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Abstract

Motivation: Molecular carcinogenicity is a preventable cause of cancer, but systematically identifying carcinogenic
compounds, which involves performing experiments on animal models, is expensive, time consuming and low
throughput. As a result, carcinogenicity information is limited and building data-driven models with good prediction
accuracy remains a major challenge.

Results: In this work, we propose CONCERTO, a deep learning model that uses a graph transformer in conjunction
with a molecular fingerprint representation for carcinogenicity prediction from molecular structure. Special efforts
have been made to overcome the data size constraint, such as multi-round pre-training on related but lower quality
mutagenicity data, and transfer learning from a large self-supervised model. Extensive experiments demonstrate
that our model performs well and can generalize to external validation sets. CONCERTO could be useful for guiding
future carcinogenicity experiments and provide insight into the molecular basis of carcinogenicity.

Availability and implementation: The code and data underlying this article are available on github at https://github.-
com/bowang-lab/CONCERTO

Contact: ljlee@psi.toronto.edu or bowang@vectorinstitute.ai

1 Introduction

Globally, cancer is the second leading cause of death, and accurate
molecule carcinogenicity prediction holds promise in decreasing the
likelihood of disease onset (Roser and Ritchie, 2015). Cancer can be
broken down by onset cause: random somatic mutations during cell
division, exposure to harmful radiation or molecule reactivity with
DNA (Balmain, 2020). Two major methods for measuring chemical
carcinogenesis potential are carcinogenic and mutagenic experi-
ments (Jacobs and Brown, 2015; Smietana et al., 2016).
Carcinogenic data is considered more accurate as it directly meas-
ures tumor growth in animals; however, experiments can be costly
and time consuming. In addition it is able to capture compound car-
cinogenicity acting through DNA reactivity (genotoxic effects) and
mis-regulation of cell function (non-genotoxic effects) (Wolf et al.,
2019). In contrast, mutagenicity experiments are conducted in bac-
terial cultures and tend to be significantly cheaper and faster, but re-
sult in higher rates of false positives and capture only genotoxic
effects (Walmsley and Billinton, 2011). In silico predictions to assess
carcinogenicity provide an appealing alternative, and can help select
compounds for costly downstream analysis.

Traditionally, carcinogenic compounds have been identified as a
result of observational studies in sub-populations with increased
cancer penetrance. This approach is effective in two scenarios: the
first is if the compound is extremely carcinogenic, e.g. aristolochic

acid, which was present in certain herbal supplements before being
identified as one of the most potent compounds in the carcinogenic
potency database (CPDB) (Gold et al., 2005). The second is when a
large enough sub-population is repeatedly exposed to a moderately
carcinogenic compound, as was the case with chimney sweepers in
18th century England, whose exposure to soot was correctly identi-
fied by Percivall Pott in 1775 as a source of illness (Waldron, 1983).
These approaches cannot identify chemicals of intermediate potency
and prevalence, leading to continued exposure of the population to
unidentified carcinogens. A high throughput computational method
for predicting molecular carcinogenicity can provide a filter for dis-
covering high likelihood carcinogenic compounds that would be
otherwise missed by traditional identification workflows.

Current state-of-the-art solutions for molecule carcinogenicity
prediction train models using ASCII string representations of mole-
cules through simplified molecular-input line-entry systems
(SMILES) or molecular fingerprints, hand engineered features cap-
turing core molecular properties (Wang et al., 2020; Weininger,
1988; Zhang et al., 2017). A major drawback of these approaches is
that the model architecture does not make use of the topology of the
molecular graph. Graph neural networks (GNNs) are invariant to
the ordering of atoms in a molecular graph and can leverage their re-
spective node and edge features.

Although GNN models have successfully been applied for vari-
ous molecular representation tasks, they have eluded application for
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carcinogenicity prediction. Motivated by this opportunity, we pro-
pose a novel system CONCERTO: Carcinogenicity prediction with
GNNs. Our key contributions can be summarized as follows:

• To the best of our knowledge, we are the first to use GNN

approaches and transfer learning to identify carcinogenic

molecules.
• Using a novel multi-round pre-training strategy, we leverage mu-

tagenic data to improve performance on the carcinogenicity pre-

diction task
• We use counterfactual molecule generation to investigate known

carcinogenic functional groups and validate that CONCERTO

recovers biologically meaningful representations.

