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Abstract

Cellular senescence is a status of irreversible growth arrest, which can be triggered by the 

p53/p21cip1 and p16INK4/Rb pathways via intrinsic and external factors. Senescent cells are 

typically enlarged and flattened, and characterized by numerous molecular features. The latter 

consists of increased surfaceome, increased residual lysosomal activity at pH 6.0 (manifested by 

increased activity of senescence-associated beta-galactosidase [SA-β-gal]), senescence-associated 

mitochondrial dysfunction, cytoplasmic chromatin fragment, nuclear lamin b1 exclusion, 

telomere-associated foci, and the senescence-associated secretory phenotype. These features 

vary depending on the stressor leading to senescence and the type of senescence. Cellular 

senescence plays pivotal roles in organismal aging and in the pathogenesis of aging-related 

diseases. Interestingly, senescence can also both promote and inhibit wound healing processes. 

We recently report that senescence as a programmed process contributes to normal lung 

development. Lung senescence is also observed in Down Syndrome, as well as in premature 

infants with bronchopulmonary dysplasia and in a hyperoxia-induced rodent model of this disease. 

Furthermore, this senescence results in neonatal lung injury. In this review, we briefly discuss the 

molecular features of senescence. We then focus on the emerging role of senescence in normal 

lung development and in the pathogenesis of bronchopulmonary dysplasia as well as putative 

signaling pathways driving senescence. Finally, we discuss potential therapeutic approaches 

targeting senescent cells to prevent perinatal lung diseases.
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Introduction

Cellular senescence is a term used to describe cells that cease to divide/proliferate and 

show enlarged morphology. Although demonstrating proliferation arrest, senescence cells 

are metabolically active and are prone to secrete inflammatory mediators termed senescence-

associated secretory phenotype (SASP). Senescence can be triggered by intrinsic and/or 

external factors. Intrinsic factors consist of telomere shortening (replicative senescence), 

DNA damage/deficient DNA repair, oncogene activation, metabolism, and endogenous 

oxidative stress, whereas chemotherapeutics, pollution, hyperoxic exposure, cigarette smoke 

exposure, radiation, ultraviolet (UV) light, and virus infection are extrinsic factors [ Fig. 1 ].

Senescent cells accumulate in aging tissues, which plays pivotal roles in organismal aging 

and in the pathogenesis of aging-related diseases, such as Alzheimer’s disease, chronic 

lung diseases1 and premature aging as seen in Down Syndrome. Senescence can also 

both promote and inhibit wound healing.2 , 3 Interestingly, accumulating evidence shows 

that cellular senescence also contributes to the development of organs, including limbs, 

hindbrain roofplate, mesonephros, neural tube, endolymphatic sac, pharyngeal arches, 

and gut endoderm in humans, naked mole rats, and mice.4–6 We recently reported that 

senescent cells are observed and peak at the saccular stage of normal lung development 

in mice.7 Reducing the number of senescent cells during the saccular stage disrupts 

normal lung development, suggesting that senescence is a programmed process for 

lung development. Interestingly, neonatal hyperoxia interrupts the normal reduction in 

developmental senescence by causing a transient increase during the alveolar stage. This 

leads to alveolar and vascular simplification, characteristics of bronchopulmonary dysplasia, 

a chronic lung disease in premature infants.7 , 8 This highlights the paradoxical importance 

of the timing of senescence in mediating normal lung development and also neonatal 

hyperoxia-induced alveolar simplification.

In this review, we briefly discuss the molecular features of senescence. We then focus 

on the emerging role of senescence in normal lung development and in the pathogenesis 

of bronchopulmonary dysplasia as well as putative signaling pathways involved in this 

senescence. Finally, we discuss potential therapeutic approaches targeting senescent cells to 

prevent this disease.

