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Background: Hepatocellular carcinoma (HCC) is the seventh most common malignancy
and the second most common cause of cancer-related deaths. Autophagy plays a crucial
role in the development and progression of HCC.

Methods: Univariate and Lasso Cox regression analyses were performed to determine a
gene model that was optimal for overall survival (OS) prediction. Patients in the GSE14520
and GSE54236 datasets of the Cancer Genome Atlas (TCGA) were divided into the high-risk
and low-risk groups according to established ATG models. Univariate and multivariate Cox
regression analyses were used to identify risk factors for OS for the purpose of constructing
nomograms. Calibration and receiver operating characteristic (ROC) curves were used to
evaluate model performance. Real-time PCR was used to validate the effects of the presence
or absence of an autophagy inhibitor on gene expression in HepG2 and Huh7 cell lines.

Results: OS in the high-risk group was significantly shorter than that in the low-risk group.
Gene set enrichment analysis (GSEA) indicated that the association between the low-risk
group and autophagy- as well as immune-related pathways was significant. ULK2,
PPP3CC, and NAFTC1 may play vital roles in preventing HCC progression.
Furthermore, tumor environment analysis via ESTIMATION indicated that the low-risk
group was associated with high immune and stromal scores. Based on EPIC prediction,
CD8+ T and B cell fractions in the TCGA and GSE54236 datasets were significantly higher
in the low-risk group than those in the high-risk group. Finally, based on the results of
univariate and multivariate analyses three variables were selected for nomogram
development. The calibration plots showed good agreement between nomogram
prediction and actual observations. Inhibition of autophagy resulted in the
overexpression of genes constituting the gene model in HepG2 and Huh7 cells.

Conclusions: The current study determined the role played by autophagy-related genes
(ATGs) in the progression of HCC and constructed a novel nomogram that predicts OS in HCC
patients, through a combined analysis of TCGA and gene expression omnibus (GEQO) databases.
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INTRODUCTION

Autophagy is a conserved intracellular degradation process by
which cell components, such as cellular organelles, proteins, and
invading microbes, are degraded in lysosomes to provide basic
materials and energy for cells. It serves as a double-edged
sword in tumorigenesis and metastasis. For instance, autophagy
functions as a tumor suppressive process which suppresses
inflammation, maintains genome stability, and prevents chronic
tissue damage as well as cell injury, especially in the early stages of
tumorigenesis (1-4). Inflammation displays a high degree of
association with tumor growth and poor prognosis in many
cancer types, including Hepatocellular carcinoma (HCC) (5, 6).
According to several studies, inhibition of autophagy elevates the
inflammatory response, thereby promoting cancer progression (7-
9). By contrast, autophagy enables tumor metabolism and growth,
promotes the survival of tumor cells under hypoxic conditions as
well as tumorigenesis and induces resistance against therapeutic
agents (2, 4, 10, 11). Previous studies have indicated that
autophagy supports the survival and proliferation of cancer cells
and metastasis-related behavior (12). Knocking out the FIP200
gene, which is essential for autophagy, inhibited the initiation,
progression, and metastasis of breast cancer (12). Inhibition of
autophagy using HCQ and Lys05 decreased the proliferation and
metastasis of melanoma cells (13). Thus, autophagy plays a dual
role in cancer development and progression. Modulation of
autophagy-based cancer therapy is complicated, and further
clarification via extensive research may be required.

