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Background: Abnormal DNA methylation of gene promoters is an important

feature in lung adenocarcinoma (LUAD). However, the prognostic value of DNA

methylation remains to be further explored. Objectives. We sought to explore

DNA methylation characteristics and develop a quantifiable criterion related to

DNA methylation to improve survival prediction for LUAD patients.

Methods: Illumina Human Methylation450K array data, level 3 RNA-seq data

and corresponding clinical information were obtained from TCGA. Cox

regression analysis and the Akaike information criterion were used to

construct the best-prognosis methylation signature. Receiver operating

characteristic curve analysis was used to validate the prognostic ability of

the DNA methylation-related feature score. qPCR was used to measure the

transcription levels of the identified genes upon methylation.

Results:We identified a set of DNAmethylation features composed of 11 genes

(MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8,

NLRP13, EDN3 and SLC34A1). The feature score, calculated based on DNA

methylation features, was independent of tumor recurrence and TNM stage in

predicting overall survival. Of note, the combination of this feature score and

TNM stage provided a better overall survival prediction than either of them

individually. The transcription levels of all the hypermethylated genes were

significantly increased after demethylation, and the expression levels of

3 hypomethylated proteins were significantly higher in tumor tissues than in

normal tissues, as indicated by immunohistochemistry data from the Human

Protein Atlas. Our results suggested that these identified genes with prognostic

features were regulated by DNA methylation of their promoters.

Conclusion: Our studies demonstrated the potential application of DNA

methylation markers in the prognosis of LUAD.
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1 Introduction

Lung adenocarcinoma (LUAD) is the most common

histological subtype of lung cancer, accounting for

approximately 50% of all lung cancer cases in most countries

(Goldstraw et al., 2011; Bray et al., 2018). Previous studies have

revealed that in addition to cigarette smoking, risk factors such as

age, environmental pollution, occupational exposure, race, sex,

and preexisting lung disease are also substantially involved in

lung cancer. With the development and popularization of public

databases in recent years, an increasing number of researchers

have tried to identify prognostic biomarkers for LUAD by

analyzing clinical characteristics and molecular information

(Edge and Compton, 2010). The TNM staging system of the

American Joint Commission on Cancer (AJCC) was reported to

have great value in LUAD prognosis (Folkman, 1971). Liu et al.

stated that conventional staging alone was not enough to predict

prognosis and guide treatment decisions. They analyzed large

cohorts from The Cancer Genome Atlas (TCGA) database and

developed a 4-gene feature related to glycolysis (Kaishang et al.,

2018). Su et al. identified an RNA sequencing network of 29 key

lncRNAs, 72 mRNAs and 24 miRNAs as potential biomarkers to

optimize the diagnosis and prognosis of LUAD patients by using

the TCGA database (Li et al., 2017). The findings from these

studies indicate that it is feasible to use different molecular

markers and clinical features in public databases to establish

practical models that have great application potential. Although

the effectiveness of these prediction models has not been tested in

clinical practice, it is necessary to continue to mine and improve

the gene signatures related to the prognosis of LUAD.

Epigenetic disorders, especially abnormal DNA methylation

in gene promoters, are a fundamental feature of human

malignant tumors (Liu et al., 2019). As one of the most well-

studied epigenetic modifications, DNA methylation mainly

occurs at 5′-cytosine-phosphate-guanine-3’ (CpG)

dinucleotides and is regulated by DNA methyltransferases and

DNA demethylases (Yang et al., 2022). Methylation and cancer

formation are associated in 2 main ways: one is the regulation of

tumor suppressor gene expression by gene hypermethylation in

the promoter, and the other is genome-wide hypomethylation,

which plays an important role in the stability of the

heterochromatin structure (Feinberg, 2007). In virtually every

step of tumor progression, there is abnormal promoter

methylation regulation (Sui et al., 2016). APC, CDH13, MLH1

and IRX1 have hypermethylation in promoter CpG islands

(CGIs). The hypermethylation of the APC and CDH13 genes

in LUAD is associated with cancer cell adhesion, and the loss of

MLH1 and IRX1 expression is associated with poor tumor

survival (Goto et al., 2009; Küster et al., 2020). The

hypomethylation of LINE-1 and ELF3 induces protein

overexpression in LUAD. The overexpression of ELF3 can

stimulate the carcinogenic phenotype of LUAD cells and

reduce the survival time of patients, suggesting that the

hypomethylation of LINE-1 is a prognostic marker of LUAD

development and progression (Ikeda et al., 2013; Enfield et al.,

2019).