Molecular features of senescent cells

Compared to normal cells, senescent cells display unique morphological and molecular 

features [ Fig. 1 ]. Morphologically, senescent cells are flattened with enlarged nuclei and 

low saturation density at the plateau phase of cell growth. This can be detected by image-

assisted cytometry such as laser scanning cytometry.9 Senescent cells express specific cell 

surface proteins termed the senescent surfaceome, such as urokinase-type plasminogen 

activator receptor (uPAR), dipeptidyl peptidase 4 (DDP4), and β2 microglobulin (B2M).10–

12 This can be used for identification and subsequent targeted ablation of senescent cells.

In the cytoplasm, senescence-associated β-galactosidase (SA-β-gal) is the most commonly 

used biomarker for senescent cells, and this is defined as β-galactosidase activity detectable 
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at pH 6.0. A previous study reported that mitochondrial defects trigger a distinct senescence 

phenotype called mitochondrial dysfunction-associated senescence (Mi-DAS).13 This type 

of senescence is induced by an increase in the ratio of nicotinamide adenine dinucleotide 

(NAD)+/reduced nicotinamide adenine dinucleotide (NADH) and the activation of adenosine 

monophosphate (AMP)-activated protein kinase (AMPK), which in turn activates p53. 

Interestingly, MiDAS is not associated with increased oxidative stress or nuclear DNA 

damage (53BP1 foci).14

Lamin B1 is a scaffolding component of the nuclear envelope. Loss of nuclear lamin 

b1 is a feature of senescent cells.15 , 16 In the nucleus, telomere shortening and telomere-

associated foci due to DNA damage are observed in aging and aging-related diseases.17 

Mechanistically, disruption of shelterin, a protein complex that safeguards telomeres, and 

the resulting cyclic guanosine monophosphate (GMP)-AMP synthase activation by cytosolic 

chromatin fragments may trigger cellular senescence.18 , 19 Indeed, phosphorylation of the 

H2AX histone at C-terminal serine-139 (γ-H2AX) is the most sensitive marker of double-

stranded DNA breaks, which is the second most common marker of cellular senescence after 

SA-β-gal.

Although their cell cycle is arrested, senescent cells are metabolically active and usually 

secrete a variety of SASP factors, including pro-inflammatory cytokines, chemokines, 

extracellular matrix-degrading proteins, and growth factors. This could generate autocrine 

and/or paracrine effects that contribute to physiological function and pathological 

alterations.

The p53/p21CIP1 and p16INK4A/Rb pathways are activated during induction of cellular 

senescence. A previous study shows that downregulation of p300 histone acetyltransferase 

activity induces a robust G2/M cell cycle arrest and senescence by a mechanism that is 

independent of the activation of p53, p21CIP1 or p16INK4A ,20 suggesting multiple pathways 

involved in cellular senescence.

There are no unique markers for senescence. Thus, a combination of the above 

morphological and molecular features is commonly used to identify senescent cells. It is 

also important to note that senescent cells do not always have all these molecular features, 

and that this depends on the stressor inducing senescence and the type of senescence 

(developmental vs . stress-induced).

Programmed senescence during normal lung development

Cell-specific senescence

We recently showed that lung senescence is observed at birth and decreases throughout the 

saccular stage in mice ( Fig. 2 ).7 Further investigation of lung senescence in prenatal mice 

will reveal dynamic changes of senescence during different stages of lung development. 

Interestingly, there were no significant changes in DNA damage markers (e.g., γH2AX 

and 53BP1) or p16 expression during lung development.7 This suggests that these 

processes are not involved in lung developmental senescence. This is corroborated by the 

fact that p16 is not associated with developmental senescence in embryonic kidneys or 
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limbs.5 , 6 In agreement with previous reports on senescence in other organs,5 , 6 p21 

mediates developmental senescence in the lung.7 Although we identified mesenchymal 

cell senescence during normal lung development, further investigation on cell types or 

states of mesenchymal cells is warranted. The re-analysis of single cell RNA sequencing 

datasets from a published single-cell atlas of mouse lung development will reveal enriched 

signaling pathways and potential mechanisms underlying developmental senescence in the 

lung.21 Although cells undergoing developmentally programmed senescence are cleared by 

macrophages,6 further study is warranted to determine how macrophages are migrated into 

the surrounding of senescent cells.

