA

http://www.ac-psych.org
https://github.com/florisvanvugt/teensytap#hardware
https://www.youtube.com/watch?v=wIUFWRm3EA0
https://www.youtube.com/watch?v=DVS2NKvLXm0
http://youtube.com/watch?v=WwA4infAf5g

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308306

terval (determined from the external audio recording) was not statisti-

cally significantly different from zero, t(2006) = −.34, p = .73. The SD,

reflecting the TeensyTap measurement error, was 0.60 ms.

It was also investigated whether having to play two sounds simul-

taneously, such as when the auditory feedback sound was played close

in time to the metronome, would cause timing instability or additional

delays. For this purpose, for each tap onset the tap-to-metronome

time was computed as the absolute value of the timing difference with

the closest metronome sound. There was no significant correlation

between the tap-to-metronome time and the tap-to-feedback delay,

r = .002, p = .94, indicating that the feedback sound timing was not

affected by temporal proximity to the metronome click.

DISCUSSION

Sensorimotor synchronization (SMS) refers to humans’ capacity to

align their movements with external periodic stimuli. SMS is a remark-

able capacity that is noticeably rare in the animal realm. In humans,

SMS capacities are studied extensively and deficits in this capacity have

been linked with disorders such as attention deficit hyperactivity dis-

order (ADHD, Noreika et al., 2013) and dyslexia (Colling et al., 2017).

Synchronization also has intriguing links with interpersonal relations

(Wiltermuth & Heath, 2009) and was shown to bring benefit in neu-

rological conditions such as Parkinson’s disease (Dalla Bella, Benoit,

et al., 2017). Running sensorimotor synchronization experiments can

be technically challenging because it involves generating a precisely

timed periodic stimulus (metronome), accurately recording the tim-

ing of movements (e.g., finger taps), and possibly delivering auditory

feedback, all in synchrony and with minimal delays. The current article

introduced a simple and highly functional framework that can do just

that and is built exclusively using open-source and free software. We

also reported validation data based on ground-truth external observa-

tion, and these indicate that the timing performance of this device is

reliable, making it suited to be deployed in a variety of experiments in

psychology and neuroscience.

FIGURE 2.

 Timing of metronome clicks and feedback sounds by Teensy is highly reliable. Panel A: Simultaneous recordings were acquired from
the Teensy audio output (metronome clicks and feedback sounds shown in the top two traces) as well as from a microphone in the
vicinity of the force-sensitive resistor (FSR) where the subject tapped their finger (bottom trace). This panel shows a sample of these
recordings. An offline script detected the onset of the sounds and the finger tap, which are shown here as vertical lines, and these
time points formed the basis for the subsequent analyses. Panel B: The metronome signal produced by the Teensy was accurate to
the millisecond. Shown is the distribution of the difference between the desired and actually produced metronome interval. Panel
C: TeensyTap delivered the sound within approximately 2 ms after the physical tap. Shown is the distribution of the time difference
between the physical tap and the auditory feedback tone, and this difference never amounts to more than a few milliseconds. Panel
D: TeensyTap produces an accurate log of the tap times. There is a strong correlation between tap inter-onset-interval (IOI) and the IOI
reported by TeensyTap. The difference between the two (shown in inlay) is unbiased and within several milliseconds.

