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Abstract

The human brain has been demonstrated to rapidly and continuously form and dis-

solve networks on a subsecond timescale, offering effective and essential substrates

for cognitive processes. Understanding how the dynamic organization of brain func-

tional networks on a subsecond level varies across individuals is, therefore, of great

interest for personalized neuroscience. However, it remains unclear whether features

of such rapid network organization are reliably unique and stable in single subjects

and, therefore, can be used in characterizing individual networks. Here, we used two

sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects

over two consecutive days and modeled the spontaneous brain activity as recurring

networks fast shifting between each other in a coordinated manner. MEG cortical

maps were obtained through source reconstruction using the beamformer method

and subjects' temporal structure of recurring networks was obtained via the Hidden

Markov Model. Individual organization of dynamic brain activity was quantified with

the features of the network-switching pattern (i.e., transition probability and mean

interval time) and the time-allocation mode (i.e., fractional occupancy and mean life-

time). Using these features, we were able to identify subjects from the group with

significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode

network displayed a distinguishable pattern, being the least frequently visited net-

work with the longest duration for each visit. Together, we provide initial evidence

suggesting that the rapid dynamic temporal organization of brain networks achieved

in electrophysiology is intrinsic and subject specific.
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default mode network, dynamic functional connectivity, large-scale network,

magnetoencephalography, static functional connectivity, temporal organization

1 | INTRODUCTION

One fundamental goal of neuroscience is to link brain and behavior.

The uniqueness of one's mind could be mainly attributed to its

connectome shaped by nature and nurture (Mueller et al., 2013;

Seung, 2012). Despite gross similarities revealed by population-

average inferences, the whole-brain functional connectome at rest

displays high interindividual variability and has been repeatedly found
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to be predictive of individual differences across many cognitive

domains (Beaty et al., 2018; Mueller et al., 2013; Tavor et al.,

2016; Wang et al., 2015). With the development of personalized

neuroscience, assessing the stability and reproducibility of brain

profiles becomes a central issue. There is evidence that the individ-

ual connectome of the brain is as unique to the individual as their

fingerprint (Finn et al., 2015; Horien, Shen, Scheinost, & Constable,

2019; Kong et al., 2019). However, these studies were mostly

based on static functional connectivity (sFC), which assumes con-

nections as spatially and temporally stationary over a measurement

period.

Recently, an emerging body of literature focusing on the concept

of dynamic functional connectivity (dFC) has strongly suggested that

functional connections are constantly changing over time (Allen et al.,

2014; de Pasquale et al., 2010; de Pasquale, Corbetta, Betti, & Della

Penna, 2018; de Pasquale, Della Penna, Sporns, Romani, & Corbetta,

2016; Hutchison et al., 2013; Vidaurre, Smith, & Woolrich, 2017).

Moreover, taking advantage of the high temporal resolution of non-

invasive electrophysiological recording such as magnetoencephalogra-

phy (MEG), accumulating evidence has suggested that the human

brain dynamically forms and dissolves networks on a time scale of sec-

onds (Brookes et al., 2014; O'Neill et al., 2015). Recent findings have

demonstrated that such network modulation can be observed even

on a millisecond level (Baker et al., 2014; Vidaurre et al., 2018), with

several specific brain networks repeatedly occurring at different time

points and typically lasting ~100 ms. These fast temporal organization

properties provide effective substrates and flexibility to allow the

human brain to efficiently support different cognitive processes

(Bressler & Menon, 2010; Bressler & Tognoli, 2006), and also enable

our brains to quickly adapt to rapidly changing environments (Beggs,

2008; Matthews & Hampshire, 2016). Importantly, interindividual var-

iability in this organization of dynamic brain networks has been found

to be linked with cognition, demographics, and the presence of psy-

chiatric illnesses (Fatima, Kovacevic, Misic, & McIntosh, 2016; Liu,

Liao, Xia, & He, 2018; Lopez, Pusil, Pereda, Maestu, & Barcelo, 2019;

O'Neill et al., 2017; Pedersen, Zalesky, Omidvarnia, & Jackson, 2018;

Reinen et al., 2018). For instance, a recent MEG study focusing on

developmental dynamic networks found that such fast network mod-

ulation underlies age-related changes in functional connectivity

(FC) and is potentially implicated with childhood disorders (Brookes

et al., 2018); moreover, network dynamic analysis can provide mea-

sures quantifying features of neural synchrony disorder in Alzheimer's

disease (Sitnikova, Hughes, Ahlfors, Woolrich, & Salat, 2018), or

enable the tracking or prediction of postoperative cognitive decline

(Carbo et al., 2017). However, despite the importance of understand-

ing the relationships between temporal organization properties of

brain function and behavior, it remains unclear whether features of

such rapid network organization are as reliably unique and stable in

single subjects.