Signaling pathways driving developmental senescence

Transforming growth factor-β (TGF-β) is able to activate the transcription of the 

p21 gene through Smad complexes. A previous report demonstrates that p21-mediated 

developmentally programmed senescence in the mesonephros and endolymphatic sac is 

causally induced by the TGF-β/Smad pathway.6 This is corroborating with the findings 

that inhibiting TGF-β signaling decreases senescence in Xenopus laevis cement gland in 

axolotl, resulting in abnormal morphology in neighboring structures.22 Once activation, 

Smad proteins can form a complex with forkhead box O (FOXO) proteins. Munoz-Espin 

et al6 further elucidated that phosphoinositide 3-kinase (PI3K)/FOXO and TGF-β/Smad 

pathways are intertwined in modulating developmental senescence in the mesonephros 

and endolymphatic sac. Interestingly, cellular senescence in the axolotl pronephros is 

independent of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein 

kinase (MAPK) pathway.22 This suggests specific signaling pathways responsible for 

developmental senescence (Fig. 2).

TGF-β/Smad pathways are temporally and spatially regulated during normal lung 

development, which plays pivotal roles in promoting branching morphogenesis and 

alveolarization. Mesenchyme-specific deletion of TGF-β receptor 2 gene causes lung 

malformation with prenatal pulmonary cysts in mice.23 Further study is warranted to identify 

signaling pathways, including the TGF-β/Smad pathway, which mediate senescence during 

normal lung development.

Abnormally induced senescence in perinatal lung diseases

Down syndrome

Abnormally induced lung senescence in Down syndrome—Down syndrome is a 

genetic disorder caused by an extra copy of chromosome 21 (trisomy 21). Although Down 

syndrome is a multisystem disorder, lung disease remains a leading cause of morbidity and 

mortality in this condition. Pulmonary manifestations in Down syndrome include pulmonary 

hypoplasia, underdeveloped pulmonary vasculature, and pulmonary vascular remodeling.24 , 

25 Down syndrome has been described as a progeroid syndrome, characterized by 

accelerated maturation and aging.26 This could be due to abnormal overexpression of genes 

on human chromosome 21 (HSA21) and downstream effects on non-HSA21 genes, which 

modulate longevity and senescence.27–31 Trisomy 21 induces chromosomal introversion, 

disrupts lamina-associated domains, and alters the genome-wide chromatin accessibility, 
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which results in senescence in cultured neural progenitor cells.32 Interestingly, trisomy 

21 fetal lungs (at 17–20 weeks of gestation) have reduced proliferation and increased 

expression of p21, p16, and SASP gene expression compared to euploid fetuses,33 , 

34 suggesting abnormal induction of senescence. These studies raise the possibility that 

senescence observed in Down syndrome may occur either through mis-timed activation 

of the endogenous senescence program, or through aberrant induction of senescence in 

various cells. Further study is warranted to investigate whether this abnormal induction of 

senescence contributes to pulmonary hypoplasia, underdeveloped pulmonary vasculature, 

and pulmonary vascular remodeling observed in Down syndrome.

Signaling pathways for lung senescence in Down syndrome—There is only one 

study which employed single cell RNA sequencing and analyzed differentially expressed 

senescence genes in various fetal organs from trisomy 21 fetuses (20–24 weeks of 

gestation), including the lung.34 This study revealed that the differentially expressed genes 

identified in Down syndrome cells correlate with the critical gene expression alterations 

identified in RAS oncogene, and ionizing radiation-induced senescence. Interestingly, the 

differentially expressed genes identified in Down syndrome cells have a low correlation with 

altered gene expression in oxidative stress-induced senescence or replicative senescence. 

This suggests specific signaling pathways underlying senescence in Down syndrome. 

Further reanalysis of these differentially expressed genes is warranted to reveal specific 

signaling pathways for senescence in organs from patients with Down syndrome.