HCC is the seventh most common malignancy and the
second most common cause of cancer-related deaths (14). Due
to the hepatitis virus being endemic to China, over half of the
new cases of HCC worldwide occur in China each year (15). The
majority of HCC patients are usually diagnosed at an advanced
stage and are therefore not eligible for radical surgery. Sorafenib
is the first-line drug used for the treatment of advanced HCC
(16). It facilitated the prolongation of overall survival (OS) in
HCC patients for a range of 7.9 to 10.7 months (17). Sustained
treatment with sorafenib has also been shown to trigger drug
resistance in HCC cells. Reportedly, the autophagy inducer
SAHA, in combination with sorafenib, significantly enhanced
the response against HCC, compared to sorafenib alone (18).
Interestingly, because autophagy also plays a vital role by
promoting tumor growth and inducing resistance to
chemotherapy, the use of autophagy inhibitors is considered a
promising strategy against cancer therapy. One such autophagy
inhibitor, 3-methyladenine (3-MA), improved the anti-HCC
response when combined with cisplatin, doxorubicin, and
sorafenib treatment (19). Another autophagy inhibitor,
chloroquine (CQ), markedly suppressed the growth of HCC
cells, when combined with sorafenib (20). However, it is not clear
as to how these two roles can be distinguished from each other
and how the appropriate autophagy inhibitor can be selected.

The objective of the current study was to determine the role of
autophagy-related genes (ATGs) in the progression of HCC,
construct a novel nomogram capable of predicting OS in HCC
patients and identify the mechanism underlying these processes
via a combined analysis of data from the TCGA and GEO

databases. We confirmed that a combination of six genes
functioned as a novel prognostic signature of HCC. A
subsequent exploration of prospective signaling pathways
indicated that autophagy played a protective role in the low-
risk group, compared to that in the high-risk group.

MATERIALS AND METHODS

Datasets

RNA-seq transcriptome profiling and clinical data of samples,
including 374 LIHC and 50 normal control samples, were
downloaded from the UCSC database (http://xena.ucsc.edu/).
GSE14520 and GSE54236 datasets were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) for further validation.
A total of 232 ATGs were obtained from the Human Autophagy
Database (http://www.autophagy.lu/index.html), and 319 ATGs
were acquired from the GO_REGULATION_OF AUTOPHAGY
gene set in the Molecular Signatures Database, v6.2 (http://software.
broadinstitute.org/gsea/msigdb/). After deleting overlapping genes
in the two databases, a total of 487 ATGs were finally constructed
(Supplementary Table S1).

Gene Signature Development

ATGs that were differentially expressed between tumor tissues and
normal tissues in the TCGA dataset were evaluated, leading to the
identification of 60 differentially expressed ATGs (DEAs), based on
the following criteria: |logFC |> 1 and adjusted P < 0.05. Gene
Ontology (GO) and Kyoto Encyclopedia Genes and Genomes
(KEGG) annotation was analyzed using the “clusterProfiler” R
package (21). Next, we performed a univariate Cox regression
analysis of the 60 DEAs to determine their prognostic value in
HCC. A total of 10 genes were significantly associated with OS in
the TCGA dataset with a cut-off of p < 0.05. Furthermore, a Lasso
Cox regression analysis was performed to establish a prognostic risk
signature using the “glmnet” and “survival” tools of the R package.
Six genes with their own coefficients were identified. Based on the
median risk score, the patients in the TCGA, GSE14520, and
GSE54236 datasets were separated into the high-risk and low-risk
groups, as follows; the risk score was calculated as follows: risk
score = (0.02217 * expression level of ZKSCAN3) + (-0.11476 *
expression level of FEZ1) + (-0.09629 * expression level of
APOLI) + (—0.02453 * expression level of PRKAG2) + (0.06311 *
expression level of CDK5R1) + (—0.01089 * expression level
of ADRB2).

Gene Set Enrichment Analysis (GSEA)
Patients were divided into a high-risk group and a low-risk group
according to established ATG (ZKSCAN3, FEZ1, APOLI,
PRKAG2, CDK5RI1, and ADRB2) models. GSEA 3.0 software was
used to perform a GSEA analysis in order to explore the underlying
mechanisms. A P value < 0.01 and an FDR (false discovery rate) of
q < 0.25 were considered statistically significant.