2 Related work

2.1 Carcinogenicity prediction
In general, molecule carcinogenicity prediction remains a challeng-
ing problem. Zhang et al. (2017) introduced CarcinoPred-EL, an
ensemble-based approach for predicting the carcinogenicity of
chemicals using molecular fingerprints, achieving a relatively high
test accuracy on a limited dataset. Recently, Wang et al. (2020)
expanded on existing methods and presented a neural network
model (CapsCarcino); however, the model is not publicly available.
The aforementioned methods frame carcinogenicity prediction as a
classification problem, but other works attempt to predict dose-rate
required for cancer onset. A number of approaches use cheminfor-
matics features [such as molecular descriptors (Landrum, 2016;
Moriwaki et al., 2018)] to construct regression models for continu-
ous carcinogenicity prediction (Fjodorova et al., 2010; Singh et al.,
2013; Wu et al., 2015). Recently, Limbu and Dakshanamurthy
(2021) compared various regression models of these sorts, of which
AdaBoost (Freund and Schapire, 1997) was found to be among the
most accurate for dose-rate prediction.

2.2 Geometric deep learning
GNN models are a family of neural networks that are suited to
graph structured input data and can enforce notions of permutation
invariance and equivariance (Gori et al., 2005; Scarselli et al.,
2009). Recent advancements in geometric deep learning have dem-
onstrated success in molecular property prediction (Duvenaud et al.,
2015; Gilmer et al., 2017; Yang et al., 2019) and drug discovery
(Stokes et al., 2020). Duvenaud et al. (2015) showed utility of graph
convolutional network (GCN) as an alternative way of representing
a molecular profile, analogous to molecular fingerprints. In a subse-
quent work, Gilmer et al. (2017) proposed message passing neural
networks (MPNNs) to predict quantum properties of organic mo-
lecular compounds, later improved upon and extended by Yang
et al. (2019). In addition, Stokes et al. (2020) have demonstrated the
promising outcomes of MPNN models in the domain of drug dis-
covery, uncovering the previously unknown antimicrobial molecular
compound Halicin. Recently, Ying et al. (2021) have introduced an
effective position encoding technique for graph transformer archi-
tectures, finding success in molecular problem domains.

3 Materials and methods

3.1 Problem formulation
At its core, carcinogenicity prediction is a graph level regression
problem: given a molecular representation, the model predicts an
associated carcinogenicity dose dependent potency. We consider
two types of molecular representations. The first are molecular
graph representations, where the atoms and bonds of the molecule
are represented as nodes and edges of the graph (respectively). The
node and edge features depend on the choice of model, but include
important chemical properties like atomic number, atomic mass and
bond order. The second, fingerprint-based models use hand engi-
neered features that aim to summarize important molecular

properties like molecule aromaticity, presence of functional groups
and atom co-occurrence (Landrum, 2016; Rogers and Hahn, 2010).
Fingerprints are an effective way to incorporate domain expert
knowledge through identification of important molecular
substructures.

Fundamental technical challenges at the core of the carcinogen-
icity prediction problem are the difficulty of data acquisition, and
label representation. Every experiment is conducted in animals, usu-
ally rodents, resulting in dozens of animals required for a single data
point. Not only does this result in limited training data (approxi-
mately 1000 unique compounds), but presents difficulties for robust
model evaluation. Previous methods have treated this problem as
binary classification task which results in loss of information regard-
ing the degree of compound potency (Doe et al., 2019). This infor-
mation is important for real world applications where degree of
exposure is an important factor for measuring risk. Carcinogen dos-
ing is modulated using the maximum tolerated dose (MTD) where
animals are given the highest possible compound dose without com-
promising animal survival. The resulting datasets contain carcino-
genic labeled molecules which span multiple orders of magnitude
potency dosage. An ideal model for carcinogenicity prediction
would be able to distinguish between dosage extremes. In certain
experiments, it is possible to express results through a dose-rate for-
mulation represented by TD50 mg/kg body weight/day, which cap-
tures the differences of compound dosage as a proportion of body
weight.

3.2 CONCERTO
The CONCERTO architecture consists of a large self-supervised
GNN transformer and multilayer perceptron (MLP) optimized over
a molecular fingerprint representation concatenated with GNN
transformer representation (Fig. 1). It is trained alternately on muta-
genicity and carcinogenicity objectives.