Bronchopulmonary dysplasia

Lung senescence in a hyperoxia-induced murine model—We and others have 

reported that hyperoxia causes senescence in cultured lung fibroblasts, epithelial cells, and 

fetal airway smooth muscle cells.35–38 Using a neonatal hyperoxia-induced murine model 

of bronchopulmonary dysplasia, we demonstrate that neonatal hyperoxia at the saccular 

stage causes transient senescence in the lung at the alveolar stage (Fig. 3).7 This is 

corroborated by a recent report showing that neonatal hyperoxia at both the saccular and 

alveolar stages of lung development causes lung senescence in rats.8 This senescence is 

mediated by the p53/p21 pathway, and is associated with increased oxidative stress and 

DNA damage. Translationally, increased nuclear lamin b1 loss, a senescence biomarker, 

is also observed in the lungs of premature human infants requiring mechanical ventilation 

compared to control subjects. Immunostaining of autopsy samples showed increased triple 

localization of p21, γH2AX and smooth muscle actin in the airways of infants exposed to 

4 days of hyperoxia compared with those who died within 1 day of birth.35 Additionally, 

increased senescence indicators, including 8-hydroxy-2′-deoxyguanosine, lipofuscin, and 

phosphorylated p53, are observed in the lung of premature infants with bronchopulmonary 

dysplasia.8 Altogether, these findings suggest that the DNA damage response participates 

in lung cellular senescence in neonatal hyperoxic lung injury, in contrast to developmental 

senescence.

Cell specificity of senescence—The lung is composed of over 40 cell types. There are 

no changes in co-localization of p21 with type I alveolar cell or endothelial cell biomarkers 

in the lung of mice exposed to hyperoxia as neonates.7 However, neonatal hyperoxia-
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exposed rats have increased co-localization of p16 in type I alveolar cells and endothelial 

cells in the lung,8 suggesting senescence in these cells. The discrepancies between these 

studies may be due to the differences of strains (mouse vs. rat), hyperoxic exposure 

durations (at the saccular stage only in mice vs. at both the saccular and alveolar stages 

in rats), and senescent indicators (p21 vs. p16) . Although type II alveolar cells account for 

a very small percentile of senescent cells, these cells contribute to hyperoxic lung injury via 

paracrine SASP factors.7 , 39 In fact, the majority (92%) of 5-dodecanoylaminofluorescein 

di-β-D-galactopyranoside (C12 FDG; a substrate of SA-β-gal) positive cells were lung 

macrophages. These macrophages also highly express the senescence biomarkers B2M 
(encoding β2-microglobulin)40 and Plaur (encoding uPAR)10 as well as SASP factors, 

further confirming that these macrophages are senescent.

Fate of senescent macrophages—Senescent macrophages usually have a deficit in 

phagocytosis.41–43 Senescent macrophages can be polarized into an M2 phenotype.42 , 44 

Indeed, certain subpopulations of senescent macrophages display distinct markers of M1, 

M2 or mixed polarization status in mice exposed to hyperoxia as neonates.7 Whether 

these macrophages are from resident, monocyte-derived alveolar macrophages, or interstitial 

macrophages is still unclear. Resident alveolar macrophages are master regulators of arrested 

alveolarization in neonatal mice exposed to hyperoxia.45 Senescent M2 macrophages could 

serve to resolve inflammation and repair hyperoxic lung injury, or promote a pro-fibrotic 

transcriptional program after neonatal hyperoxia.

Putative signaling pathways in neonatal hyperoxia-induced senescence—
There are no reports investigating signaling pathways that directly contribute to senescence 

in lung injury seen in bronchopulmonary dysplasia. However, certain pathways that regulate 

cellular senescence are altered in the lungs of premature infants with bronchopulmonary 

dysplasia and of rodents exposed to hyperoxia as neonates (Fig. 2). For instance, the histone 

deacetylase Sirtuin1, well-known for modulating aging and age-related diseases, including 

chronic obstructive pulmonary disease, inhibits cellular senescence.46–48 Mechanistically, 