Tumor Environment
We used the ESTIMATE online tool (https://bioinformatics.
mdanderson.org/estimate/) to predict the ratio of stromal and
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immune cells in the high-risk and low-risk groups. The EPIC
method calculates the infiltration abundance of immune cells in
both TCGA and GEO datasets using the “EPIC” package, which
estimates cell composition based on complex tissue
transcriptome profiling.

Nomogram Construction

Finally, independent prognostic factors were confirmed via the
results of univariate and multivariate analyses. Variables
corresponding to P < 0.05 in the univariate and multivariate
analyses were selected for nomogram development. Two
hundred and sixteen patients in the GSE14520 dataset were
randomly divided into a training cohort (n = 152) and a test
cohort (n = 64). Performance of the model was evaluated via
discrimination and calibration using Harrell's concordance index
(C-index). The area under the time-dependent ROC curve
(AUC) analysis was used to evaluate the performance of the
nomogram in predicting OS.

RNA Isolation and Quantitative

Real-Time PCR

RNA from HepG2 and Huh?7 cell lines was prepared using a Trizol
kit (Invitrogen, USA), while cDNA was synthesized using cDNA
Synthesis Kits (Toyobo, FSQ-301). Quantitative real-time PCR
(qQRT-PCR) was performed using SYBR Green (Toyobo, QPK,
201) in an ABI7500 thermocycler. The mRNA data were
normalized to the amount of GAPDH, using the AACT method.
The results are presented as relative expression with the control set
to 1. Amplification reactions were performed in a total volume of
20 pl under the following conditions: 95°C for 1 min, followed by
40 cycles of 95°C for 15 s, 54°C for 15 s, and 72°C for 45 s, followed
by 60°C for 15 s. Primers for ZKSCAN3, FEZ1, APOL1, ADRB2,
PRKAG2, CDK5R1, and GAPDH are listed in Table S2.

Statistical Analysis

We used the unpaired Student’s t-test to compare differences in
gene expression between the two groups using the Prism 5 software.
Univariate and multivariate analyses were performed to explore the
independent prognostic role of the gene signature using the Cox
regression model method in the “survival” R package. Kaplan-
Meier survival curves were generated by the Kaplan-Meier method
and the log-rank test was used to compare the OS of the two groups.
Receiver operating characteristic (ROC) curves were generated
to test the predictive value of the established gene signature for
OS using the R package, “survivalROC.” Identification of
the independent significant variables that were used to develop
the nomogram was based on backward stepwise selection via the
Akaike information criterion (AIC). All statistical analyses were
performed using R software v3.6.0 and Prism 5 software.

RESULTS

Identification of 60 Differentially

Expressed ATGs

Of the 487 ATGs, 60 differentially expressed genes (DEAs) were
identified in the TCGA dataset based on the following criteria:

[logFC |> 1 and an adjusted p value < 0.05. Volcano and heatmap
plots are shown (Figures 1A, B). Gene ontology (GO) biological
process (BP) enrichment analysis of these 60 DEAs (Table S3)
indicated that these are mainly involved in the regulation of
autophagy and catabolic processes (Figure 1C). Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis showed
that these genes are mainly involved in the Nod-like receptor
signaling pathway, the FoxO signaling pathway, and the ErbB
signaling pathway (Figure 1D).

Establishment of Prognostic ATG
Signature With Six Genes

We performed univariate Cox regression analysis to explore the
prognostic value of the 60 DEAs identified in HCC patients
included in the TCGA dataset. The results showed that 10 genes
were significantly correlated with OS (p < 0.05) (Figure 2A and
Table 1). Among the 10 genes, eight were protective genes with a
hazard ratio <1, while two were risk genes with a hazard ratio >1
(Figure 2A). We then subjected the 10 genes to LASSO Cox
regression analysis, and six genes were screened to build the risk
signature model (Figures 2B, C). The corresponding coefficients
and gene expression were used to calculate the risk score,
following which the patients in the TCGA and the two GEO
datasets were divided into the high- and low-risk groups based
on the median risk scores. Among the six identified genes, four
(FEZ1, APOL1, PRKAG2, and ADRB2) were downregulated,
while two (ZKSCAN3 and CDK5RI) were upregulated in the
high-risk group.