3.2.1 Graph neural net transformer

Given of a set of nodes (or vertices) V ¼ fvign
i¼1 and a corresponding

set of edges E ¼ fðvi; vjÞjvi; vj 2 V; i; j ¼ 1; . . . ;ng, a graph is defined
as a tuple G ¼ ðV;EÞ of the respective node and edge sets. The
graph neural net transformer is composed of two components: a
GNN, specifically a message passing neural network (MPNN), to
encode local information about each node’s neighborhood, and a
multi-head attention network (Transformer) to transmit long-range
information between nodes.

GNNs take the graph structure G as input in the form of an
adjacency matrix and use node-wise and/or edge-wise layer
embeddings to learn a non-linear predictive mapping. MPNNs
are a specific type of GNN which aggregate information in the
form of ‘messages’ across neighborhoods of respective nodes
(Gilmer et al., 2017). For a one-hop neighborhood, the update
for the ith node’s hidden state is

h
ðlÞ
i ¼ rðWðlÞm

ðlÞ
i þ bðlÞÞ; (1)

where W ðlÞ are the neural network weights, bðlÞ is the bias term, rð�Þ
is some non-linear activation function, m

ðlÞ
i is an aggregation of

inbound messages for the ith node, and l ¼ 1 . . . L is the message
passing iteration number.

Transformers use an attention mechanism to learn relationships
between parts of the input data. Given a set of items, the transform-
er’s attention layer computes three kinds of embeddings for each
item: keys, queries and values. Intuitively, the key and query embed-
dings are used to compare pairs of items by computing attention
weights, a representation of their dependence. An item’s updated
state is computed using an attention-weighted average of the value
embeddings of the other items in the set. In the context of molecular
property prediction, each item corresponds to an atom in the graph,
and the queries, keys and values are derived from the final node
embeddings of the MPNN. More formally, given a set of input
queries, keys and values fðqk; kk; vkÞg corresponding to nodes
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indexed by k, the scaled-dot-product attention operation for node i
is defined as

AðiÞ ¼
X

j

softmaxj0
qT

i kj0ffiffiffi
d
p

 !" #
j

vj; (2)

where d is the dimensionality of the embeddings. Since qk; kk; vk are
derived from the final MPNN node embeddings h

ðLÞ
k , the attention

operation does not rely on edges of the graph. Effectively, it
increases the contextual node-wise neighborhood used for encoding
molecular representations by allowing for interactions between
nodes that are not explicitly connected.

For each molecule, we generate a representation using graph rep-
resentation from self-supervised GNN transformer (GROVER)
(Rong et al., 2020). It is a large model that is pre-trained on 10 mil-
lion unlabeled molecules utilizing self-supervised contextual and
graph level motif prediction tasks. Contextual property prediction
task consists of selecting a molecular subgraph and using its repre-
sentation to predict local neighborhood properties. The motif pre-
diction task involves an alternative way to encode fingerprint
representations in a structure: the task consists of predicting the
presence of a functional group given the entire molecular representa-
tion. Self-supervised training is conducted over representations of
nodes and edges, making use of the attention operation to aggregate
information across global neighborhoods. During CONCERTO
training, we freeze GROVER weights and use the computed repre-
sentation as input to the MLP (Rong et al., 2020).

3.2.2 Multilayer perceptron fingerprint predictor

To add explicit structure information, we supplement the learned
representation from the graph transformer with chemical fingerprint
features. We encode each molecule using Morgan, RDKit and
MACCS fingerprints to capture properties relating to molecule sub-
structures, including aromatic rings and functional groups (Durant
et al., 2002; Landrum, 2016; Rogers and Hahn, 2010). We concat-
enate the representation from GROVER to the fingerprints and train
a multilayer perceptron to predict molecular carcinogenicity. We
utilize ReLU activations and batch normalization to stabilize
training.