Sirtuin1 can deacetylate nuclear factor-κB (NF-κ B)/p65, p53, FOXO3, FOXO4, tuberous 

sclerosis complex 2 (TSC2), AMPK and peroxisome proliferator-activated receptor-γ 
coactivator-1 α (PGC-1 α), thereby regulating inflammation, DNA damage response, 

autophagy, and mitochondrial dysfunction. Indeed, Sirtuin1 levels are reduced in peripheral 

blood mononuclear cells and leukocytes isolated from tracheal aspirates of premature 

infants with bronchopulmonary dysplasia compared to controls without bronchopulmonary 

dysplasia.49 , 50 Additionally, inflammation, DNA damage response, and impaired 

autophagic activity are observed in premature infants with bronchopulmonary dysplasia 

and in a baboon model of this disease.51 , 52 Another example is microRNA (miRNA)-34a, 

which is upregulated in the lungs of premature infants with bronchopulmonary dysplasia.53 

We recently reported that miRNA-34a contributes to hyperoxia-induced senescence in 

cultured lung epithelial cells.39 Nevertheless, further study is warranted to investigate 

whether these signaling pathways participate in the development of alveolar and vascular 

simplification seen in bronchopulmonary dysplasia by modulating cellular senescence.
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Strategies to target or remove senescent cells

Strategies to target senescent cells in aging and adult diseases

Previous studies have shown that reducing the senescent cell burden extends healthy 

lifespan and delays the onset of age-related diseases in adulthood.54 , 55 Therefore, there is 

growing interest in developing senotherapeutics that integrate multidisciplinary technologies 

from biology, chemistry, nanotechnology, and immunology.56 Both the surfaceome and 

intracellular senescence-associated pathways can be exploited for diagnosis and therapy. 

Currently, senotherapeutic strategies, such as senolytics, senomorphics, protein degraders, 

nanocarriers, and immunotherapies, are in development (Table 1).

Senolytics are a class of drugs that selectively kill senescent cells via apoptosis by 

transiently disabling antiapoptotic pathways in these cells. Previous reports demonstrate 

the value of senolytics in preventing aging and its deleterious consequences.57–64 The 

first senolytic drugs discovered are dasatinib, quercetin, fisetin and navitoclax. The 

re-accumulation of senescent cells takes weeks. Thus, senolytics can be administered 

intermittently. The two most studied senolytics are a dasatinib plus quercetin cocktail, and 

fisetin, and both therapies have entered clinical trials for the treatment of various age-related 

diseases. The senolytic combination of quercetin and dasatinib is well tolerated in patients 

with diabetic kidney disease and idiopathic pulmonary fibrosis.65 , 66 However, the results of 

a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial demonstrate 

that changes in forced vital capacity, forced expiratory volume in 1 second, 6-min walk 

distance, and fatigability do not appear to differ significantly after treatment of quercetin 

and dasatinib in patients with idiopathic pulmonary fibrosis.66 Larger randomized controlled 

trials are warranted to confirm the safety and efficacy of quercetin and dasatinib in patients 

with idiopathic pulmonary fibrosis.

Previous studies have shown that a combination of dasatinib with quercetin has a toxic 

effect on non-senescent cells.67 , 68 Therefore, other approaches, such as galactose-based 

prodrugs, proteolysis-targeting chimera and nanocarriers, are currently being exploited to 

deliver cytotoxic drug or senolytics into senescent cells.67 , 69 , 70 For instance, a recent study 

designed a new prodrug SSK1 based on elevated β-gal, a major senescence marker, to direct 

gemcitabine and kill senescent cells in a highly selective manner.67 Functionally, this drug 

can attenuate low-grade local and systemic inflammation, and restore physical function in 

aged mice and in bleomycin-induced lung injury.67

Senomorphics, also known as senostatics, are compounds that decrease the detrimental 

effects of the SASP or suppress senescence without inducing senescent cell death. 

Mechanistically, senomorphics ameliorate transcription of SASP factors by inhibiting ataxia 

telangiectasia mutated (ATM), p38 MAPK, Janus kinase (JAK)/signal transducer and 

activator of transcription (STAT), and the NF-κB and mammalian target of rapamycin 

(mTOR) pathways. Unfortunately, administration of senomorphics may cause off-target 

effects due to suppression of cytokine secretion by non-senescent cells.