Furthermore, we detected the expression of these six genes in
HepG2 and Huh?7 cell lines following a 24 h incubation period, in
the presence or absence of DC661, a novel dimeric form of CQ
that inhibits autophagy (13). The concentration of DC661 (2
UM) was determined based on its half-maximal inhibitory
concentration (IC50; data not shown). The expression levels of
these six genes were higher in the DC661-treated groups than in
the control groups of both cell lines (Figures 2D, E). Moreover,
the overexpression of PRKAG2 (p < 0.001) in the DC661-treated
groups of both cell lines was significant, while the overexpression
of APOLI (p < 0.05) and ADRB2 (p < 0.01) in the HepG2 cell line
was significant.

Survival analysis showed that OS was shorter in the high-risk
group than in the low-risk group (p < 0.01 in TCGA and
GSE54236 datasets; p = 0.014 in GSE14520 dataset) (Figures
3A-C). The area under the receiver operating characteristic
curves (AUCs) for 5-year OS were 0.75 in the TCGA HCC
dataset (Figure 3D), 0.584 in the GSE14520 dataset (Figure 3E),
and 0.659 in the GSE54236 dataset (Figure 3F).

Independent Prognostic Role of Gene
Signatures in the GSE14520 Cohort
Univariate and multivariate Cox regression analyses were
performed to determine whether ATG signatures played an
independent prognostic role in HCC. Both univariate (Figure 4A)
and multivariate (Figure 4B) Cox regression analyses showed that
the risk score computed for the TCGA dataset was associated with
OS (p < 0.001). A similar result was obtained by validation of the
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FIGURE 1 | Autophagy-related gene screening and enrichment analysis. (A, B) Volcano plot and heatmap of differentially expressed autophagy-related genes in 374
tumor tissues and 50 normal tissues. (C, D) Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. BP stands for
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FIGURE 2 | The process of Lasso regression model construction. (A) Forest plot of the univariate Cox regression analysis in autophagy-related genes. (B, C) Establishment
of the Lasso regression model. The expression of the six genes (FEZ7, APOL1, PRKAG2, ADRB2, ZKSCAN3, and CDK5R1) that constituted the model was higher in the
autophagy inhibitor (DC661)-treated groups than in the control groups for the HepG2 (D) and Huh7 (E) cell lines. *p < 0.05; **p < 0.01; **p < 0.001.
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TABLE 1 | The identified 10 significant genes correlated with overall survival.

Gene Biological and Functional Significance
RNF152 E3 ubiquitin-protein ligase
ZKSCAN3 Zinc finger protein with KRAB
and SCAN domains 3
FEZ1 Fasciculation and elongation
protein zeta-1
PINK1 Serine/threonine-protein kinase
NAMPT Nicotinamide phosphoribosyl
transferase
APOLA1 Apolipoprotein L1
PRKAG2 5’-AMP-activated protein kinase
subunit gamma-2
CDKB5R1 Cyclin-dependent kinase 5 activator
ADRB2 Adrenoceptor beta 2
NLRP6 NACHT, LRR, and PYD domains

HR HR.95L HR.95H p-value
0.899807 0.81159 0.99761 0.04492
1.146087 1.01089 1.29937 0.03325
0.873598 0.79606 0.9587 0.00438
0.785582 0.67727 0.91121 0.00143
0.914729 0.83838 0.99803 0.04504
0.814163 0.73191 0.90567 0.00016
0.86529 0.77114 0.97093 0.01382
1.182046 1.06953 1.31873 0.00274
0.918199 0.85774 0.98292 0.01406
0.945665 0.89953 0.99417 0.02859