Given that functional networks are suggested to be dominated by

common organizational principles and stable individual features with

minor day-to-day variability (Gratton et al., 2018; Satterthwaite,

Xia, & Bassett, 2018) and that temporal dynamics is correlated with

individual behaviors, we hypothesized that features of individuals'

temporal organization of brain networks are stable across different

sessions and can be used to identify subjects from a large group. Pro-

vided that under resting state both microscale neuronal populations

(Berkes, Orbán, Lengyel, & Fiser, 2011) and macroscale networks

(Vidaurre et al., 2017) are organized in a temporally coordinated

way, we modeled the functional connectomic dynamics of sponta-

neous brain activity as recurring networks fast shifting between

each other in a coordinated manner. Specifically, we analyzed two

5-min MEG resting-state datasets from 39 healthy subjects over

two consecutive days. MEG measures extracranial fields induced by

currents in the brain, and mathematical modeling of these fields

allows reconstruction of neuronal electrical activities on a millisec-

ond time scale. Our study used the Hidden Markov Model (HMM)

to model temporal organization of large-scale brain networks,

namely, the temporal characteristics and interactive coordination of

discrete and repeating large-scale networks (or states) over time

(Baker et al., 2014; Vidaurre et al., 2017). In detail, individual tem-

poral organization of functional networks was quantified with fea-

tures of the network-switching pattern (i.e., transition probability,

mean interval time) and the time-allocation mode (i.e., fractional

occupancy, mean lifetime). In addition, to describe the global time-

varying profiles of brain network organization, each subject's static

and dynamic FC profiles on each day were also calculated respec-

tively, following the data analyses in previous functional magnetic

resonance imaging (fMRI) studies (Finn et al., 2015; Liu et al.,

2018). Time-resolved statistics of network temporal organization

and static and dynamic FC profiles were used to identify subjects

from the group. We further probed the differences between tempo-

ral characteristics of recurring brain networks.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

Fifty-eight healthy subjects participated in this study, all of whom

were recruited from local universities. Fifty-one subjects who did not

undergo electrooculography (EOG) recording during MEG experi-

ments were used in the main identification analyses, while the

remaining seven subjects (19–25 years old, mean age 20.1 years;

three males) underwent EOG recordings and were used to investigate

whether subject-specific eye movement patterns drive identification

accuracy. The procedures of this study were approved by the Peking

University Institution Review Board, and all subjects provided written

informed consent. MEG data were recorded using a whole-head Triux

system (Elekta Neuromag, Helsinki, Finland) at a sample frequency of

1,000 Hz in a magnetically shielded room. Each subject was scanned

with MEG over two consecutive days, and each session consisted of a

2-min eyes-open resting-state recording, followed by a 5-min eyes-

closed resting-state recording. Only the eyes-closed data were used

for the present analysis. A wooden head supporter was used to help

minimize head movements during scanning. The head position relative
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to the sensor array was recorded continuously by four head position

indicator (HPI) coils. To allow coregistration of the MEG data with

brain anatomy, three anatomical landmarks (nasion, left and right

preauricular points), HPI coils and the scalp surfaces (~200 points)

were digitized using a 3D digitizer (Polhemus, VT) at the start of

each scan session. After MEG acquisition, T1-weighted anatomical

magnetic resonance images (MRI) were acquired using a FSPGR

sequence (repetition time [TR] = 6,676 ms; echo time [TE] = 2.92 ms;

flip angle=12
�
; voxel size 1 × 1 × 1 mm3) on a 3T GE Discovery

MR750 MRI scanner (GE Healthcare, Milwaukee, WI). Cor-

egistration of MEG data to anatomical MRI was then implemented

by matching the digitized head shape to the head shape extracted

from the MRI.

2.2 | MEG preprocessing and source
reconstruction

MEG data were initially inspected visually using Brainstorm (Tadel,

Baillet, Mosher, Pantazis, & Leahy, 2011). MEG channels that

exhibited excessive noise (mainly caused by the operating condi-

tion of hardware) were first identified and removed (removed num-

ber: mean 4.0 ±SD 0.7). Considering that segmented data may not

completely reflect the actual dynamic nature, only full 5-min epi-

sodes were included for analyses. We manually filtered data of all

subjects so that, if either of the two data episodes collected across

two days from the same subject displayed obvious artifacts, this

subject would be excluded. This filtering process eventually

excluded 12 subjects. In the remaining 39 subjects (18–32 years

old, mean age 22.6 years; 20 males), MEG data were preprocessed

to remove the external interference using the temporal extension

of Signal Space Separation (tSSS) method (Taulu & Hari, 2009) with

the MaxFilter 2.2 software (Elekta-Neuromag, Helsinki, Finland),

using a subspace correlation limit of 0.9 and a sliding window

of 10 s.