3.2.3 Multi-round mutagenicity pre-training

To improve carcinogenicity model predictions, we pre-train on
related, more abundant mutagenicity experiments using multi-round
pre-training. Instead of measuring tumor growth in animal systems
to evaluate carcinogenicity, mutagenicity experiments measure com-
pound DNA reactivity in cellular systems. DNA damage is usually
evaluated with an indirect phenotypic measure (such as cell growth)
resulting in noisy measurements with lower rates of reproducibility

(Walmsley and Billinton, 2011). Although of lower quality, mutage-
nicity experiments are an order of magnitude more abundant and
measure a related property to carcinogenicity experiments. To per-
form multi-round pre-training, we first train the model on mutage-
nicity data and terminate using early stopping. We then train on
carcinogenicity data and perform this cycle three times, at which
point we observe that the performance gains saturate. We find that
multi-round pre-training increases model performance for carcino-
genicity prediction. We hypothesize the effectiveness of this proced-
ure is due to continuous cycling between objectives leading to our
model learning relevant biological signal shared between tasks while
ignoring irrelevant experimental noise due to neural network prop-
erty of catastrophic forgetting (French, 1999)

For mutagenicity pre-training and evaluation we use a dataset
generated by Hansen et al. (2009) consisting of 6000 unique mole-
cules (Table 1). There is a significant overlap between mutagenicity
and carcinogenicity datasets, but limited concordance: only 70%
(For the purposes of this analysis we binarized carcinogenicity
data.). The high mismatch percentage is in part due to low reprodu-
cibility of mutagenicity experiments (Benigni and Bossa, 2011;
Walmsley and Billinton, 2011).

3.2.4 Hyper-parameters and model selection

We perform a hyper-parameter sweep over model architecture fea-
tures, training parameters and pre-training parameters. For each set
of hyperparameters we perform threefold cross validation and rank
the models based on the average validation performance of the folds.
We then choose the top three performing models, average their pre-
diction and evaluate on the test sets. We use canonicalized SMILES
strings to identify and remove common structures, preventing data
leakage across splits (Landrum, 2016; Weininger, 1988). Missing
this crucial step can lead to an overlap between training and valid-
ation sets resulting in inflated performance (Li et al., 2021). Our
final CONCERTO model consists of a GROVERlarge embedding in
addition to 2048 dimensional Morgan, RDKit and MACCS

Fig. 1. A graphical summary of the core CONCERTO components. In blue (top) is the GNN transformer, which takes in the graph representation of the molecule. In green

(bottom) is the predictor which consists of fingerprint representation of the molecule that is fed into the multilayer perceptron along with the GNN representation. The two

parts are jointly optimized with multi-round pre-training (orange - right) to generate carcinogenicity prediction (A color version of this figure appears in the online version of

this article)

Table 1. Summary statistics of chemical compound carcinogenicity

datasets

Dataset Experiment type No. of Experiments (þ) labels (-) labels

CPDB C 6540 509 494

CCRIS CþM 88056 2674 2099

Hansen M N/A 3403 2909

Note: Under Experiment Type: C stands for carcinogenic experiments, M

stands for mutagenic experiments. A significant fraction of compounds is pre-

sent in multiple databases.
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fingerprints. The MLP consists of five layers each containing drop-
out with probability 0.1, batch normalization and a ReLU activation
function (Agarap, 2018; Ioffe and Szegedy, 2015).

3.3 Counterfactual approach to model interpretability
Exmol (Wellawatte et al., 2022) is a model-agnostic method for
interpreting chemical property predictions. To investigate a particu-
lar prediction, Exmol creates a local chemical subspace around the
target molecule and searches for nearby counterfactual examples.
The subspace is generated by randomly mutating the SELFIES
(Krenn et al., 2019) string representation of the target (Nigam et al.,
2021). After applying the model to each molecule in the subspace,
Exmol can find examples that are chemically close to the target with
drastically different predictions. These counterfactual molecules can
help explain the model’s behavior by highlighting differences in the
input (i.e. functional groups, rings) that have a large effect on the
output.

4 Experimental design

In this work, we consider a selection of chemical compound data-
bases comprised of long-term carcinogenesis bioassays in animals,
as well as short term mutagenicity experiments in bacterial cultures.
To tackle the MTD problem, we augment our training set and use
transformed TD50 values instead. In addition, we assemble a new
external test set for evaluating carcinogenicity—five times larger
than the previous (Benigni et al., 2008). To confirm the validity of
the new carcinogenicity test set, we evaluate the distances between
molecular distributions using Tanimoto scores.