containing protein 6

GSE14520 dataset, via univariate Cox regression (p = 0.011) and
multivariate Cox regression (p = 0.043) analyses (Figures 4C, D).
Univariate analysis of the GSE14520 cohort indicated that cirrhosis
(hazard ratio, 4.329 [95% CI, 1.064-17.605]), risk score (hazard
ratio, 9.905 [95% CI, 1.71-57.369]), and tumor size (hazard ratio,
2.084 [95% CI, 1.353-3.209]) were significantly associated with OS,
with P-values of 0.041, 0.011, and <0.001, respectively (Figure 4C).
Multivariate Cox regression analyses indicated that tumor size
(hazard ratio, 1.822 [95% CI, 1.16-2.862]), cirrhosis (hazard ratio,
4.212 [95% CI, 1.022-17.36]), and risk score (hazard ratio, 6.348
[95% CI, 1.061-37.966]) were significantly associated with OS, with
P-values of 0.009, 0.047, and 0.043, respectively (Figure 4D).
Moreover, tumor size was significantly correlated with risk score
(p = 0.014) (Figure 4H). The heatmap of the gene expression
profiles of the six ATGs (Figure 4E), the distribution of prognostic
indices in the TCGA dataset (Figure 4F), and the survival status of
HCC patients in the low-risk and high-risk groups (Figure 4G) are
shown. Due to the GSE54236 dataset not containing corresponding
clinical information, it was not subjected to univariate and
multivariate Cox regression analyses.

Autophagy-Related Pathways in the
Low-Risk Group

As indicated by the GSEA, the low-risk group was significantly
associated with autophagy-related pathways (Figures 5A, B), such
as the MAPK signaling pathway (NES = —1.77, Nom p < 0.001, FDR
q = 0.0) and the mTOR signaling pathway (NES = —1.75, Nom p =
0.006, FDR q = 0.043). An analysis of the key genes involved in the
above-mentioned autophagy-related pathways revealed that
DUSP10 (ES = -0.48), a dual-specificity protein phosphatase
(DUSP), negatively regulates members of the mitogen-activated
protein kinase (MAPK) superfamily, leading to the indirect
activation of autophagy (22) (Figure 5A). The low-risk and high-
risk groups in both the TCGA and GEO datasets showed
significantly different DUSP10 expression levels, but DUSP10
expression in the low-risk group was found to be higher than that
in the high-risk group, indicating that the level of autophagy was
higher in the low-risk group than in the high-risk group (p = 0.0011
in TCGA dataset, p = 0.0282 in the GSE54236 dataset) (Figures 5C,
D). ULK2 (ES = -0.44) ranked first in the mTOR signaling

pathway; it is well known that ULK1/2 plays a canonical role in
inducing autophagy. ULK2 expression in the low-risk group was
significantly higher than that in the high-risk group (p = 0.0218 in
TCGA dataset; p = 0.0134 in the GSE54236 dataset) (Figures 5F,
G). Moreover, we categorized HCC patients in the TCGA dataset
into the ULK2 high- and low-expression groups based on median
expression and survival analysis. In the low-risk group, patients
belonging to the high expression group displayed a longer OS than
those in the low expression group (p = 0.0421) (Figure 5E), whereas
there was no significant difference between patients with high and
low ULK2 expression in the high-risk group (Figure 5H). This
indicated that autophagy played a protective role in the low-risk
group but not in the high-risk group, and that the MAPK-mTOR
pathway may have exerted a significant effect on this process.

Immune-Related Pathways in the
Low-Risk Group

In addition to autophagy-related pathways, immune-related
pathways accounted for a certain percentage in the low-risk group
(Figures 6A-D); these included the JAK-STAT signaling pathway
(NES = -1.71, Nom p = 0.002, FDR q = 0.017), the T cell receptor
signaling pathway (NES = —1.87, Nom p < 0.001, FDR q = 0.01), the
B cell receptor signaling pathway (NES = —2.01, Nom p =0.002,
FDR q = 0.049), and the calcium signaling pathway (NES = -1.76,
Nom p < 0.001, FDR q = 0.016). Tumor environment analysis using
ESTIMATION showed that the low-risk group was closely
associated with high immune and stromal scores (Figures 6E, F).
EPIC-based prediction of immune cell fractions indicated that B cell
and CD8+ T cell fractions in the low-risk group were higher than
those in the high-risk group of the TCGA dataset (p < 0.0001 for
both B and CD8+ T cells; Figures 6G, H) as well as in
the GSE54236 dataset (P < 0.0001 for B cells and P = 0.0003 for
CD8+T cells; Figures 6K, L).