TCGA has disclosed the clinical information of more than

10,000 patients and the molecular phenotype information of

their tumor tissues. This information covers 33 different types of

tumors and multiple data from different sources, including

transcriptomic, methylomic and proteomic sources (Mazor

et al., 2016). By integrating data from different sources, we

can identify specific events in the carcinogenic process and

identify potential biomarkers associated with patient survival.

In this study, we obtained the TCGA Illumina Human

Methylation 450K microarray data, RNA-seq data, and clinical

data of LUAD patients and performed an integrative analysis to

identify a set of DNA methylation features for 11 genes. We

performed area under the receiver operating characteristic curve

(AUC-ROC) analysis to verify the ability of the identified DNA

methylation feature to predict the survival of LUAD. In addition,

we performed qPCR, and the results suggested that these

identified genes with prognostic features were regulated by

DNA methylation in their promoters.

2 Materials and methods

2.1 Data preparation

The steps of data acquisition and analysis, as well as

methylation feature acquisition and verification, are shown in

the flow chart (Figure 1). Illumina Human Methylation 450K

array data were obtained from TCGA, and a total of 24,587 DMSs

from 478 pretreated methylation arrays were screened using the

camp and Minfi R software packages. After that, 478 samples

(449 LUAD samples and 29 normal samples) were included after

being filtered, inspected, and standardized with the ChAMP R

package. Level 3 RNA-seq data from TCGAwere normalized and

log2 transformed by the edgeR package. For the preprocessing of

clinical information corresponding to the sample, patients with

nonsurvival status or survival time less than 1 month were

excluded because of other disease-related deaths.

2.2 Differential methylation analysis and
differential expression analysis

In total, 449 LUAD samples and 29 normal samples were

subjected to differential methylation analysis with the ChAMP R

package and the Minfi R package (Li et al., 2019). Principal

component analysis was used to detect the sample quality. The

ChAMP DMP function and the Minfi R package defined the

methylation loci with an average methylation difference >0.2 and
a false discovery rate <0.05 as differentially methylated sites

(DMSs), and the final DMSs were obtained through the
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intersection of the two (Li et al., 2018). Differentially expressed

genes (DEGs) between the 526 LUAD samples and the 59 normal

samples were analyzed with the Limma R package (p < 0.05 and

|log2FC| ≥ 1). Metascape (https://metascape.org/gp/index.

html#/main/step1) was used to analyze the pathway

enrichment of the hyper-down and hypo-up methylated

related differential expression genes (mrDEGs) groups.

2.3 Survival model construction process

A prognosis prediction model was established according to

the DNA methylation β value of mrDEGs and matched

prognostic data of patients. According to the methylation β
value, univariate Cox regression analysis was used to screen

mrDEGs (p < 0.01) that were significantly associated with

overall survival (OS). Then, mrDEGs identified in the

univariate Cox regression analysis were subjected to

multivariate Cox regression analysis (Lian et al., 2019). At the

same time, the Akaike information criterion (AIC) was used to

screen out the genes with subtly individual but significantly

synergistic effects to determine the most appropriate gene

feature (Tozzi et al., 2020). A Kaplan‒Meier (K-M) curve with

a log rank test was used to validate the survival difference of

patients (Zhao et al., 2020). Harrell’s concordance index

(C-index) and the corresponding 95% confidence intervals

FIGURE 1
Flow chart for obtaining and verifying methylation feature.
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(CIs) were calculated to determine the prognostic model’s ability.

These steps were performed by R with the survival and survcomp

R packages (Schröder et al., 2011).

2.4 Consensus clustering analysis

We selected 155 LUAD samples with complete clinical

information. For our standard, we considered the standard

deviation of the β value in tumor samples to be greater than

0.2 and the average β value in normal tissues to be less than 0.05.

With this approach, we selected 641 methylation probes according

to the standard. According to the PAM algorithm and Euclidean

distance, we then performed unsupervised consistent clustering on

641 probes of 155 samples. The Consensus Cluster Plus R package

was used for the clustering analysis (Wilkerson and Hayes, 2010).

The Kruskal‒Wallis test was used to validate the significance of

clinical features among clusters.

2.5 Validation experiments in cell lines

qPCR was used to verify the changes in gene transcription

levels upon methylation. A549, PC9 and H1975 cells were

purchased from the Canadian Standards Association (CSA).