Following tSSS, the data were bandpass filtered into 0.5–48 Hz

band, and then an atlas-based beamforming approach (Hillebrand,

Barnes, Bosboom, Berendse, & Stam, 2012) was used to perform

source reconstruction implemented in FieldTrip (Oostenveld, Fries,

Maris, & Schoffelen, 2011). The cortex of each subject was parcellated

into 78 regions of interest (ROIs) using the Automated Anatomical

Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). This was done by

spatially normalizing each subject's anatomical MRI to the MNI tem-

plate using a nonlinear transformation implemented with SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12) and labeling all

voxels according to the AAL atlas. Then the inverse registration to

individual anatomical space was performed. For the forward solution,

a single shell model (Nolte, 2003) was created for the head model and

each ROI was divided into numbers of voxels with side lengths of

5 mm. For beamforming, data covariance was defined within a

0.5–48 Hz frequency range and a time window spanning the whole

5-min eyes-closed experiment. Dipole orientation was determined

through a nonlinear search for an optimum signal-to-noise ratio. The

beamformer weights were normalized by its vector norm and then

multiplied with the sensor data matrices to obtain the source

timeseries.

The source timeseries were then filtered into five classical

MEG/EEG subfrequency bands (delta [0.5–4 Hz], theta [4–8 Hz],

alpha [8–13 Hz], beta [13–30 Hz], and lower gamma [30–48 Hz])

using a basic finite impulse-response (FIR) filter in EEGLAB (https://

sccn.ucsd.edu/eeglab/index.php). Each ROI contained a specific num-

ber of voxels, all with their own source timeseries. The amplitude

envelopes of these timeseries were calculated by Hilbert transform

for all frequency bands (i.e., the broadband and five subfrequency

bands), and these envelopes were then averaged across all voxels in a

particular ROI to obtain a representative timeseries. Therefore, for

each subject in each scan session, a set of 78 timeseries for each fre-

quency band was finally obtained, and then this set of timeseries was

downsampled to 100 Hz for computational efficiency. Notably, a

potential confound in beamformer-derived source timeseries is that

two signals (e.g., from two regions) may exhibit spurious correlations

purely as a result of source leakage (spatially blurred representation of

the source distribution) (Brookes, Woolrich, & Barnes, 2012; Col-

clough et al., 2016; Palva & Palva, 2012). Therefore, a multivariate

symmetric orthogonalization (Colclough, Brookes, Smith, & Woolrich,

2015) was employed on the source timeseries of all bands. In addition,

for subsequent HMM analysis, the timeseries for each subject in each

session were demeaned and normalized to unit variance and then

concatenated temporally across all subjects and two sessions into a

single group matrix.

2.3 | Hidden Markov Modeling

Fast transient dynamic networks were identified using an HMM

(Baker et al., 2014; Vidaurre et al., 2017; Woolrich et al., 2013) on the

group concatenated MEG source timeseries. The HMM assumes that

the timeseries data can be described as a hidden sequence of a finite

number of discrete states, and at each time point, the brain is in one

of these states. The model assumes that the states cannot be imaged

directly but can be inferred from measured observables (here, the

concatenated timeseries), and that the state being active at time t

relies only on which state was active at time t−1 (i.e., Markovian).

Each state here is represented by a multivariate Gaussian distribution,

defined by the mean and covariance, which represents brain networks

of distinct activity and FC, respectively. An HMM with 12 states was

inferred, and variational Bayes inference (Rezek I, 2005) was used on

the HMM to derive the full posterior distribution on the model param-

eters (implemented in the HMM-MAR toolbox; https://github.com/

OHBA-analysis/HMM-MAR). Accounting for variations in the

inference due to different initializations, five realizations were

implemented, and the model with the lowest free energy was chosen.

Viterbi decoding was performed to determine which of the derived

states the brain was most likely in for each time point (i.e., state time

course). Whereas the states were estimated at the group level, the

state time course that indicated the dynamic characteristics of brain
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networks changing with time was obtained for each individual in each

session.

The individual state time course indicated the temporal structure

of brain network states during a specific experimental period (e.g., one

scan session), and four statistics for each subject per session were

estimated to quantitatively describe the individual temporal organiza-

tion characteristics of the inferred states (Baker et al., 2014). The indi-

vidual transition probability (TP) matrix is the probability of transition

from one state to another state. Different from the group-level TP,

which could be calculated from concatenated single-group data, we

calculated the TP matrix from individual actual nonprobabilistic state

time courses (i.e., Viterbi decoding path) to indicate the switching pat-

tern of dynamic networks for each subject in each session:

TPi,j =P St = jjSt−1 = ið Þ ð1Þ

where St indicates which of the states is active at time t, and TPi,j

describes the probability of transitioning from state i to state

j between time t−1 and t.