Although senotherapies prevent, or reverse chronic disorders, geriatric syndromes and loss 

of physiological resilience in preclinical studies and clinical trials,54 , 65 , 71–73 they may 
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also negatively affect non-senescent cells. Senescent surfaceome-based immunotherapies 

offer an alternative strategy to specifically target senescent cells.64 Such immunotherapies 

take advantage of cell surface protein antigens and receptors preferentially upregulated 

on the surface membrane of senescent cells, including uPAR, B2M, and DDP4.10 , 

64 , 74 For instance, CAR T cells are redirected to recognize the senescent surfaceome 

protein uPAR and preferentially remove senescent cells in different models.10 Antibody-

drug conjugates are monoclonal antibodies attached to cytotoxic drugs that have been 

successfully used for cancer treatment. The first senolytic antibody-drug conjugate was 

designed by conjugation of a B2M immunoglobulin G1 (IgG1) monoclonal antibody with 

duocarmycin, an irreversible DNA alkylating agent, to remove senescent cells in vitro .40 

Further study is warranted to test their efficacy and toxicity.

Strategies to remove senescent cells in neonates

There are no clinical trials using senotherapies to prevent or treat neonatal diseases, 

including Down syndrome and bronchopulmonary dysplasia. Although quercetin alone 

inhibits neonatal hyperoxia-induced alveolar simplification in mice by reducing oxidative 

stress and inflammation in mice, there are no experimental studies using a senolytic cocktail 

of quercetin and dasatinib in neonatal lung injury.

Using senolytics as a tool, we demonstrated that reducing senescent cells at the saccular 

stage of lung development disrupts normal lung development.7 This suggests that 

senescence contributes to normal lung development perhaps by reducing mesenchymal 

cells and allowing for better approximation of alveolar sacs and blood vessels. In 

contrast, reducing senescent cells using a senolytic cocktail of quercetin and dasatinib 

or a selective p21 inhibitor in the alveolar stage of lung development protected against 

neonatal hyperoxia-induced alveolar and vascular simplification in mice.7 Similarly, clearing 

senescent cells by FOXO4-D-retro-inverso (DRI), a peptide antagonist designed to block 

the interaction of FOXO4 and p53, at the alveolar stage inhibits neonatal hyperoxia-induced 

lung injury in rats.8 Therefore, the timing of senescence is important in mediating normal 

lung development, as well as pulmonary hypoplasia and pulmonary vascular anomalies 

in Down syndrome and bronchopulmonary dysplasia. Therefore, lung developmental 

senescence should be preserved while developing novel therapies that clear senescent cells 

to prevent bronchopulmonary dysplasia and its long-term consequences.

Previous studies show that lung uPAR levels are increased in neonatal mice exposed to 

hyperoxia, whereas genetic deletion of uPAR protects against hyperoxic lung injury.75 , 

76 uPAR can be shed from the cell surface as a soluble protein. Indeed, elevated soluble 

uPAR levels are biomarkers of bronchopulmonary dysplasia in premature infants.77 , 78 

We reported that senescent lung macrophages highly express uPAR in mice exposed to 

hyperoxia, compared to air exposed controls.7 Thus, clearing uPAR+ senescent macrophages 

using uPAR antibody conjugates may be a potential approach to prevent lung injury in 

bronchopulmonary dysplasia.
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Conclusions and perspectives

In summary, senescent cells not only play important roles in the pathogenesis of chronic 

lung diseases in neonates including bronchopulmonary dysplasia, but also contribute to 

normal lung development. Therefore, for the treatment of bronchopulmonary dysplasia, it 

may be critical to maintain normal developmental senescence (during the saccular phase) 

while reducing senescent cells resulting from injury (Fig. 2). Intermittent administration 

of a combination of dasatinib and quercetin in patients with idiopathic pulmonary fibrosis 

is generally well-tolerated.66 Questions remain regarding safety profiling, tolerability, and 

side effects of senotherapies in premature infants with bronchopulmonary dysplasia and 

associated comorbidities.