http://www.ac-psych.org

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308307

Sensorimotor synchronization experiments have been performed

with a variety of tools and experimental frameworks. Studies meas-

ured movements using horizontal-drum kymographs (Stevens, 1886),

Morse keys (Klemmer, 1957; Wing & Kristofferson, 1973), percussion

pads (Dalla Bella, Farrugia, et al., 2017), or the computer mouse (Steele

& Penhune, 2010). Currently, there exist several publicly available

hardware, software, or combined packages to facilitate running senso-

rimotor experiments. For example, MatTAP is a Matlab based toolbox

for running SMS experiments (Elliott et al., 2009). The platform allows

running a wide range of experiments and its particular strengths are

a high degree of customizability as well as built-in analysis code. The

platform does not deliver response feedback and requires the propri-

etary Matlab software (Mathworks, Natick, USA) and potentially costly

external hardware (data acquisition card and sensors). Another popu-

lar platform is FTAP (Finney, 2001), which has stood the test of time

among the most widely used methods for almost two decades. Among

its many strengths is that it is highly customizable. Its internal timing

can be very precise and is verifiable by the user using a loop test. FTAP

requires external hardware for response collection (such as a MIDI

percussion pad and a means to connect it with the computer, i.e., a PCI

card or USB-MIDI converter, which can cause considerable detriments

in timing performance of the overall setup, as observed in Schultz &

van Vugt, 2016). FTAP as well as MatTAP cater to a wide variety of

users for running sensorimotor experiments. The contribution of the

present framework, TeensyTap, is that it is a complete hardware and

software setup that does not require any external devices. The benefit

of this is that timing performance can be established reliably, as was

done in the present validation experiment. Software packages that

build on additional hardware or software layers (e.g., MIDI) do not al-

low straight-forward validation of the final timing performance of all

the layers combined, because this often depends on the choice of hard-

ware equipment. Indeed, each layer is shown to add additional, vary-

ing timing latencies (Schultz, 2019) which can add up when combined

(Schultz & van Vugt, 2016) and thus make it difficult for researchers to

estimate the effective timing performance of their system as a whole.

Further, many commonly used MIDI-based measurement devices

are actually percussion pads, and therefore, are designed to capture

relatively forceful stick impacts instead of more subtle finger taps. As

a result, subjects are required to tap with greater force than they might

naturally do, and a previous study showed these devices often miss

softer taps that FSRs (such as used by TeensyTap) can reliably detect

(Schultz & van Vugt, 2016). Recent work has elegantly introduced

hybrid setups that combine an Arduino microcontroller and an FSR

(in the style of TapArduino) with FTAP (Scheurich et al., 2020). The

only other complete hardware and software system currently available

is Tap-It (Kim et al., 2012), which is an iOS-based application excelling

in portability and ease of use. The developers also validated the timing

performance indicating tap-to-feedback latencies of about 15 ms. The

present paper introduces TeensyTap as a feasible combined hardware

and software solution for sensorimotor synchronization experiments

with experimentally validated accurate timing performance.

TeensyTap complements existing software packages in that it fa-

vors customizability over configurability. The design of software archi-

tecture involves a trade-off between configurability and customizabil-

ity (Dittrich et al., 2009). Configurable systems can perform a range

of tasks by letting the user adjust the desired behavior (e.g., through

configuration files). The strength of this approach is that, typically, lit-

tle programming experience is required from the end user. The limita-

tion is that the software code is usually complex and opaque because

it needs to handle a wide range of scenarios, making it difficult to

customize it to elicit behavior that is not among the options envisaged

by the designers. It also makes it difficult to ensure that the system

works reliably in all possible cases. However, customizable systems

perform a more limited range of tasks at the outset and require some

programming experience in order to change the default behavior (e.g.,

through modifying the source code). The limitation of this approach is

that the system is not a turn-key solution for a wide range of scenarios

at the outset, but the strength is that the source code is typically more

simple, elegant, and transparent, making it relatively easy for those

with some programming experience to adapt it to novel situations,

even beyond what was envisaged in the original design. In the sen-

sorimotor synchronization field, strong software packages exist that

are highly configurable, such as FTAP, which can, for example, change

the period and phase of the metronome pacing signal within a signal

trial (Dalla Bella, Benoit, et al., 2017; Madison & Merker, 2004; Steele

& Penhune, 2010) or produce grouped and metric patterns (Finney &

Warren, 2002). The strength of FTAP and similar software packages

is that these experiments can be run without requiring modification

of the program source code (although they require writing somewhat

complex configuration files). TeensyTap does not perform these ex-

periments as-is, but instead offers a framework that is easy to adapt.