The mean interval time (IT) describes the average time between

two adjacent occurrences of each state:

IT kð Þ= T−
P

t St = = kð Þ
number of occurrences kð Þ ð2Þ

where St == k is one if St = k and is zero otherwise, and T is the length

of the state time course.

Fractional occupancy (FO) is defined as the proportion of time

spent visiting each state:

FO kð Þ= 1
T

X
t
St = = kð Þ ð3Þ

The mean lifetime (LT) is defined as the average time spent in one

state before transitioning to another state:

LT kð Þ=
P

t St = = kð Þ
number of occurrences kð Þ ð4Þ

For these four statistics, we classified TP and IT as the network-

switching pattern, which indicates how states are sequentially ordered

and how long it takes for a state to recur; FO and LT belonged to the

time-allocation mode, which delineates the time duration of each visit

and the total duration proportion of all visits for different states.

2.4 | Analysis of static and dynamic FC profiles

To explore the uniqueness of global time-varying profiles of individual

network organization, we also calculated static and dynamic whole-

brain FC profiles similar to previous fMRI studies (Finn et al., 2015;

Liu et al., 2018). For the static network construction, Pearson correla-

tion coefficients between the source timeseries of each pair of

78 AAL nodes were calculated. For dynamic network construction,

connectivity was estimated as a function of time, with a widely used

sliding time-window approach (Hutchison et al., 2013; O'Neill et al.,

2017). The whole 5-min source timeseries was segmented into

overlapping time windows, and each window width was 10 s with a

1 s sliding step. Then, 290 time windows were obtained for each

subject in each scan session. For each time window, Pearson corre-

lation was used to calculate the FC between each pair of 78 regions,

which means 3,003 pairs of connections (i.e., 78 × 77/2). The FC

matrix was vectorized to a 1 × 3,003 row vector, and then the vec-

tor was concatenated in time to form a 290 ×3,003 dynamic FC

matrix. Therefore, each column of the dynamic FC matrix represen-

ted the time course of an individual connection between two AAL

regions. The dynamic FC variability and stability profiles were calcu-

lated to describe the time-varying characteristics of each connec-

tion. In detail, the dynamic FC variability indicated the overall

fluctuating level for each connection over time, and the stability

indicated the tendency to remain stable during a short period (see

details in Supporting Information). After processing as above, two

1 × 3,003 row vectors were obtained for each subject per scan

session.

2.5 | Identification analysis

To quantify the uniqueness of individual time-resolved features

extracted from the HMM and static and dynamic FC matrices, an indi-

vidual identification analysis presented by Finn (Finn et al., 2015) was

performed. Specifically, for each subject, we compared each statistic

(i.e., TP, IT, FO, and LT computed using the HMM, static FC profiles

and dynamic FC variability and stability) of this subject from Day 1 to

the same statistic of all subjects on Day 2. We computed the similarity

using the Pearson correlation coefficient across the vector form of

each statistic for each comparison. The predicted identity of this sub-

ject was assigned the same label as the subject on Day 2, who was

optimally similar to this subject. If the predicted identity matched the

true identity, the identification results of this comparison were

assigned a score of 1; otherwise, a score of 0 was assigned. Then, Day

1 and Day 2 were reversed, and all the processes described above

were performed again. Finally, the identification accuracy rate was

defined as the sum of the identification score in the two days divided

by twice the total number of subjects. Having obtained the identifica-

tion accuracy for each statistic, a nonparametric permutation test was

performed to compute its statistical significance. In detail, the vector

forms of each statistic of all subjects from Day 1 were compared to a

randomly permuted list of subjects from Day 2, such that each subject

on Day 1 was assigned a “correct” identity corresponding to a differ-

ent subject on Day 2. The identification processes described above

were reperformed and the identification accuracy was recorded. Then,

Day 1 and Day 2 were reversed. The permutation test was conducted

10,000 times, and the p value was defined as the proportion of the

10,000 corresponding random identification accuracy values that

were equal to or greater than the actual value.
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2.6 | Quantifying the contributions of state
temporal characteristics to identification

An analysis quantifying the contributions of specific states to individ-

ual identification was performed in a manner consistent with the prior

fMRI study (Finn et al., 2015). We first computed a group consistency

measure (Φ). Given two row vectors XS1
i and XS2

i that represented one

of the temporal statistic (i.e., IT, FO, LT) values of the HMM inferred

states (based on the broadband source signals) in two sessions after

z-score normalization with each element corresponding to one spe-

cific state, the definitions of Φ were as follows:

φi kð Þ=XS1
i kð Þ * XS2

i kð Þ and ϕ kð Þ= 1
N

X
i
φi kð Þ ð5Þ

where i indexes subject, k indexes state, N is the total number of sub-

jects (N = 39) and
P

indicates the sum of φi over all subjects. A high

Φ value for a given state indicated that the state's temporal character-

istics were consistent both within a subject and across the group.

To further identify the state that truly contributed to individual

identification, we calculated the differential power (DP):

DP kð Þ=1− 1
N

X
i
Pi kð Þ ð6Þ

where Pi(k) = (|φij(k) > φii(k)| + |φji(k) > φii(k)|)/2(N − 1) (i 6¼ j), φij(k)

denotes the consistency of a specific state between different subjects,

and |φij(k) > φii(k)| indicates the probability that the consistency value

between two different subjects is higher than it is within the same

subjects for a specific state. States with larger DP values indicate

greater contributions to individual identification.

2.7 | Factors affecting identification accuracy

We evaluated the reliability of our identification results using different

processing procedures or varying some parameters in our analysis.

First, we estimated new HMMs from scratch using 6–16 states for

the broadband source signals and repeated the identification analysis

to examine the effect of different numbers of states on identification

accuracy. The average value of the identification accuracies (i.e., the

comprehensive index, CI) of the four HMM statistics (TP, IT, FO, LT)

was used to uniformly describe the results. Second, for the dFC profile

analysis, an important issue is that the optimal choice of time-window

width remains debatable (Hutchison et al., 2013; Leonardi & Van De

Ville, 2015; O'Neill et al., 2018). Two different time-window widths

(5 s and 15 s) were used to construct the dynamic FC matrix in the

broadband and a similar identification analysis was reperformed.

Moreover, to exclude the possibility that significant identification

was caused primarily by subject-specific head movement patterns, we

performed identification based on head motion feature only. Specifi-

cally, we calculated framewise displacement (FD) similar to fMRI stud-

ies (Ide & Li, 2018; Power, Barnes, Snyder, Schlaggar, & Petersen,

2012) for each subject in each session. For each time point t, the FD

was calculated as: FD(t) = |Δdx(t)| + |Δdy(t)| + |Δdz(t)| + r|Δα(t)| + r|Δβ(t)| +

r|Δγ(t)|, where (dx, dy, dz) and (α, β, γ) are the translation and rotation

transformation parameters; r = 50 mm, a constant that approximates the

mean distance from the cerebral cortex to the center of the head and

used to covert rotations into displacement; and Δdx(t) = dx(t) − dx(t − 1)

(other parameters, i.e., dy, dz, α, β, γ, could be expressed in the same

way). Furthermore, we computed the mean and SD of the FD across

all subjects and two sessions, specified 50 bins spanning the

mean ± 3 SD, and obtained head motion distribution vectors accord-

ingly. Then, we used the head motion distribution vectors alone to

perform identification analysis. Similarly, to investigate whether suc-

cessful identification was simply driven by subject-specific eye move-

ment patterns, we also calculated EOG distribution vectors using the

seven subjects for whom EOGs were recorded. For each subject in

each session, the EOG value at each time point was divided by the

mean EOG values of that session, and then the mean and SD of EOG

values across all subjects and sessions were calculated. EOG distribu-

tion vectors were estimated and used to perform identification in the

same way as head motion.

3 | RESULTS

3.1 | Nonrandom dynamic switching between
brain networks is subject specific

An HMM with 12 states was inferred from the resting-state MEG

data of 39 subjects over 2 days. Each subject had a characteristic

state time course that manifested as different states being active at

particular time points. Figure 1a shows an illustrative 2,000-ms

section of the state time course for one example subject based on the

broadband source signals, and mean activation maps of all 12 HMM

states in the broadband are shown in Figure 1b (thresholded mean

activation maps are shown in Figure S1). The spatial maps of the

HMM inferred states were interpreted through combining fMRI

research literature with the spatial correlation between the activation

pattern of each state and a widely-used seven-network template (Yeo

et al., 2011), and further these states were divided into two groups

(see details in Supporting Information). One group is composed of

higher-level cognitive regions, such as the DMN (State 1; Raichle

et al., 2001), language network (State 2; Friederici, Chomsky, Berwick,

Moro, & Bolhuis, 2017), decision-making areas (State 3; Wikenheiser &

Schoenbaum, 2016), and salience network (State 4; Seeley et al.,

2007; Sridharan, Levitin, & Menon, 2008). State 5 appeared to be

whole-brain negative, indicating that the whole-brain activities were

lower than the average activity level (deactivation state). Meanwhile,

the other group consists of sensory and motor areas, such as bilateral

auditory network (States 6 and 7), visual network (States 8–10), and

somatomotor network (States 11 and 12).