PPP3CC, which ranked ninth in the MAPK signaling
pathway (Figure 5A), was associated with intracellular Ca**
-mediated signals. Moreover, dephosphorylation of PPP3CC
may activate NFATCI, a transcription factor that regulates not
only activation and proliferation but also the differentiation and
programmed death of T-lymphocytes (23); NAFTCI expression
was higher in the low risk group than in the high-risk group. The
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calcium signaling pathway and the lymphocyte (T and B cell)
receptor signaling pathway were also enriched in the low-risk
group, indicating that PPP3CC may play a critical role in the
regulation of these pathways. The expression of PPP3CC mRNA
in the low-risk group was significantly higher than that in the
high-risk group (p < 0.0001 in TCGA dataset; p = 0.0024 in the
GSE54236 dataset; Figures 61, M). Moreover, the expression of
NFATCI mRNA was also similar (Figures 6], N). Notably, the
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FIGURE 3 | Kaplan-Meier analysis of the high-risk and low-risk groups of HCC samples in the TCGA (A), GSE14520 (B), and GSE54236 datasets (C). The receiver
operating characteristic (ROC) curves of the risk score of HCC samples in the TCGA (D), GSE14520 (E), and GSE54236 datasets (F).

expression of these three genes, ULK2, PPP3CC, and NFATCI,
were significantly and positively correlated; the coefficient of
correlation between PPP2CC and NFATC1 was 0.28, while the
coefficient of correlation between NFATC1 and ULK2 was 0.39
(p < 0.001) (Figure 60). Our results suggest that based on the
ATG signature grouping proposed by us, autophagy may exert a
protective effect on the low-risk group by regulating immune
system-related pathways.
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Establishment of a Prognostic Nomogram
for the OS of HCC Patients

Based on the results of the univariate and multivariate analyses
(Figures 4A-D), clinicopathological characteristics in the
GSE14520 dataset were determined to be independent
prognostic factors. Univariate analysis of the GSE14520 cohort
indicated that cirrhosis (YES or NO), risk score (low or high),
and tumor size (small or large), were significantly associated with
OS, with P-values of 0.041, 0.011, and < 0.001, respectively
(Figure 4C). Multivariate Cox regression analysis indicated
that tumor size, cirrhosis, and the risk score were significantly
associated with OS, as shown by P-values of 0.009, 0.047, and
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g
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FIGURE 4 | Forest plot of the univariate and multivariate Cox regression analysis in HCC. Univariate regression analysis of HCC samples in the TCGA (A) and
GSE14520 (C) datasets. Multivariate Cox regression analysis of HCC samples in TCGA (B) and GSE14520 (D) datasets. (E) Heatmap of the gene expression
profiles of the six autophagy-related genes (ATGs), distribution of prognostic index in the TCGA dataset (F), and survival status of HCC patients in the low- and high-

0.043, respectively (Figure 4D). The prognostic nomogram that
was generated to predict the OS of HCC patients is shown
(Figure 7A). The nomogram was used to predict 3- and 5-year
OS rates for HCC patients. Each patient is assigned a mortality
risk by combining three individual scores identified in the
nomogram, where a lower total score is correlated with a
better prognosis. According to C statistics, the discriminative
ability of the OS prediction model was 0.641 (95% CI, 0.610-
0.677) in the training cohort and 0.642 (95% CI, 0.614-0.692) in
the test cohort. Prediction of the 3- and 5-year OS rates in the
training (Figures 7B, C) and test (Figures 7D, E) cohorts via the
bootstrapped calibration plot showed good agreement between
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patients with high/low ULK2 expression in the low- (E) and high-risk (H) groups.
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FIGURE 5 | (A, B) The enriched autophagy-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the corresponding top ranked ranking genes
in the low-risk group. Genes fulfilling the criteria p < 0.05 and FDR g < 0.25 were considered significant. Expression of DUSP10 in the low- and high-risk groups in
both the TCGA (C) and GEO (D) datasets. Expression of ULK2 between low- and high-risk groups in both the TCGA (F) and GEO (G) datasets. Survival analysis of

nomogram prediction and actual observations. The AUCs of the
nomogram score in predicting OS were 0.638 in the training
cohort (Figure 7F) and 0.646 in the test cohort (Figure 7G).

DISCUSSION

The role of autophagy in cancer treatment remains controversial,
and whether the induction of autophagy is more advantageous than
its inhibition remains unclear (24-26). In the current study, we
established a six-ATG signature that categorized HCC patients into
the low- and high-risk groups, where a low expression of the gene
signature predicted a good prognosis for a patient. The flow chart
and the related mechanisms are shown (Figure 8). In the HepG2
and Huh7 cell lines, DC661 decreased the extent of autophagy,
while increasing the expression of these six genes. Due to inability in
linking gene expression to prognosis using liver cancer cell lines, a
close link between autophagy and the expression levels of the six
identified genes was postulated. Although a previous study has
reported using seven ATGs (ATG9A, RAB7A, GNAI3, CAPN10,
EIF2S1, SPNS1, and ATG?7) to establish prognostic risk signatures
for HCC (27), only 232 genes had been included in the Human
Autophagy Database. By contrast, our study included a total of 487
ATGs, which are present in both the Human Autophagy and

Molecular Signatures databases. Moreover, we constructed a novel
nomogram capable of predicting OS for HCC patients, based on
identified gene signatures and clinicopathological characteristics,
which provide points of reference to clinical physicians. Zhang et al.
identified an eight-IncRNA-based nomogram and a 14-IncRNA-
based nomogram, which were used to perform the
clinicopathological characterization of OS and HCC recurrence,
respectively (28). Fu-Biao Ni et al, established a nine-mRNA
classifier and used clinicopathologic factors, including age and
metastasis, to predict the mortality of HCC patients (29). To our
knowledge, our study is the first to generate an ATG signature-
based nomogram for predicting OS in HCC. However, a larger
multicenter external cohort may be needed for the further validation
of the accuracy of this nomogram.

Signaling pathways affecting autophagy, such as the MAPK
and mTOR signaling pathways, were enriched in the low-risk
group. Autophagy-inducing kinases, such as ULK2, and the
MAP kinase negative regulator, DUSP10, were upregulated in
the low-risk group, whereas high expression of ULK2 was
significantly correlated with better prognoses. These results
indicated that the role of autophagy in the low-risk group may
be similar to that in normal liver cells, where it removes
metabolites, such as excessive protein aggregates, accumulated
lipids, and damaged mitochondria (30, 31). Evidently, autophagy
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also suppresses the growth of tumors by suppressing
inflammation (7, 32-34), inhibiting cancer cell growth (26, 35),
and regulating the degradation of P62 (36, 37). Many studies
have indicated that the inhibition, as well as the induction of
autophagy may exert anticancer effects in HCC patients.
Therefore, clarification of the role of autophagy at different
stages of HCC development may be considered important. The
current study helped clarify the role of autophagy in HCC
patients classified as low risk.

Reportedly, autophagy occurs not only in cancer cells but also
in immune cells (38). Regulation of autophagy in various
immune cells may lead to immune cell differentiation and
homeostasis (39, 40). The findings of the current study
indicated that some immune cell-related signaling pathways
mentioned above were also enriched in the low-risk group.

The effect of autophagy on T cells remains unclear. Some
findings support the notion that while the induction of

autophagy favors the formation and survival of CD8+ T cells,
it does not favor either the proliferation or the differentiation of
these cells. Moreover, autophagy provides the metabolites that
are necessary for the development of memory T cells (41, 42).
Other studies indicate that autophagy promotes the apoptosis of
T cells (43). Our data revealed that autophagy and immune
response may coexist in the low-risk group where key genes, such
as ULK2, PPP3CC, and NAFTCI, were significantly and
positively correlated. Furthermore, our results demonstrated
that PPP3CC may play an essential role in HCC inhibition.
PPP3CC encodes a regulatory subunit of calcineurin, and
PPP3CC dephosphorylation activates the transcription factor
NFATCI1. The role of PPP3CC in HCC remains unclear. A
previous study reported that PPP3CC inhibited cell invasion and
growth in glioma (44). A decrease in PPP3CC expression was
associated with the recurrence of prostate cancer (45). Jeong et al.
further demonstrated that the suppression of the expression of
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PPP3CC, which is an important member of the signaling circuit
(IkBa/NE-kB(p65)/miR-196b-3p/Meis2-PPP3CC), resulted in
the phosphorylation of IkBa and activation of NF-kB (p65) in
castration-resistant prostate cancer (CRPC) cells. PPP3CC
overexpression disorganized the signaling circuit and
significantly inhibited the development of CRPC (46). The
results of our study indicate that PPP3CC plays a beneficial
role in HCC development, and that it may trigger the activity of
the transcription factor NFATCI, thereby facilitating the

A
0 10 20 30 40 50 60 70 80 90 100
Points L ) ) A ) " h ) A )
large
Tumor.Size r !
small
YES
Cirrhosis r !
NO
high
riskScore r !
low
Total Points T T T T T T T T T T T T ]
0 20 40 60 80 100 120 140 160 180 200 220 240 260
3-Year Survival r T T T T 1
0.9 0.8 0.7 0.6 0.5 04
5-Year survival r T T T T T ]
0.9 08 07 06 05 0.4 0.3
B (o]
_ o T T Y
s 3 — s 3 T T
LR P : r— 1
@ T/ @ T /-
3 3 & 53 3
< 4 L < 1
o | =3
© T T T T T T © T T T T T T
0.0 02 04 06 08 1.0 0.0 02 04 06 08 10
Nomogram predict 3-year survival Nomogram predict 5-year survival
D
T
_® T _© T
T s
s 3 X 4 g S T T .
g [ = | -3
3 31 3 o1
33 [ 3 3 L
2 . 5 1
< < 4
o o
i T T T T T T © T T T T T T
0.0 02 04 06 08 10 00 02 04 06 08 1.0
Nomgram predict 3-year survival Nomogram predict S-year survival
'AUC= 0.6375642 AUC= 0.6462551
F G
g
H
FIGURE 7 | (A) Nomogram for predicting the 3- and 5-year OS rates in HCC patients. The calibration curves for predicting the 3- and 5-year OS in the training
(B, C) and test (D, E) cohorts. Receiver operating characteristic (ROC) curves used for predicting the OS in the training (F) and test (G) cohorts.

activation of T lymphocytes. This hypothesis requires
experimental validation.

The current study was beset by certain limitations. First, the
established nomogram was not validated using an external
dataset, indicating that large, multicenter cohorts are needed to
validate the nomogram. Secondly, corresponding in vitro and in
vivo experiments may be needed in order to validate and explore
the mechanisms underlying the suppression of HCC by
autophagy and immunology.
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increased expression of the corresponding genes. “L “ represents inhibition of
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In the current study, we determined the role of autophagy-
related genes (ATGs) in HCC progression and performed a
combined analysis of datasets from the TCGA and GEO
databases, which enabled the construction of a novel
nomogram capable of predicting OS for HCC patients.
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