For example, dyading tapping experiments in which two participants

tap simultaneously can be achieved through a relatively straightfor-

ward extension of the source code provided with TeensyTap, whereas

it remains unclear how existing SMS software packages would accom-

modate such a scenario. Users with basic programming skills may

TABLE 3.
Results from the Validation Experiment Indicate that Teen-
sytap Produces an Accurately Timed Metronome Pacing
Signal. The First Column Indicates the Metronome Interval
that was Sent as a Command to Teensytap. The Subsequent
Columns Report the Actually Produced Metronome Intervals
as Calculated Based on the Audio Recordings (Ground Truth).
All Values are Reported in Milliseconds and Show that Timing
Errors are Less than 1 ms

IOI
instructed to
TeensyTap

Min. IOI Max. IOI Mean IOI SD IOI

100 99.37 100.11 100.00 0.25

200 199.46 200.20 200.00 0.32

300 299.55 300.30 300.00 0.36
400 399.66 400.41 400.00 0.36
600 599.84 600.59 600.01 0.29
800 799.32 800.07 800.01 0.17

1000 999.5 1000.25 1000.01 0.34

http://www.ac-psych.org

ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 302-308308

thus use the freely available source code of the device as a basis to

create future tapping experiments that have not yet been conceived

of at present.

One limitation of the TeensyTap framework is that the timing of

the communication between the TeensyTap device and the PC/Mac

is not controlled or assessed. However, this latency is not critical for

the experiments because TeensyTap functions autonomously during

the experiment and assigns its own time stamps to events. Another

limitation is that TeensyTap currently does not collect triggers from

other devices, as is commonly done in EEG measurements performed

in conjunction with sensorimotor synchronization. This functionality

could be added in future versions. In that case, it will be important to

validate the timing accuracy of the processing of these triggers simi-

larly to the validation as was done here for finger taps.

ACKNOWLEDGEMENTS
The author declares no conflict of interest. I am indebted to

Dr. Benjamin G. Schultz for fruitful discussions during the con-

ception phase of TeensyTap. Furthermore, the validation experi-

ment relied critically on access to recording equipment kindly

provided by Dr. Nicholas Foster and Prof. Simone Dalla Bella.

OPEN PRACTICES STATEMENT
The TeensyTap device blueprints, the C code to run on the

device, and the Python code to interface between the TeensyTap

and the PC/Mac through USB are all available open-source from

https://github.com/florisvanvugt/teensytap

REFERENCES
Colling, L. J., Noble, H. L., & Goswami, U. (2017). Neural entrainment

and sensorimotor synchronization to the beat in children with de-

velopmental dyslexia: An EEG study. Frontiers in Neuroscience, 11,

360. doi: 10.3389/fnins.2017.00360

Dalla Bella, S., Benoit, C.-E., Farrugia, N., Keller, P. E., Obrig, H.,

Mainka, S., & Kotz, S. A. (2017). Gait improvement via rhythmic

stimulation in Parkinson’s disease is linked to rhythmic skills.

Scientific Reports, 7, 42005. doi: 10.1038/srep42005

Dalla Bella, S., Farrugia, N., Benoit, C.-E., Begel, V., Verga, L., Harding,

E., & Kotz, S. A. (2017). BAASTA: Battery for the Assessment of

Auditory Sensorimotor and Timing Abilities. Behavior Research

Methods, 49, 1128–1145. doi: 10.3758/s13428-016-0773-6

Dittrich, Y., Vaucouleur, S., & Giff, S. (2009). ERP customization as

software engineering: Knowledge sharing and cooperation. IEEE

Software, 26, 41–47. doi: 10.1109/MS.2009.173

Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). MatTAP: A

MATLAB toolbox for the control and analysis of movement syn-

chronisation experiments. Journal of Neuroscience Methods, 177,

250–257. doi: 10.1016/j.jneumeth.2008.10.002

Finney, S. A. (2001). Real-time data collection in Linux: A case study.