4.1 Continuous carcinogenicity measure
For model training we utilize CPDB, which is a collection of 6540
experimental tests containing results from long-term carcinogenesis
bioassays, primarily in rodents, for over 1000 chemical compounds
(Table 1) (Gold et al., 2005). Carcinogenicity of the tested chemical
compounds was determined using TD50 values, an estimated nu-
merical measure of carcinogenic potency, which represent the dose-
rate of tumor development. Instead of using binarized tumor growth
labels, we use log reciprocal TD50 values for model training,
yielding a richer information label. TD50 is estimated using the
proportional hazards model (Bailer and Portier, 1993; Cox, 1972):

kðt; dÞ ¼ ð1þ b � dÞk0ðtÞ; (3)

where k0ðtÞ is the tumor incidence without dosing (baseline) after t
units of time, b is the model parameter used to calculate the TD50
value (b¼0 when there is no relationship between molecular dosage
and tumor growth), and d is the administered dose-rate of a respect-
ive test molecule (Gold, 2007). The estimated TD50 value is then
calculated as logð2Þ=bb, where bb is the maximum likelihood estimate
of b. We transform the calculation for TD50 to logbb to improve nu-
merical stability in model training. In addition, to summarize data
across multiple experiments we take the harmonic mean over TD50
values, which biases the results toward low values, i.e. experiments
that demonstrated molecular carcinogenicity. Our reasoning follows
that of the CPDB authors’: given that a single experiment demon-
strated carcinogenicity, the compound is likely to have some car-
cinogenic properties that are present in a unique set of conditions.

4.2 External test set
For external test evaluation we use CCRIS, which is a database con-
taining experimental test results of over 4500 chemical compounds
gathered from various studies cited in literature (Cameron et al.,
1986). These experiments were conducted on chronic cancer animal
models, the majority of which were rodents, measuring carcinogen-
icity, mutagenicity, tumor promotion and tumor inhibition. A panel
of experts used the aggregated experimental results to assess the mo-
lecular carcinogenic and mutagenic labels, providing binary labels
for every experiment.

4.3 Estimating differences of molecular distributions
In this work, we introduce a new dataset for carcinogenicity analysis
and use a perturbation approach for evaluating functional group im-
portance both of which require measuring molecular distances. To
measure similarity between individual molecules, we compute
Tanimoto similarity of their molecular fingerprints. This pairwise
measure allows us to estimate dataset variance, using the diversity
metric, and distance between dataset distributions, using maximum
mean discrepancy (MMD; Gretton et al., 2012).

To calculate Tanimoto similarity, between two molecules
~x; ~y 2 D, we first compute binary Morgan fingerprints (Rogers and
Hahn, 2010) as x ¼ hfpð~xÞ; y ¼ hfpð~yÞ, where hfp is a mapping from
SMILES strings to vectorized binary representations. Then, we de-
fine the Tanimoto similarity coefficient as

Tðx; yÞ ¼ hx; yi
jjxjj22 þ jjyjj

2
2 � hx; yi

; (4)

where h�; �i is the vector dot product and jj � jj2 the Euclidean norm
(Maggiora et al., 2014).

Since x and y are binary vectors, Equation (4) is consistent with
the general definition of the Tanimoto similarity coefficient
(Maggiora et al., 2014).

We make use of the MMD score to define a distance metric be-
tween molecular datasets. Given two sets of molecular fingerprints
that are sampled from two distributions fxign

i¼1 � PX and fyig
m
i¼1 �

PY and for some similarity kernel function kðxi; yiÞ, the empirical es-
timate for MMD is defined as

bMðPX ;PYÞ ¼ 1

nðn� 1Þ
Xn

i

Xn

j 6¼i

kðxi; xjÞ

� 2

nm

Xn

i

Xm
j

kðxi; yjÞ þ
1

mðm� 1Þ
Xm

i

Xm
j6¼i

kðyi; yjÞ:

(5)

We use the Tanimoto similarity coefficient as the kernel func-
tion, i.e. kðxi; yiÞ ¼ Tðxi; yjÞ.

5 Results

5.1 Model results
We perform hyperparameter searches over CONCERTO architec-
tures, fingerprint MLP and GROVER MLP, and find that
CONCERTO outperforms the standalone models on both test sets
(Table 2). Standalone GROVER results in high variability predic-
tions underscoring the importance of the MLP-fingerprint model
component. Importantly, we observe that CONCERTO outper-
forms other models in the low false positive region, the prediction
regime in which the carcinogenicity compounds can be identified
with the lowest false discovery rate (Fig. 2a). Previous state-of-the-
art, CarcinoPred-EL, was trained on data from CPDB, therefore we
are unable to generate predictions without overfitting. Instead, we
utilize a dataset used by CarcinoPred-EL to design a comparable
method and evaluate it on the continuous CPDB data. Furthermore
we design an AdaBoost decision tree model emulating methodology
from the work of Limbu and Dakshanamurthy (2021). We also
compare on an external CCRIS test set where our model outper-
forms all variants of CarcinoPred-EL the AdaBoost decision tree
(Table 2). We find that MLP-fingerprint predictor in conjunction
with GROVER deliver the best results on the CPDB test set. We hy-
pothesize that in data constrained settings, fingerprints are an effect-
ive way for representing domain expert knowledge.

5.2 Ablation experiments
The full CONCERTO model consists of GROVER embeddings, fin-
gerprint representations, trained using alternating carcinogenicity
and mutagenicity objectives. We perform ablation experiments to
identify contributions of individual components. We conduct 50
runs with matched seeds on a well performing set of
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hyperparameters to evaluate whether addition of pre-training
improves performance on CPDB and CCRIS. We find that providing
GROVER representation to the models improves performance on
both the test sets (Table 3). The mutagenicity pre-training objective
further improves performance, almost matching the performance of
the full CONCERTO model. In addition, we find that CONCERTO
is sensitive to initialization and stochastic effects occurring during
training. We hypothesize this behavior is especially common in the
low data regime setting for training neural nets.

5.3 Counterfactuals for model interpretability
We utilize Exmol to better understand our model’s behavior by iden-
tifying molecular substructures that are important drivers in carcino-
genicity prediction (Wellawatte et al., 2022). In Figure 3, we
demonstrate a method for model interpretability in which molecular
substructures are added or removed from the original molecule.
These changed molecules are counterfactual examples that are close
to the original as measured by Tanimoto distance but have large
changes in carcinogenicity predictions. In the demonstrated

Table 2. Model performances on CPDB and CCRIS

Model CPDB n¼ 518 CPDB n¼ 518 CCRIS n¼ 202 CCRIS n¼ 202

Pearson MSE ROC AUC PR AUC

CONCERTO 0:5060:04 0:7160:06 0:7360:03 0:7260:01

Fingerprint MLP 0.36 6 0.07 0.81 6 0.08 0:6860:03 ð0:11Þ 0.64 6 0.01

GROVER MLP 0.15 6 0.16 0.83 6 0.07 0:6860:10 ð0:80Þ 0.69 6 0.01

CarcinoPred-EL Average RF — — 0:6760:02 ð0:05Þ 0.65 6 0.02

CarcinoPred-EL Pubchem RF — — 0:6460:03 ð0:01Þ 0.61 6 0.01

Fingerprint RF—CarcinoPred-EL alike 0.35 6 0.04 1.17 6 0.06 0:6660:04 ð0:06Þ 0.64 6 0.01

Fingerprint AdaBoost—Limbu et al. alike 3860:05 0.8 6 0.08 0:6860:02 ð0:10Þ 0.65 6 0.01

Note: ROC and PR values accompany plots a, b from Figure 2 and are calculated only over values for which CarcinoPred-EL is defined for. CarcinoPred-EL

was trained on CPDB so we are unable to generate predictions without confounding overfitting. Instead, we use CarcinoPred-EL dataset to train a random forest

similar to their proposed method and use it to evaluate its performance on the CPDB dataset. Uncertainty is calculated using standard deviation over data re-

sampled with replacement (bootstrapping). We use one sided DeLong test to assess statistical significance differences of ROC AUC values and indicate P-value in

parentheses. Standard deviations are indicated after the values as a measure of uncertainty. For ROC AUC significance values are indicated in paranthesis compar-

ing to full CONCERTO model (0.73 ROC auc) were represented in Bold

(a) (b)

(c) (d) (e)

Fig. 2. (a, b) ROC and Precision–Recall plots demonstrating performance gains of CONCERTO (solid) over previous state of the art (dashed) on an external test dataset,

CCRIS. (c–e) Correlation between log reciprocal TD50 values and model predictions on the CPDB test set. A clustered set of points at �1.62 carcinogenicity values indicates

experiments in which no tumor growth was observed in animals

i88 P.Fradkin et al.



example, removing an aliphatic iodine leads to decreased predicted
carcinogenicity. Similarly, in the increased carcinogenicity counter-
factual molecule, there is addition of a nitroso group. Scientists have
previously identified both of these substructures as toxicophores
(Kazius et al., 2005), functional groups which are enriched in muta-
genic molecules. This suggests that our model is able to recover pre-
vious observations about toxicity, and by extension, carcinogenicity.

We extend the aforementioned analysis by comparing the fre-
quencies of known toxicophores found in the test data with a corre-
sponding set of counterfactual examples. Our results suggest that
CONCERTO learns carcinogenic functional groups. For every mol-
ecule in our test set, we generate a positive carcinogenic counterfac-
tual and a negative non-carcinogenic counterfactual. We then check
the generated molecular structures for the presence of known toxi-
cophores (Table 4) (Kazius et al., 2005). We find that there is a
higher percentage of toxicophores in positive counterfactuals pro-
posed by CONCERTO than original molecules. Similarly, there is a
smaller percentage of toxicophores in negative counterfactuals than
original molecules. Even if a toxicophore is not present in the set of
original molecules, as is the case for O[NH2], CONCERTO
enriches positive counterfactuals for that functional group. Overall,
this analysis is an orthogonal evaluation suggestion that
CONCERTO learns individual carcinogenic functional groups.

5.4 Quantifying dataset differences
To better understand differences between our datasets, we calculate
maximum mean discrepancy over Tanimoto scores, as described in
Equations 4, 5. We perform MMD calculations for carcinogenic
datasets while further partitioning data into positive and negative
classes (Fig. 4). Our first observation is that as expected, the distance
between matching classes across datasets is smaller than the within
dataset distances between positive and negative classes. This indi-
cates that the inter-dataset differences are smaller than inter-class
differences, confirming our choice of using CCRIS as an external
test dataset. Our second observation is that inter-class distances vary
between different datasets. We observe that CCRIS MMD distance
between positive and negative classes (0.024) is significantly greater
than CPDB inter-class distance (0.009) which leads us to hypothe-
size about the differing nature of dataset construction. One reason
for this observation could be due to the fact that CCRIS labels were
assigned by a panel of experts with molecules selected at either end
of the carcinogenicity spectrum. Meanwhile CPDB inclusion criteria
consisted of a robust set of experimental criteria followed by the cal-
culation of a TD50 score. These observations support our choice for
utilizing CCRIS as an external test set for CPDB trained models.

6 Discussion

Predicting molecular carcinogenicity is an important public health
problem to address, but due to the prohibitive cost and difficulty of
measuring carcinogenicity many compounds lack experimental
data. In this work, we investigate three orthogonal approaches to
overcome dataset size constraints: architecture choice, dataset modi-
fication and pre-training techniques. First, we leverage the inductive
bias present in GNN architectures relating to the graphical molecu-
lar structure. We find that GROVER, in conjunction with an MLP-
fingerprint predictor outperforms the fingerprint MLP model as well
as the previous state-of-the-art model. We suspect that due to the
limited size of available data, a combination of transfer learning
from a large GNN, and hand-engineered features extracted from
molecular structures, is effective at capturing important drivers of
molecular carcinogenicity. Next, we augment the dataset with more
informative labels by aggregating individual experimental results
and creating continuous labels. This creates a richer representation
for the network and circumvents the MTD design problem, where a
molecule could be carcinogenic at a maximum dose for the animal
but it would be impossible to be exposed to that dosage in the nat-
ural world. In addition, we collect an external dataset five times
larger than previous, allowing us to make meaningful model per-
formance comparisons while decreasing concern of overfitting to the
test set. Finally, we explore the utility of model pre-training in two
forms: first utilizing transfer learning from GROVER, and second
multi-round pre-training on related but lower quality experiments.
The differentiable nature of our model allows us to make use of ef-
fective pre-training strategies. We assess the contributing effects of
architecture choice and pre-training techniques through a series of
ablation experiments (see Table 3), through which we find that
mutagenicity pre-training and GROVER transfer learning are each
responsible for a significant increase in performance.