All cell lines were cultured in RPMI 1640 with 10% fetal

bovine serum. All experimental cells were treated with 5-Aza-

2′- deoxycytidine (5-aza, Aladdin) for 96 h at 1 µM. qPCR

analyses of all cell lines were repeated at least 3 times

(Christman, 2002). All primer sequences used in qPCR are

listed in Attachment 1: Table 1.

2.6 Statistical analysis

The correlation between feature scores and clinical factors

was analyzed by the chi square or Fisher exact test (Jung, 2014;

Pandis, 2016). Multivariate Cox regression combined with

hierarchical data analysis was used to evaluate the predictive

power of the clinical features, TNM stage, and methylation

feature score for prognosis. The forest map was drawn by

Prism, and other statistical tests were performed by R using

the corresponding R packages.

3 Results

3.1 Differential methylation and the
identification of mrDMGs

Illumina Human Methylation 450K array data were obtained

from TCGA. We screened a total of 24,587 DMSs from data from

478 pretreated methylation arrays using the camp and Minfi R

software packages. We then divided DMSs into

15,387 hypermethylated and 9,200 hypomethylated sites and

evaluated their distribution in the genome. Compared to 63% in

the whole genome, hypermethylated sites increased significantly in

the promoter, CGIs, and CGI promoters (71%, 96% and 99%,

respectively, Figure 2A). At the same time, most DMSs on CGIs

were hypermethylated (96%), and most DMSs on shelf CpG

positions were hypomethylated (Figure 2B). When we detected

the distribution of DMSs around the gene, we found that the

hypermethylation of CpGs was higher near the transcription start

site (TSS). For example, the proportions of hypermethylated CpGs

in the 5′UTR, tss200 and first exon were 70%, 77%, and 76%,

respectively (Figure 2C). Next, we located DMSs on the gene and

obtained 5,900 differentially methylated genes (DMGs) (Figure 2D).

Next, we identified 1,887 DEGs based on the RNA-seq data. Then,

406 mrDEGs were determined through the intersection of the

DMGs and the identified DEGs (Figure 2E). Among them,

43 mrDEGs were in the hypermethylation downregulation group

(hyper-down group), and 126 mrDEGs were in the

hypomethylation upregulation group (hypo-up group) (Figure 2F).

3.2 mrDEGs involved in biological
processes

The Metascape website was used to analyze the pathway

enrichment of the hyper-down and hypo-up mrDEGs. In the

hypo-up group, the genes showed a significant abundance in fatty

acid degradation, cyclic adenosine monophosphate (cAMP)-

mediated signaling, glycolysis/gluconeogenesis, etc.

(Figure 3A). Cancer is usually accompanied by nutritional

metabolic imbalances, such as abnormal glucose and lipid

metabolism (Li and Liao, 2021). cAMP was the first second

messenger to be discovered, and it plays key roles in physiological

defects caused by metabolic disorders (Zhang et al., 2020; Chi

et al., 2021). Interestingly, in the hyper-down group, there was

also gene enrichment related to fatty acid degradation

(Figure 3B). The effects of lipid metabolism disorders on

cancer have attracted increasing attention in recent years

(Karagiota et al., 2022). There is no doubt that to reprogram

their metabolic state and ensure cell survival, tumor cells need

TABLE 1 All primer sequences used in qPCR.

Primer name 59 Sequence 39

EDN3 Fp ATTGCCACCTGGACATCATT

EDN3 Rp GCAGGCCTTGTCATATCTCC

TACR3 Fp TTCATCCAAACCGGCAAAGC

TACR3 Rp AAACTTGGGTCTCTTGGCGT

SLC27A6 Fp AAAAAGGGGGACACGGTG

SLC27A6 Rp AGGAGGGAGTTGGAGCGA
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epigenetic modifications to regulate gene expression. For

example, brother of the regulator of imprinted sites can

mediate the Warburg effect and promote breast cancer by

regulating the methylation of pyruvate kinase M1/2 (PKM)

exons (Singh et al., 2017; Huo et al., 2021). Our results

suggest that abnormal lipid metabolism in LUAD may be

closely mediated by DNA methylation (Figure 3B).