Behavior Research Methods, Instruments, & Computers: A Journal of

the Psychonomic Society, Inc, 33, 167–173.

Finney, S. A., & Warren, W. H. (2002). Delayed auditory feedback and

rhythmic tapping: Evidence for a critical interval shift. Perception

and Psychophysics, 64, 896–908. doi: 10.3758/BF03196794

Kim, H.-S., Kaneshiro, B., & Berger, J. (2012). Tap-It: An iOS app for senso-

ri-motor synchronization experiments. 12th International Conference

on Music Perception and Cognition, Thessaloniki, Greece.

Klemmer, E. T. (1957). Rhythmic disturbances in a simple visual-

motor task. The American Journal of Psychology, 70, 56–63. doi:

10.2307/1419229

Madison, G., & Merker, B. (2004). Human sensorimotor tracking of

continuous subliminal deviations from isochrony. Neuroscience

Letters, 370, 69–73. doi: 10.1016/j.neulet.2004.07.094

Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing deficits in

attention-deficit/hyperactivity disorder (ADHD): Evidence from

neurocognitive and neuroimaging studies. Neuropsychologia, 51,

235–266. doi: 10.1016/j.neuropsychologia.2012.09.036

Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009).

Experimental evidence for synchronization to a musical beat in a

nonhuman animal. Current Biology, 19, 827–830. doi: 10.1016/j.

cub.2009.03.038

Repp, B. H. (2005). Sensorimotor synchronization: A review of the tap-

ping literature. Psychonomic Bulletin and Review, 12, 969–992.

Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A

review of recent research (2006–2012). Psychonomic Bulletin and

Review, 20, 403–452. doi: 10.3758/s13423-012-0371-2

Romano, M., Bucklin, M., Gritton, H., Mehrotra, D., Kessel, R., &

Han, X. (2019). A Teensy microcontroller-based interface for

optical imaging camera control during behavioral experiments.

Journal of Neuroscience Methods, 320, 107–115. doi: 10.1016/j.jneu-

meth.2019.03.019

Scheurich, R., Pfordresher, P. Q., & Palmer, C. (2020). Musical training

enhances temporal adaptation of auditory-motor synchronization.

Experimental Brain Research, 238, 81–92. doi: 10.1007/s00221-019-

05692-y

Schultz, B. G. (2019). The Schultz MIDI Benchmarking Toolbox for

MIDI interfaces, percussion pads, and sound cards. Behavior Research

Methods, 51, 204–234. doi: 10.3758/s13428-018-1042-7

Schultz, B. G., & van Vugt, F. T. (2016). Tap Arduino: An Arduino

microcontroller for low-latency auditory feedback in sensorimo-

tor synchronization experiments. Behavior Research Methods, 48,

1591–1607. doi; 10.3758/s13428-015-0671-3

Steele, C. J., & Penhune, V. B. (2010). Specific increases within global

decreases: A functional magnetic resonance imaging investigation

of five days of motor sequence learning. The Journal of Neuroscience,

30, 8332–8341. doi: 10.1523/jneurosci.5569-09.2010

Stevens, L. T. (1886). On the time-sense. Mind, 11, 393–404.

Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation.

Psychological Science, 20, 1–5. doi: 10.1111/j.1467-9280.2008.02253.x

Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the

timing of discrete motor responses. Perception and Psychophysics,

14, 5–12. doi: 10.3758/BF03198607

RECEIVED 09.01.2020 | ACCEPTED 17.09.2020

http://www.ac-psych.org

	Button 907:
	Button 908:
	Button 909:
	Button 9010:
	Button 9011:
	Button 9012:
	Button 9013:
	Button 9014:
	Button 9015:
	Button 9016:
	Button 9017:
	Button 9018:
	Button 9019:
	Button 9020:
	Button 9021:
	Button 9022:
	Button 9023:
	Button 9024:
	Button 9025:
	Button 9026:
	Button 9027:
	Button 9028:

