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Abstract. Multiple sclerosis (MS) is an inflammatory 
autoimmune neurodegenerative disease, which features focal 
demyelination and inflammatory cell infiltration of the brain 
and the spinal cord. Tanshinone IIA (TSIIA), one of the major 
fat‑soluble components of Salvia miltiorrhiza (Danshen), 
has anti‑inflammatory, immunoregulatory and neuroprotec-
tive activity; however, its efficacy in MS remains unknown. 
The current study was designed to investigate the potential 
therapeutic function of TSIIA on MS in the experimental 
autoimmune encephalomyelitis (EAE) rat model. In compar-
ison to the vehicle control group, the TSIIA‑treated groups 
showed notably improved clinical symptoms and pathological 
changes, including central nervous system inflammatory cell 
infiltration and demyelination. Following administration of 
TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macro-
phages/microglia in the spinal cord were reduced to different 
extents. Furthermore, TSIIA was also shown to downregulate 
interleukin (IL)‑17 and IL‑23 levels in the brain and serum of 
EAE rats. The results collectively provide evidence that TSIIA 
alleviates EAE and support its utility as a novel therapy for 
MS.

Introduction

MS is a progressive autoimmune demyelinating disorder 
of the central nervous system (CNS), which is mediated via 
various inflammatory cells and cytokines. Experimental 
autoimmune encephalomyelitis (EAE) has been universally 
acknowledged as an animal model for MS, as it has similar 
clinical and neuropathological features  (1). In MS/EAE, 
once activated, circulating T cells travel from the periphery 
to the CNS and generate large amounts of proinflammatory 
cytokines. Then microglia and invaded macrophages are 

consequently activated, and stimulate autoimmune reactions, 
leading to myelin damage. CD4+ T cells are the predominant 
cell type involved in the pathology of MS/EAE. Mice without 
functional CD4+ T cells do not develop the relevant clinical 
signs of disease (2). CD8+ T cells also accumulate and acti-
vate microglia to an extent, causing tissue damage during 
CNS autoimmunity  (3). In the CNS, Mac‑1 is expressed 
predominantly on the surface of resident microglia cells and 
infiltrating inflammatory macrophages, and therefore used to 
identify activated microglia/macrophages in EAE (4).

The interleukin (IL)‑23/IL‑17 axis performs important 
functions in MS pathogenesis. IL‑23 is predominantly 
secreted from activated macrophages/microglia and dendritic 
cells (5), inducing Th0 cell differentiation into Th17 cells (6). 
This type of shift facilitates CNS inflammation and the devel-
opment of EAE. Th17 cells are characterized by the secretion 
of IL‑17. IL‑23 and IL‑17 in the serum and CNS have been 
reported to serve an important role in the pathology and 
immunotherapy of MS (7).

MS is a debilitating disease with high disability and 
recurrence rates and there are over one million people 
worldwide suffering from the disease (8). The treatment of 
MS is limited to chemically synthesized immunomodulatory 
or immunosuppressive reagents, which are not always effec-
tive and are often associated with severe side‑effects  (9). 
Thus, the identification of more effective and safe agents 
is urgently required. Salvia miltiorrhiza, a Chinese herbal 
medicine, has traditionally been used to treat cardiovas-
cular and cerebrovascular diseases (10,11). Tanshinone IIA 
(TSIIA), its major bioactive constituent, has been shown 
to exert immunomodulatory effects on various immune 
cells and cytokines, with anti‑inflammatory, anti‑oxidative 
and neuroprotective functions (12). TSIIA has been shown 
to exert a therapeutic effect in neurodegenerative diseases, 
such as Parkinson's (13) and Alzheimer's disease (14). It has 
also been shown to be effective in inflammatory and auto-
immunity diseases, including acute lung inflammation (15), 
sepsis (16) and systemic sclerosis (17).

Considering these findings, the present study examined the 
hypothesis that TSIIA can be effectively used for EAE treat-
ment. To the best of our knowledge, this is the first study to 
demonstrate that TSIIA alleviates EAE by downregulating the 
IL‑23/IL‑17 inflammatory pathway and reducing the infiltra-
tion of immune cell populations supporting its potential as an 
effective therapeutic agent for MS.
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Materials and methods