3.3 Identification of prognostic mrDEGs

We established a prognosis prediction model according to

the methylation data of mrDEGs and the matched prognostic

data. We first analyzed 406 mrDEGs in 453 patients by univariate

Cox regression and identified 32 mrDEGs related to prognosis

(p < 0.05). Next, multivariate Cox regression analysis was

performed on the 32 mrDEGs. The AIC, as the indicator for

model fitness, determined the most suitable prognostic model.

Finally, we identified 11 mrDEGs (MYEOV, KCNU1, SLC27A6,

NEUROD4,HMGB4, TACR3,GABRA5, TRPM8,NLRP13, EDN3

and SLC34A1) to be included in a DNA methylation feature

prognostic model. There were 5 genes (MYEOV, KCNU1,

SLC27A6, NEUROD4 and HMGB4) with statistically

nonsignificant p values in multivariate Cox regression analysis

(Table 2). However, the AIC of this prognostic model was the

lowest (AIC = 1733.8, p = 2e-05), indicating that this model was

FIGURE 2
Distribution of DMSs and obtain mrDEGs of LUAD. (A) Distribution of DMSs across various genomic regions, including CpG islands (CGI),
promoters, CGI promoter, and the whole genome (all). (B) Distribution of DMSs in various areas related to CGI distance, including CpG shelves, CpG
shores and CpG islands. (C) Distribution of DMSs in gene location, including 3′ UTRs, gene bodies, first exons, 5′ UTRs, TSS200 and TSS1500. (D)
Distribution of DMGs across various genomic regions. (E) Scatter plot shows mean methylation difference versus log2 expression change, and
each point represents a pair of methylation site and gene. (F) Venn diagrams shows the intersection between DEGs and hypermethylated genes (left)
and between DEGs and hypomethylated genes (right).
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the most suitable, and the overall effect of the model was

significant. The C-index of the identified DNA methylation

feature model was 0.666 (95% CI = 0.641–0.690), indicating

great discrimination ability. The correlation betweenmethylation

level and gene expression of these 11 genes is shown in the

appendix (Supplementary Figure.S1).

3.4 DNA methylation feature model for
predicting the OS of LUAD patients

According to the correlation coefficients of the eleven

mrDEGs obtained by multivariate Cox regression analysis, we

established a feature score formula.

FIGURE 3
Pathway enrichment analysis of mrDEGs in LUAD. (A) The pathway enrichment analysis of the upregulated mrDEGs. Each node represents a
gene group. The node size is proportional to the total number of genes in each gene set. The width of the line between nodes represents the
proportion of genes shared among gene sets. (B) The pathway enrichment analysis of the downregulated mrDEGs.
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TABLE 2 Eleven mrDEGs identified as a DNA methylation signature prognostic model.

Gene symbol Full name Chr Coefficient p value

TACR3 Tachykinin receptor 3 4q24 2.513 0.049

GABRA5 Gamma-aminobutyric acid type A receptor subunit Alpha5 15q12 1.74 0.028

MYEOV Myeloma overexpressed 11q13.3 −0.752 0.147

TRPM8 Transient receptor potential cation channel subfamily M member 8 2q37.1 −1.611 0.008

NLRP13 NLR family pyrin domain containing 13 19q13.43 −2.074 0.01

KCNU1 Potassium calcium-activated channel subfamily U member 1 8p11.23 −1.158 0.072

SLC27A6 Solute carrier family 27 member 6 5q23.3 −1.694 0.398

EDN3 Endothelin 3 20q13.32 −2.059 0.01

NEUROD4 Neuronal differentiation 4 12q13.2 −1.243 0.098

SLC34A1 Solute carrier family 34 member 1 5q35.3 1.626 0.004

HMGB4 High mobility group box 4 1p35.1 0.91 0.138

FIGURE 4
The DNA methylation feature for predicting OS prediction in LUAD patients. (A) K-M assessed OS based on the DNA methylation feature. The
LUAD patients were divided into the lower-risk (n = 226) and higher-risk (n = 227) subgroups according to themedian of themethylation scores. Log
rank test was used between curves (p < 0.0001). (B) The distribution of feature scores for DNAmethylation feature of patients. (C–D) The distribution
of survival status of LUAD patients in the lower- and higher-risk groups (Chi-square test, p < 0.0001). (E) The methylation β value spectrum of
11 DNA methylation feature genes.
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feature score � (2.513 pmethylation β value of TACR3)
+ (1.740 pmethylation β value of GABRA5)
+ ( − 0.752 pmethylation β value ofMYEOV)
+ ( − 1.611 pmethylation β value of TRPM8)
+ ( − 2.074 pmethylation β value ofNLRP13)
+ ( − 1.158 pmethylation β value of KCNU1)
+ ( − 1.694 pmethylation β value of SLC27A6)
+ ( − 2.059 pmethylation β value of EDN3)
+ ( − 1.243 pmethylation β value ofNEUROD4)
+ (1.626 pmethylation β value of SLC34A1)
+ (0.910 pmethylation β value ofHMGB4)

The LUAD patients were ranked according to their

calculated methylation-related feature scores and divided into

higher-risk (n = 226) and lower-risk groups (n = 227) according

to the median. The K-M curve showed that the median OS of the

higher-risk group was significantly shorter than that of the lower-

risk group (log rank test p < 0.0001) (Figure 4A). We also

analyzed the distribution of the methylation feature scores,

patient survival statuses and methylated β values in LUAD

patients, as well as the methylation β value spectra of 11 DNA

methylation feature genes (Figures 4B–E).

3.5 DNA methylation feature model with
clinicopathological features

First, we attempted to validate the correlation between DNA

methylation levels and clinicopathological features in LUAD. We

then performed unsupervised consistent clustering of the 641most

variable DNA methylation probes in 155 samples (with complete

clinical information) into 4 clusters: CGI Methylator Phenotype

(CIMP) high, CIMPmedium high, CIMP medium low and CIMP

low (Figure 5A). The average methylation levels among the

different clusters were significant (p < 2.2e-16) (Figure 5B).

DNA methylation was significantly correlated with tumor

subtype (X-squared = 31.457, p = 2.073e-05) (Figure 5C). Most

of magnoid tumors were enriched in the CIMP low and CIMP

medium low clusters, while the CIMP high group had more

squamoid tumors Furthermore, DNA methylation showed a

trend related to tumor recurrence; however, there was no

statistical Figure 5A Significance (p = 0.2864) (Figure 5D).

Then, we analyzed the correlation between DNA methylation

feature scores and clinicopathological features. The results showed

that the methylation feature score was significantly correlated with

tumor subtype (Table 3, p = 0.032). In addition, the DNA

methylation feature score was associated with smoking history

in LUAD patients (Table 3, p = 0.004). Previous studies have

shown that smoking is associated with methylation levels. For

example, hypomethylation at cg05575921 in the aryl hydrocarbon

receptor repressor gene was strongly associated with the smoking

behavior of an individual (Jamieson et al., 2020). Therefore, the

hypothesis that prognostic signals are related to smoking is

reasonable. To delve into the effects of DNA methylation and

clinicopathological features on prognosis, 391 patients with

complete clinicopathological features were analyzed in a Cox

regression model. The forest map showed that the feature score

(HR = 1.69, 95% CI = 1.17–2.45, p = 0.006), the TNM staging

system, and tumor recurrence (HR = 2.58, 95% CI = 1.79–3.72, p <
0.0001) were independent prognostic factors for LUAD, while

smoking history and tumor subtype were not (Figure 5E). DNA

methylation is closely related to tumor immune

microenvironment (Chiappinelli and Baylin, 2022; Li et al.,

2022). We investigated the relationship between methylation

feature scores and tumor immune infiltration. In the group

with low methylation feature scores, we observed an increase in

monocyte, dendritic cell (resting) and mast cell (resting)

infiltration, as well as a decrease in macrophage (M0) cell

infiltration. However, there is no changes of immune effector

cells observed (Supplementary Figure S2).

3.6 Prognostic value of the DNA
methylation feature score is independent
of TNM stage and cancer recurrence

Since a high feature score, tumor recurrence and a high TNM

stage were independent adverse prognostic factors for LUAD

(Figure 5D), we performed a combined analysis between DNA

methylation features and the other 2 influencing factors. We found

that the prognosis of patients in the higher-feature score group was

poorer, whether in the recurrence (log rank test, p < 0.0009) or

nonrecurrence subgroup (log rank test, p = 0.02) (Figure 6A). In the

combined analysis of TNM stages and DNA methylation features,

we found that patients in the lower TNM stage (I and II) subgroups

had a notably worse prognosis when they were also in the high-

feature score subgroups (p = 2e-05) but not in the higher TNM stage

(III and IV) subgroups (p = 0.3) (Figure 6B). We further classified

patients at low TNM stages and found that the p value of the K-M

curve in the stage I subgroup (p = 9e-04) was more significant than

that in the stage II subgroup (p = 0.01) (Figures 6C,D). These results

suggested that the DNA methylation feature score was more

valuable in patients at a lower TNM stage. AUC-ROC analysis

was used to evaluate the sensitivity and specificity of the prediction

model (Figure 6E). The combination of this feature score and TNM

stage was significantly superior to that of TNM stage alone (0.697 vs

0.658, p = 0.0275) or feature score alone (0.697 vs 0.603, p = 0.0001).

These results suggested that the combination of the DNA

methylation feature score and TNM stage might help to improve

OS prediction in LUAD patients.

3.7 The expression of the eleven identified
genes

The prognostic methylation signature consists of 11 genes.

Three of them are hypermethylated in LUAD (TACR3, EDN3
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and SLC27A6). We selected the broad-spectrum demethylation

drug 5-aza-2′-deoxycytidine (5-aza) to treat LUAD cells (A549,

PC9 and H1975) and measured the mRNA levels of TACR3,

EDN3 and SLC27A6 by qPCR 4 days after treatment. The results

showed that, compared with the control group, the transcription

levels of these 3 genes were significantly increased after treatment

with 5-aza (Figures 7A–C), suggesting that the transcriptional

regulation of TACR3, EDN3 and SLC27A6 was related to

promoter methylation. The other 8 genes showed low

methylation and high mRNA expression in LUAD cells

(MYEOV, NLRP13, SLC34A1, NEUROD4, HMGB4, KCNU1,

GABRA5 and TRPM8). Since there is no broad-spectrum drug

to improve DNA methylation, we used the Human Protein Atlas

(HPA) (https://www.proteinatlas.org/) to verify the expression of

the proteins encoded by these genes in LUAD and normal tissues.

Five of them (MYEOV, NLRP13, SLC34A1, NEUROD4 and

HMGB4) had protein expression data in the database, and

MYEOV, NLRP13 and SLC34A1 were highly expressed in

tumor tissues (Figure 7D), while NEUROD4 and HMGB4

showed no significant difference (Figure 7E).

4 Discussion

DNA methylation, as one of the most studied epigenetic

alterations related to tumor phenotype, is of great significance for

FIGURE 5
The DNA methylation feature with clinicopathological features. (A) Unsupervised cluster analysis of the methylation levels in LUAD. A total of
155 samples are presented in rows, and 641 CpG loci with the largest variation (mean methylation level β < 0.05 in normal samples and standard
deviation σ > 0.20 in tumor samples) are listed. The 4 identified clusters are represented as CIMP high (n = 28), CIMP medium high (n = 45), CIMP
medium low (n = 52) and CIMP low (n = 30). (B) Significant differences (p < 0.0001) in the methylation levels of the 4 clusters. (C) The sample
distributions in terms of tumor subtype (Chi-square test, p < 0.0001). (D) The sample distributions in terms of recurrence (Chi-square test, p =
0.2864). (E) Forest map: multivariate Cox regression analysis was used to analyze the prognostic values of age, gender, smoking, tumor expression
subtype, tumor recurrence, TNM stage, feature score and other clinicopathological features in 391 cases.
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tumor research (Mazor et al., 2016; Biswas S Rao, 2017). Previous

research showed that the overall DNA methylation pattern in

tumor cell genomes is hypomethylation, while many CGIs

associated with promoters showed focal hypermethylation

(Hansen et al., 2011). Promoter hypermethylation was

associated with tumor suppressor-related gene silencing, while

the hypomethylation of the tumor cell genome could increase

genomic instability (Feinberg and Vogelstein, 1983; Goelz et al.,

1985; Pfeifer, 2018). Abnormal DNA methylation can be used

not only as a target for tumor therapy but also as a biomarker for

diagnosis and prognosis (Yamashita et al., 2018; Szejniuk et al.,

2019). With the public information provided in TCGA, we

conducted a comprehensive analysis and identified

11 methylation-related genes (TACR3, SLC27A6, EDN3,

TRPM8, MYEOV, NLRP13, KCNU1, NEUROD4, GABRA5,

SLC34A1 and HMGB4) to predict the prognosis of LUAD.