Using each subject's temporal structure of the HMM network

states, we illustrated that the switching pattern between brain net-

works is not a stochastic feature but rather an innately representative
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feature of one's brain connectivity. In particular, we extracted the TP

(Figure 2a) and IT (Figure 2b) to quantify individual network-switching

patterns. For the TP, we constructed two TP matrices for each subject

corresponding to the two scan days; as shown in Figure 2a, the matri-

ces of the same subject on the 2 days had considerable similarity

(R = .95), while the similarity of the matrices on the diagonal was rela-

tively lower (R = .62 or .72). All subjects' TP matrices and IT values for

12 networks were used to identify subjects from the group, with

identification accuracies in the broadband of 37.2 and 35.9%, respec-

tively (Figure 3a). In specific frequency bands, the identification accu-

racies of TP and IT were 15.4 and 14.1% in the delta band, 20.5 and

17.9% in the theta band, 37.2 and 30.8% in the alpha band, 42.3 and

34.6% in the beta band, and 11.5 and 11.5% in the gamma band,

respectively (Figure 3a). All identification accuracies were significantly

higher than in the random identification case (all p < .0001 except

p < .05 for TP and IT in the delta and gamma bands).

F IGURE 1 Twelve HMM network states based on the broadband (0.5–48 Hz) source signals. (a) Example 2,000-ms section of the state time
course for a subject. (b) Mean activation maps of all 12 HMM network states in the broadband. The first five states correspond to the higher-level
cognitive group, and States 6–12 correspond to the sensory-motor group
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3.2 | Nonrandom time allocation for distinct brain
networks is subject specific

Two statistics from the temporal structure of the HMM network

states were used to quantitatively evaluate the time-allocation mode:

FO (Figure 2c) and LT (Figure 2d). Our results demonstrated that

properties of the time-allocation mode of recurring brain networks

can successfully recognize individuals, meaning the time-allocation

mode is subject specific. Specifically, the FOs of 12 HMM networks

for the same subject were very similar, whereas different subjects'

FOs were obviously distinctive. The identification accuracies of FO

and LT were 52.6% and 33.3%, respectively, in the broadband

(Figure 3a). The identification accuracies in specific frequency bands

for FO and LT were 20.5 and 10.2% in the delta band, 23.1 and 14.1%

in the theta band, 43.6 and 32.0% in the alpha band, 30.8 and 37.2%

in the beta band, and 17.9 and 12.8% in the gamma band, respectively

(Figure 3a). All the identification accuracies were significantly higher

than in the random identification case (all p < .0001 except p < .05 for

LT in the delta, theta, and gamma bands).

3.3 | MEG static and dynamic FC profiles identified
subjects with significant accuracy

The static and dynamic FC profiles captured by MEG identified sub-

jects from the group with significant accuracy. The identification accu-

racies obtained from static and dynamic FC profiles are summarized in

Figure 3b. For sFC, the identification accuracy in the broadband was

74.4%, and the identification accuracies in subfrequency bands were

30.8% in the delta band, 34.6% in the theta band, 46.2% in the alpha

band, 70.5% in the beta band, and 67.9% in the gamma band. For dFC

variability and stability, the identification accuracies in the broadband

F IGURE 2 Schematic diagrams of the network temporal organization features inferred from the HMM in the broadband. (a) Schematic
diagram of transition probability matrices from two example subjects (rows) for two consecutive days (columns). The matrix shows the
probabilities from one state transitioning to any other different one. R: Pearson correlation coefficient between two specific matrices. (b–d)
Schematic diagrams illustrating the mean interval time (IT), fractional occupancy (FO) and mean life time (LT) of each state from six example
subjects for two consecutive days. Different colors denote the 12 states, and the length of each color block illustrates the relative time length
(of IT and LT) or proportion (of FO) for a certain state
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were 50.0 and 47.4%, respectively, while the identification accuracies

in the subfrequency bands were as follows: delta band, 19.2 and

12.8%; theta band, 21.8 and 17.9%; alpha band, 26.9 and 21.8%; beta

band, 32.0 and 14.1%; and gamma band, 12.8 and 10.2%, respectively.

All of the identification accuracies above were significantly higher

than in the random identification case (all p < .0001 except p < .05 for

variability in the gamma band and stability in the delta, beta, and

gamma bands).

3.4 | DMN displayed patterns that were obviously
distinguishable from other networks

Our results also substantiated the hypothetical role of the DMN as a

special network during resting state among these transiently switching

networks. Figure 4a illustrates all subjects' IT, FO and LT of the

12 inferred HMM states across two scan sessions for the broadband

data. For the network-switching pattern, the mean amount of time

spent between two consecutive visits to a particular state (IT) was

between 700–5,000 ms on average; as for the time-allocation mode,

these states occupied 2.9–10.5% of the total time (FO) and were sta-

ble for 70–130 ms on average (LT). In terms of all states, both the IT

and LT of the DMN (State 1) were the longest (IT: 4910 ms, LT:

130 ms) and occupied the lowest percentage (2.9%) of the total dura-

tion (FO); namely, while the DMN was much less frequently visited

under resting-state conditions than the other states, each occurrence

of the DMN was on average longer than that of the other network

states. In addition to the DMN, within the higher-level cognitive group

of networks (States 1–4 and deactivation State 5 included in this

group), the deactivation state had the largest FO (10.5%) and a rela-

tively long LT (100 ms). In contrast, the sensory-motor group of net-

works (States 6–12) displayed subtler variations than the higher-level

cognitive group.

3.5 | Temporal characteristics of the DMN were
more subject general than those of other networks

To explore the extent to which different states contribute to individ-

ual identification, as shown in Figure 4b, we calculated the DP and

the group consistency (Φ) for each state's temporal statistics (IT, FO,

and LT) in the broadband. For DP, the DMN had the lowest DP values

for FO and LT and a relatively low value for IT, whereas the deactiva-

tion state had the highest DP values for FO and relatively high values

for IT and LT. Regarding the group consistency (Φ), across the three

temporal statistics, the DMN had the highest Φ value, and the deacti-

vation state also showed a relatively high value. In brief, the temporal

characteristics of the DMN were more subject general, while the char-

acteristics of the deactivation state were more subject specific when

compared to those of the other resting-state networks.

3.6 | Factors affecting identification accuracy

We explored several factors that may affect identification accuracy.

First, for the HMM analysis, we varied the number of estimated HMM

states from 6 to 16 for broadband source timeseries. Apart from the

number of states being six for LT, the identification accuracies of all

number of states were significantly higher than in the random identifi-

cation case (Figure S2; all p < .0001 except p < .05 for number of

states being seven for LT). In addition, the identification accuracy of

the CI tended to increase with the number of states, probably because

when the division of states became more fine-grained, individual

differences in temporal organization were better reflected. Second,

different time-window widths (5 s and 15 s) were used to construct

the dFC matrix in the broadband, and the identification results are

shown in Figure S3, which were all significantly higher than those

in the random identification case (all p < .0001). Moreover, to investi-

gate whether significant identification was simply driven by
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subject-specific head motion or eye movement patterns, we tested

whether subjects could be identified based on the distribution of their

head framewise motion or eye movement. The identification rates on

the basis of head motion and eye movement were 5.1 (p > .25) and

14.3% (p > .16), respectively. These low accuracies indicated that our

significant identification was unlikely due to subject-specific motion

patterns in the scanner. Together, these results demonstrated the reli-

ability of our identification results.

4 | DISCUSSION

Taking advantage of the high temporal resolution of MEG, we show

for the first time that the temporal organization of large-scale net-

works is reliably subject-specific on a subsecond time scale. We dem-

onstrated that network temporal organization, which was

quantitatively analyzed using systematic time-resolved features

extracted from the temporal structure of the HMM states and global

time-varying profiles of network dynamics, displayed stable inter-

individual variations and can be used to identify individual from the

group with significant accuracy. Our results suggest that personal

uniqueness is imprinted on the large-scale network's rapid temporal

organization, which lays the prerequisite for investigations into how

individual-specific temporal dynamics of brain networks give rise to

different cognitive processes.

Among all the statistics used in our study, the four HMM inferred

statistics (TP, IT, FO, and LT) and the dynamic variability and stability

were the measurements that describe the temporal dynamic features

of brain networks (i.e., dynamic measurements), while the static FC

profile captured the average connectome level during a dynamic pro-

cess (i.e., static connectivity). We found that static connectivity identi-

fied subjects with a much higher accuracy than dynamic

measurements. On the one hand, the lower identification associated

with the dynamic measurements could be a result of ongoing mind

wandering activities (Kucyi, 2018; Kucyi & Davis, 2014), in that differ-

ent ongoing thoughts may exist in two scan sessions even for the

same individual and that the dynamic measurements reflect more

such ongoing states than the static one. On the other hand, it is also

possible that the limitations of current methodologies failed to gener-

ate time-evolving connectivity that could fully capture the core traits

of dFC. For instance, one major consideration about the HMM is the

temporally mutual exclusivity (i.e., only one state is active at each time

point), which is not necessarily a physiologically meaningful feature of

the brain. However, the HMM states may be thought of as rep-

resenting the most dominant state at each given time point, and multi-

ple states rendering simultaneously could be represented through the

FO of different states at different time scales. Based on the dynamic

structure obtained by the HMM, our results indicate that the temporal

organization features of networks could be used to identify subjects

from the group with significant accuracy.

In addition, we found that different subfrequency bands showed

distinct identification accuracies. Specifically, alpha and beta bands

displayed the highest accuracies for the four HMM statistics (TP, IT,

FO, LT) and tended to have relatively high accuracies for dFC
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variability and stability. Previous studies have revealed that brain

rhythms are heritable phenotypes, which are under strong genetic

control, and different genetic origins of brain rhythms result in differ-

ent heritabilities (Buzsaki, Logothetis, & Singer, 2013). Meanwhile,

several EEG studies have held that alpha and beta bands of brain FC

at rest exhibit higher heritability than other frequency bands (Smit

et al., 2010; Smit, Stam, Posthuma, Boomsma, & de Geus, 2008).