Although compound carcinogenicity pre-screening is not a
solved problem, we hope that CONCERTO will aid in selecting

Table 3. Ablation experiments for CONCERTO models measuring the impact of GNN transformer, and multi-round mutagenicity pre-

training

Experiment CPDB correlation CCRIS ROC

Fingerprint þ GROVER þ multi-round mutagenicity pre-training 0:3760:10 � �� 0:7360:03 � ��
Fingerprint þ GROVER þ mutagenicity pre-training 0:3160:14 � �� 0:7160:06 � ��
Fingerprint þ GROVER 0:2660:16 � �� 0:6860:09 � ��
Fingerprint 0.17 6 0.17 0.60 6 0.10

Note: All architectures contain the MLP-fingerprint predictor. Results are averaged over 50 random seed runs. Standard deviation is computed over the random

seed results. In parentheses are P values from a two-sided t-test comparing the performances from 50 models in the current cell to the cell below (***P< 0.001).

Fig. 3. Example of a counterfactual analysis. On the x-axis, Tanimoto distances

(1—Tanimoto similarity) are shown between sampled molecules and the original

molecule. On the y-axis, the predicted carcinogenicity relative to test set carcinogen-

icity distribution is shown. For each molecule (grey point), we visualize a positive

(red point) and a negative (blue point) counterfactual examples. The average within

dataset diversity as measured by Tanimoto distances is 0.88. Red lines indicate pre-

diction threshold beyond which we consider a sampled molecule a counterfactual,

while blue line indicates model prediction of the base molecule (A color version of

this figure appears in the online version of this article)
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molecules for downstream carcinogenicity experiments due to its
improved predictive accuracy over existing approaches. Given that
up to 13% of recent drug retractions have been due to molecular
DNA reactivity, a method for identifying functionally similar mole-
cules but with decreased carcinogenicity could be useful (Onakpoya
et al., 2016). To that end, we demonstrate an approach for visualiz-
ing counterfactual examples (Fig. 3). We aim for this technique to
be useful to domain experts for interpreting model predictions and
iterating on the molecular design process. Given CONCERTO was
able to identify known toxicophores, an interesting follow up

direction would be to investigate novel functional groups resulting

in molecular carcinogenicity by comparing counterfactuals with the
corresponding original molecules.

7 Conclusions

In this work, we present a GNN transformer model for predicting

molecule carcinogenicity. We develop a novel multi-round pre-train-
ing methodology that leverages mutagenic data to improve accuracy
on the carcinogenicity task. We find that the combination of these

architecture improvements and novel training techniques results in a
model that outperforms the previous state-of-the-art in predicting

maximum tolerable dose. Additionally, we employ counterfactual
analysis to investigate model interpretability and confirm that our
model recovers previous knowledge about toxicophores.
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Table 4. This table demonstrates the relative frequency of toxicophores in the test set and the corresponding positive and negative

counterfactuals

Toxicophore SMARTS Substructure

representation

% in negative

counterfactuals

% in original

molecules

% in positive

counterfactuals

Nitroso N¼O 2:75� 21.95 32.17

ð0:12Þ ð1:0Þ ð1:46Þ

Aliphatic halide ClA, BrA, IA 11.93 13.82 18.26

ð0:86Þ ð1:0Þ ð1:32Þ

Aromatic nitro O=[Nþ]([O�])a 1:83� 10.57 7.83

ð0:17Þ ð1:0Þ ð0:74Þ

Aromatic amine [NH2]a 3.67 4.88 10.43

ð0:75Þ ð1:0Þ ð2:1Þ

Three-membered

heterocycle

C1C[NH]1, C1CO1, C1CS1 0.00 0.81 5.22

ð0:0Þ ð1:0Þ ð6:4Þ

Azo-type N¼N 0.00 0.81 1.74

ð0:0Þ ð1:0Þ ð2:14Þ

Unsubsituted

heteroatom-bonded

heteroatom

N[NH2], N[OH], O[OH], O[NH2] 0.0 0.0 6:96�

ðN=AÞ ðN=AÞ ðN=AÞ

Note: SMARTS are an alternative molecular string representation allowing flexible tokens for aromatic and aliphatic atoms (Landrum, 2016). In parentheses is

indicated the odds ratio relative to the % of toxicophores found in original counterfactuals. Significance is calculated using fisher’s exact test over ratios of sub-

structure matches between counterfactual and original molecules. P values are adjusted using Benjamini–Hochberg correction (*P< 0.05).

Fig. 4. Analysis of dataset distances are generated by calculating MMD over

Tanimoto scores. For carcinogenicity, there are two datasets that we further subdiv-

ide into positive and negative labels, creating four partitions. For each pair of parti-

tions, we calculate corresponding distances and visualize using a heatmap
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