These genes not only were differentially methylated and

expressed in LUAD tumor tissues from TCGA but also were

related to the prognosis of patients. The survival curves showed

that there was a significant difference in the survival curve

between the higher-risk and lower-risk groups, especially in

patients with early LUAD. Some of the 11 identified

methylation-related genes have been shown to be abnormally

expressed and important in cancer or other diseases. For

example, TRPM8 is a calcium permeability channel

abnormally expressed in multiple malignant tumors. There is

evidence that TRPM8 plays a major role in promoting cell

invasion and preventing replicative senescence (Yee, 2016). In

the present study, TRPM8 showed hypermethylation and low

RNA expression in LUAD samples from TCGA, and the

hypermethylation and low expression of TRPM8 were

associated with long survival. Previous studies have shown

that decreased expression or inactivation of EDN3 can inhibit

the migration of cancer cells and improve survival (Wang et al.,

2013; Kim et al., 2017). Our results revealed that EDN3 was

hypermethylated and expressed at low levels in LUAD, which

was associated with longer OS. Another gene, MYEOV, is a

region of cancer-associated genomic amplification. The

amplification of this gene was reported to promote the

progression of NSCLC pancreatic ductal adenocarcinoma and

colorectal cancer (Lawlor et al., 2010; Fang et al., 2019).

Subsequent mechanistic studies showed that the

overexpression of MYEOV might be regulated by promoter

hypomethylation (Liang et al., 2020). In accordance with the

above results, our studies showed that MYEOV was

hypermethylated and expressed at low levels in LUAD and

that hypermethylation was positively correlated with survival

time. As for other genes in the DNA methylation feature.

TACR3 was found to be highly elevated in endometrial

carcinoma. Although the role of TAC1-TACR3 axis is not

clear. Haixu et al. found that highly methylated TAC1

promoted the development of endometrial carcinoma through

the deregulation of TAC (Xu et al., 2018). Kyoichi Obata et al.

found that TACR3 protein showed significant and significant

overexpression at the onset of bone matrix invasion in oral

squamous cell carcinoma (Obata et al., 2016). SLC27A6 is

used as a predictor in the genetic analysis of colorectal cancer,

prostate cancer, pancreatic cancer, and other tumors

(Mohammed et al., 2019; Uhan et al., 2020; Verma et al.,

TABLE 3 The correlation between DNAmethylation feature scores and
clinicopathological feature.

N High Low P

Age (years) 453

≥ 60 313 147 (46%) 166 (54%) 0.098

< 60 130 73 (56%) 57 (44%)

Sex 453

female 239 109 (46%) 130 (54%) 0.067

male 214 117 (55%) 97 (45%)

Tumor location 440

right 257 126 (49%) 131 (51%) 0.784

left 183 93 (51%) 90 (49%)

T stage 453

TX+T1+T2 398 200 (50%) 198 (50%) 0.787

T3+T4 55 26 (47%) 29 (53%)

N stage 452

N0 299 145 (48%) 154 (52%) 0.427

N1+N2+N3 153 81 (53%) 72 (47%)

M stage 448

M0 428 216 (50%) 212 (50%) 1

M1 20 10 (50%) 10 (50%)

TNM stage 448

I+II 350 175 (50%) 175 (50%) 0.949

III+IV 98 50 (51%) 48 (49%)

Recurrence 416

YES 162 85 (52%) 77 (48%) 0.39

NO 254 121 (48%) 133 (52%)

Subtype 193

Bronchioid 69 24 (35%) 45 (65%) 0.032

Magnoid 49 28 (57%) 21 (43%)

Squamoid 75 39 (52%) 36 (48%)

Smoke 430

Non-smoker 63 20 (32%) 43 (68%) 0.004

Current smoker 367 192 (52%) 175 (48%)

High and low groups were divided according to median of feature scores.
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2020; Zhong et al., 2021). However, basic research on this topic is

still very limited. As a neuron differentiation factor, NEUROD4

has been reported overexpressed in neuroendocrine tumors.

