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ABSTRACT This work describes, for the first time, the genome sequence of a Saccharo-
mycodes ludwigii strain. Although usually seen as a wine spoilage yeast, S. ludwigii has
been of interest for the production of fermented beverages because it harbors several
interesting properties, including the production of beneficial aroma compounds.

Saccharomycodes ludwigii is one of the many non-Saccharomyces (NSY) species
present in the wine must mycobiome (1–3). Phylogenetically, the Saccharomycodes

genus is placed in the Saccharomycodaceae family, in the phylum Ascomycota and
subphylum Saccharomycotina, being considered a sister genus to Hanseniaspora (4).
Unlike the genus Hanseniaspora, which is seen as having a positive effect in vinification
(5), the presence of S. ludwigii is of concern since it is considered a spoilage agent,
reducing the organoleptic properties of wine and interfering with the clarification
process (4, 6). Despite this negative effect of S. ludwigii in wine production, this species
has been explored for the production of other fermented beverages (7–10), and it has
been reported to be an interesting flavoring agent that is able to produce several
relevant aroma compounds (9).

Little is known concerning the genetics and physiology of the S. ludwigii species. In
particular, no genomic sequence has yet been reported for a strain of this species,
which impedes our better understanding and exploration of it. As such, in this work, we
have obtained the genomic sequence of an S. ludwigii isolate (UTAD17) recovered from
wine must in the Douro region of Portugal by using a selective medium for NSY species.
To obtain the genome sequence of S. ludwigii UTAD17, we cultivated cells in rich
medium and extracted the DNA as described previously (11). The DNA libraries were
prepared using the ThruPLEX DNA-seq kit, and paired-end sequencing of the generated
DNA fragments was performed on a MiSeq platform. After two sequencing rounds,
20,333,547 reads of 250 bp on average were obtained and de novo assembled into
1,360 contigs (N50 length of 17,540 bp; filtered to have a coverage above 300� and a
size above 1,000 nucleotides). The sum of the assembled contigs totaled 10,785,241 bp,
which is in line with the genome size predicted for Hanseniaspora osmophila (4, 12),
another species in the Saccharomycodaceae family. Automatic annotation of the S.
ludwigii UTAD17 genomic sequence was undertaken using (i) Fgenesh trained on
Aspergillus nidulans, Neurospora crassa, and a mixed matrix based on different species
(13); (ii) GeneMark-ES (14); and (iii) Augustus (15). The different gene models proposed
by the algorithms were displayed in the Generic Genome Browser (GBrowse) (16),
allowing individual manual validation. Gene models showing the highest similarity with
homologues described in other yeast species were selected. If needed, gene structures
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were adjusted by splitting or fusing the gene models or redefining exon-intron
boundaries. The predicted complete set of open reading frames (ORFeome) of S.
ludwigii UTAD17 is estimated to be 4,015 protein-coding genes. BLASTP analysis (using
the nonredundant protein sequences database as a reference) (17) revealed that S. ludwigii
proteins share a high degree of homology with H. osmophila and Lachancea fermentati. This
is an interesting observation since both species are indigenous to wine musts and influence
the wine fermentation process (12, 18, 19). It is expected that the S. ludwigii UTAD17
genome sequence reported here can foster research focused on this species, contributing
particularly to overcoming its activity as a wine spoilage agent and improving its utilization
in the production of fermented beverages.

Data availability. The reads and the assembled genome sequences of Saccharo-
mycodes ludwigii UTAD17 have been deposited in ENA under accession number
UFAJ01000000 (contigs UFAJ01000001 through UFAJ01001360; study accession num-
ber PRJEB27462; read accession number SAMEA4945973).
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