Rodents exposed to hyperoxia in the first days of life are the most commonly used model 

to study human bronchopulmonary dysplasia.79–81 However, this model cannot recapitulate 

all of the characteristics of bronchopulmonary dysplasia. Large animal models such as 

the preterm lamb can mimic the clinical setting of preterm birth and respiratory failure 

that requires prolonged ventilatory support for days or weeks with oxygen-rich gas.82 

Furthermore, as with humans at term gestation, the lungs of term sheep are at the beginning 

of the alveolar stage. Thus, further study using larger animals, such as preterm lambs, is 

warranted to investigate the role of senescence during lung development and injury.

A previous study of mouse forelimb formation showed that a subset of senescent cells lost 

their senescence hallmarks, re-entered the cell cycle and resumed proliferation.83 According 

to the definition of senescence, it is unclear whether these cells are really senescent if 

they resume proliferation. Further studies using lineage tracing experiments would elucidate 

the fate of senescent cells during normal lung development and in the lung after neonatal 

hyperoxia.

Senescent cells are highly heterogeneous as to cell type and tissue distribution. Cutting-edge 

technologies, such as single-cell RNA sequencing and spatial transcriptomics, will help us 

understand the regional heterogeneity of senescent cells during lung development and injury.

Accumulating evidence suggests early origins of adult chronic lung diseases, such 

as chronic obstructive pulmonary disease and asthma.84–87 Indeed, bronchopulmonary 

dysplasia increases the risk of developing chronic obstructive pulmonary disease, asthma, 

and pulmonary hypertension in later life.88–92 Further studies are warranted to investigate 

whether neonatal lung senescence in bronchopulmonary dysplasia contributes to the 

development of these pulmonary diseases in adulthood.
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Fig. 1. 
Molecular features of senescent cells and their roles in contributing to both physiological 

function and pathological changes. Adapted from Zhang et al.64 Cellular senescence 

can be induced by intrinsic and extrinsic factors, and is characterized by numerous 

molecular features. Senescent cells generate SAPS factors which play pivotal roles 

in physiological function, pathological alteration, and tissue dysfunction. MiDAS: 

mitochondrial dysfunction-associated senescence; mtDNA: mitochondrial DNA; SA-β-

gal: senescence-associated beta-galactosidase; SASP: senescence-associated secretory 

phenotype; TAF: telomere-associated DNA damage foci.
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Fig. 2. 
Putative signal pathways of senescence in normal lung development and bronchopulmonary 

dysplasia. Although there is no report regarding signal path-ways of developmental 

senescence in the lung, TGF-β/Smad and PI3K/FOXO1/3 signal pathways participate in 

senescence during the development of other organs (left panel). There are no reports 

studying signal pathways involved senescence in BPD. However, certain signal pathways 

regulated by Sirtuin1 and miRNA-34a are altered in the lung of premature infants with BPD 

and of neonatal hyperoxia-induced animal models (right panel). These pathways have been 

shown to cause senescence by upregulating inflammatory response, DNA damage response, 

impaired autophagy and mitochondrial dysfunction. AMPK: adenosine monophosphate-

activated protein kinase; BPD: bronchopulmonary dysplasia; FOXO: forkhead box O; 

miRNA-34a: microRNA 34a; PGC-1 α: peroxisome proliferator-activated receptor-γ 
coactivator-1 α; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; 

TGF-β: transforming growth factor-β.
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Fig. 3. 
Impact of timing on senescence in lung development and neonatal lung injury. Senescence 

is observed in mesenchymal cells and peaks at the saccular stage, which contributes to 

normal lung development. Neonatal hyperoxia causes transient senescence in macrophages, 

type II alveolar cells and secondary crest myofibroblasts at the alveolar stage, which leads 

to alveolar and vascular injury. It is critical to develop novel therapies that clear senescent 

cells during an optimal therapeutic window to prevent bronchopulmonary dysplasia and its 

long-term consequences while preserving normal lung development.
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