Studies have shown that the continuous expression of

NEUROD4 in neuronal cells may be related to the

regeneration of neural cells, and its expression level gradually

decreases with the maturation of neurons (Masserdotti et al.,

2015; Cecil et al., 2016). SLC27A1 is rarely studied in tumors, but

in recent years, some articles have pointed out that SLC27A1 is

highly expressed in melanoma and breast cancer and enhances

tumor invasion, migration, and growth (Kwaepila et al., 2006;

Zhang et al., 2018). The expression of GABRA5, which encodes

the α 5-GABAA receptor, has a synthetic lethal role in MYC-

driven medulloblastoma (Sengupta et al., 2014). NLRP13,

KCNU1, and HMGB4, although not as studied in tumors

compared to the other genes in the model, need further

FIGURE 6
The prognostic value of DNAmethylation feature score was not associated with tumor recurrence status and TNM stage. (A) K-M analysis of OS
based on the DNAmethylation feature and recurrence status. The LUAD patients were divided into the lower- and higher-risk subgroups according
to the median of the methylation feature scores, with or without recurrence. Log-rank test (p < 0.0001). (B) K-M analysis of OS based on the DNA
methylation feature and TNM stage. The LUAD patients were divided into the lower- and higher-risk subgroups according to the median of the
methylation feature scores, and divided into the low (stage I+ II, n = 350) and high (stage III+IV, n = 98) stages according to the TNM stage (Log-rank
test, p < 0.0001). (C) K-M curves for patients in the TNM stage I subgroup (n = 350). (D) K-M curves for patients in the TNM stage II subgroup (n = 98).
(E) ROC analysis assessed the sensitivity and specificity of DNA methylation feature score, TNM stage and the combination of the 2 factors in
predicting OS.
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exploration. Many articles verify the effectiveness of their own

prediction formulas by comparing themwith TNM staging (Peng

et al., 2020; Zhu et al., 2021; Qiu et al., 2022). In our research, the

DNA methylation feature score is an independent predictor and

is not associated with the TNM stage. ROC curve analysis showed

that the combination of the DNA methylation feature score and

TNM stage was better for prognosis than TNM stage alone,

suggesting that the combination of the 2 might help to improve

the prediction of OS in LUAD patients. In addition, we found

that the transcription levels of TACR3, EDN3 and SLC27A6 in

LUAD cells were significantly increased by treatment with broad-

spectrum demethylating drugs. These results suggested that the

low expression of these genes was related to promoter

hypermethylation. At the same time, the expression of some

hypomethylated genes (MYEOV, NLRP13 and SLC34A1)in

immunohistochemical sections of LUAD was significantly

stronger than that in lung tissues. These results showed that

the identified genes are worthy of further study as biomarkers of

methylation in LUAD.

Because of its noninvasive and fast characteristics, detecting

circulating tumor DNA (ctDNA) in blood to monitor epigenetic

changes in tumor DNA has become a very promising technology.

Although this technology is not sufficiently mature, blood testing

based on a single DNA methylation biomarker has been

approved (Frankell and Jamal-Hanjani, 2022). Our study

shows that the methylation signals of these 11 genes may be

used as candidate markers to detect ctDNA methylation in

LUAD patients. This model can predict the prognosis of

patients with low cost and high efficiency.

However, our research still has several limitations. First,

DNA methylation biomarkers are not effective in predicting

advanced LUAD. Considering the small sample size of the

FIGURE 7
The expression of TACR3, EDN3 and SLC27A6 is related to promoter region methylation. (A–C) qPCR was used to detect the mRNA levels of
TACR3, EDN3 and SLC27A6 in A549, PC9 and H1975 cells before and after the 5-Aza-2′-deoxycytidine treatment. (D–E) Immunohistochemistry
images obtained from the HPA database demonstrated the protein expression of the 5 hypomethylated genes.
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advanced LUAD group, the results will have a certain deviation.

Second, because it was difficult to obtain data with a sufficient

sample size and consistent methylation detection platform, we

did not use other datasets to verify the methylation formula.

However, considering the large sample size of this study, this

model was less likely to be an accidental feature of methylation

noise but more likely to be a determinant of LUAD survival.

Finally, our basic experiments were limited. We did not regulate

the specific methylation site of genes. Further experimental

studies on these genes will help to determine further their

therapeutic potential.

5 Conclusion

In conclusion, we explored the characteristics of DNA

methylation in LUAD. Furthermore, we confirmed a DNA

methylation feature consisting of 11 genes. DNA methylation

is associated with the survival of LUAD patients and can

provide a better OS predictive ability when combined with

TNM stage. Unfortunately, it was difficult for us to obtain a

sufficient sample size and consistent methylation detection

platform data to verify this methylation formula. However,

our experiments indicated that the transcription of the

hypermethylated genes was increased after demethylation

with 5-aza, suggesting the validity of these results and

indicating the potential value of these 11 genes in the study

of LUAD prognosis.
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