Based on these findings, our result that alpha and beta bands dis-

played higher recognition accuracy might highlight the interesting

relationship between alpha and beta band FC and genetics, yet no

direct genetic evidence is available here. Future studies may be con-

ducted to probe into this issue and to further investigate whether

alpha and beta bands are superior candidate frequency bands in

developing dFC features as possible brain measurements. Together,

these findings pave the way for thoroughly understanding the neuro-

nal mechanisms behind the emergence and representations of individ-

ual brain connectome differences.

Furthermore, we linked the differences between the temporal

characteristics of 12 recurring HMM networks and their known func-

tions established at the group level. Particularly, a vast body of litera-

ture has reached a consensus that the DMN is a hallmark of

spontaneous fluctuations and plays a special role in brain functions,

instantiating processes that support emotional processing, self-

referential mental activity, and the recollection of prior experiences

(Fox & Raichle, 2007; Raichle, 2015). Current results show that the

DMN was the least frequently visited state and the one with the lon-

gest duration for each visit; also, in accordance with previous studies,

the DMN occupied only a small part of the total scan duration (Baker

et al., 2014; Vidaurre et al., 2018). Such a standout pattern signifi-

cantly distinguished it from other transient networks, and we specu-

late that this pattern is in line with its special role during resting state

(Raichle, 2015). In addition, the deactivation state, wherein the whole-

brain activities were lower than the average level, also demonstrates

an intriguing pattern because it has the highest FO among all states

and was more subject specific compared to other states. We hold that

the whole-brain deactivation phenomenon may indicate that the brain

is truly “at rest” in this state. Taken together, our results potentially

contribute to a better understanding of the temporal characteristics

of network organization under resting state.

Notably, in our study, the brain parcellations of individual subjects

were derived from group-level brain atlases. Although this parcellation

process is a common approach, recent literature has shown that the

interindividual variability in brain anatomy is not negligible; for exam-

ple, the position, size, and shape of brain regions can vary between

individuals (Amunts et al., 2005; Li et al., 2019). Future studies can

build on individual brain anatomy or functional segmentation, which

may lead to improved identification accuracy due to its ability to cap-

ture the idiosyncrasies of subjects' functional network construction.

Based on the general idea that the spurious correlation caused by

source leakage manifests as a zero-lag linear coupling, solutions for

leakage reduction generally remove any zero-lag connection between

sources. These solutions might be oversimplified for individual-level

studies, considering that zero-lag connections may contain FC

information vital to identification, such as the zero-lag synchronization

of neural oscillations (Gollo, Mirasso, Sporns, & Breakspear, 2014;

Roelfsema, Engel, Konig, & Singer, 1997). At the core, source-

leakage effects are rooted in MEG source reconstruction issues. In

our study, we used beamformer for inverse modeling of our data, as

beamformer fits resting-state source localization for its interference

rejection properties (Brookes et al., 2011; Hillebrand, Singh, Holliday,

Furlong, & Barnes, 2005; Van Veen, van Drongelen, Yuchtman, &

Suzuki, 1997). However, this approach typically yields a spatially

blurred representation of the source distribution referred to as

source leakage. Future studies should be conducted to specify the

role of zero-lag synchrony in whole-brain interaction and to advance

the methodological solutions for disambiguating source leakage

effects from true zero-lag interaction. As using standard beamformer

source reconstruction can hardly solve these problems (Colclough

et al., 2016), future solutions may be improved in terms of using

methods for signal reconstructions that can suppress contributions

from other cortical sources (Hauk & Stenroos, 2014; Wens et al.,

2015) and approaches based on L1 regularization priors that could

obtain spatially sparse source distribution (Huang et al., 2014;

Uutela, Hamalainen, & Somersalo, 1999).

In conclusion, our study provides cortical electrophysiological evi-

dence that the individual rapid temporal organization of brain net-

works is reliably unique and stable on a subsecond level, and also that

the differences between temporal characteristics of recurring brain

networks are related to their known functions established on a group

level. Future studies should be conducted to establish precise associa-

tions between the temporal organization features of networks and

subjective experience and objective behavior. Also, similar studies can

be improved by recording EOG in all subjects and then removing eye-

related artifacts. Meanwhile, because recent research has proposed

that resting state may not be the best experimental condition for

investigating interindividual differences (Greene, Gao, Scheinost, &

Constable, 2018), the more appropriate conditions under which brain-

behavior associations across different domains can be better explored

should be identified. We expect that our findings will contribute to

the developing field of personalized neuroscience and facilitate inves-

tigations into the possible neuromarkers of cognition, behavior and

diseases.
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