Reagents and animals. Mycobacterium tuberculosis H37Ra 
was purchased from Difco Laboratories, Inc. (Detroit, MI, 
USA). TSIIA was obtained from Xi'an Guan Sheng Yuan Co. 
Ltd. (Xi'an, China). Complete Freund's adjuvant (CFA), Luxol 
Fast Blue (LFB) and protease inhibitors were purchased from 
Sigma‑Aldrich (St. Louis, MO, USA). Rat IL‑17 (SEA063Ra) 
and rat IL‑23 (SEA384Ra) enzyme‑linked immunosor-
bent assay (ELISA) kits were obtained from Cloud‑Clone 
Corp. (Wuhan, China). Mouse anti‑β‑actin monoclonal 
antibody (sc‑130300), rabbit anti‑CD4 polyclonal antibody 
(sc‑7219), rabbit anti‑CD8 (sc‑7188) polyclonal antibody, 
peroxidase‑conjugated goat anti‑rabbit secondary antibody, 
luminol reagent and radioimmunoprecipitation assay (RIPA) 
buffer were purchased from Santa Cruz Biotechnology Inc. 
(Dallas, TX, USA). Rabbit anti‑Mac‑1 polyclonal antibody 
(DF6476) and rabbit anti‑IL‑17 polyclonal antibody (DF6127) 
were obtained from Affinity Biosciences (Cincinnati, OH, 
USA). Rabbit anti‑IL‑23 polyclonal antibody (bs‑18146R) 
was purchased from Beijing Bioss Biological Technology 
Co., Ltd. (Beijing, China). Biotin‑labeled anti‑rabbit IgG (SP 
KIT‑C3) was purchased from Beijing Dingguo Changsheng 
Biotechnology Co., Ltd. (Beijing, China). The goat anti‑mouse 
secondary antibody (SA00001‑1) and peroxidase‑conjugated 
goat anti‑rabbit secondary antibody (SA00001‑2) were 
purchased from Proteintech Group, Inc. (Chicago, IL, USA). 
The bicinchoninic acid protein assay kit was purchased from 
Novagen Inc. (Madison, WI, USA). polyvinylidene difluo-
ride membranes were acquired from Millipore (Billerica, 
MA, USA). Image‑Pro Plus 6.0 was purchased from Media 
Cybernetics (Rockville, MD, USA). Sodium dodecyl sulfate 
(SDS) gels for electrophoresis were purchased from ZSGB‑BIO 
Co. Ltd. (Beijing, China). The Electrophoresis Gel Imaging 
Analysis system was obtained from DNR Bio‑Imaging 
Systems Ltd. (Jerusalem, Israel). ImageJ 1.36 software was 
purchased from National Institutes of Health (Bethesda, 
MD, USA). GraphPad PRISM 6.0 software was obtained 
from GraphPad Software, Inc. (La Jolla, CA, USA). In total, 
40 female Sprague‑Dawley (SD) rats (6‑8 weeks, 180‑200 g) 
and 10 guinea pigs (4‑5 weeks, 250‑350 g) were obtained 
from the Experimental Animal Center of China Medical 
University (Shenyang, China). All the animals were kept under 
pathogen‑free conditions in the Experimental Animal Center 
of China Medical University.

EAE induction. With the approval of the Bioethics Committee 
of China Medical University, the EAE model was established 
by following standard universally accepted procedures (18). 
In brief, guinea pig spinal cord homogenate was mixed 
with same amount of CFA, which contained 5  mg/ml 
Mycobacterium  tuberculosis H37Ra. Each rat received a 
subcutaneous injection into the back and the hind footpads of 
0.5 ml mixture to induce EAE. The day of immunization was 
regarded as Day 0 postimmunization (p.i.).

TSIIA treatment and EAE assessment. Forty rats were separated 
at random into four groups. Phosphate‑buffered saline (PBS) 
(5 ml/kg) with dimethyl sulfoxide (DMSO) (5%) and Tween‑80 
(5%) was used as a drug solvent. Ten non‑EAE  rats that 

administered solvent intraperitoneally (i.p.) every day begin-
ning from day 0 p.i. served as the naive group. Ten EAE rats 
administered i.p. injection of equal volume of solvent every 
day served as the vehicle group. In the last two groups, EAE 
was induced and rats were administered two different TSIIA 
concentrations i.p. TSIIA was dissolved in solvent at low 
(25 mg/kg; TSIIA‑L group) and high (50 mg/kg; TSIIA‑H 
group) concentrations, respectively. From day 0 p.i. the body 
weight of all rats was measured daily and clinical signs were 
also evaluated by two independent observers using the scale 
shown in Table I (19).

Histopathological assessment. On day 18 p.i., all the rats were 
sacrificed by transcardial perfusion of PBS (pH 7.4) through 
the left ventricle under anesthesia with injection of 10% chloral 
hydrate (3 ml/kg; Sinopharm Chemical Reagent Co., Ltd., 
Shanghai, China) into the abdominal cavity, and spinal cord 
and brain samples were obtained. Lumbar enlargement of the 
spinal cord and right‑hand side of the brain were paraformalde-
hyde‑fixed and paraffin‑embedded. Subsequently, 3‑µm slices 
of brain were sectioned and stained with hematoxylin‑eosin 
(H&E) to evaluate inflammatory infiltration. In addition, 3‑µm 
slices of spinal cord were sectioned and stained with LFB to 
evaluate demyelination. Histopathological assessment was 
performed in a blinded according to Table II (19).

Immunohistochemical analysis of CD4, CD8, Mac‑1, IL‑17 
and IL‑23. Slices (3 µm) of brain and spinal cord were used 
for immunohistochemical staining. After deparaffinization 
with xylene and washing with PBS, sections of spinal cords 
were incubated with rabbit antibodies specific for CD4 (diluted 
1:200), CD8 (diluted 1:200), Mac‑1 (diluted 1:200), IL‑17 (diluted 
1:200) and IL‑23 (diluted 1:200). Biotin‑labeled anti‑rabbit IgG 
was used as a secondary antibody for the detection of primary 
antibodies. Color was developed with DAB. CD4‑, CD8‑ and 
Mac‑1‑positive cells were counted under 400‑fold magnifica-
tion in the ventricornu of spinal cord sections. Expression of 
IL‑23 and IL‑17 was assessed based on the integral optical 
density (IOD) of positive cells under 200‑fold magnification in a 
restricted area of brain sections. Five fields in the restricted area 
were randomly selected for calculations. All measurements and 
data analysis were performed independently by two pathologists 
in a blinded manner. Morphometric analysis was conducted 
using Image‑Pro Plus 6.0.

Western blot analysis. Brain and spinal cord from each group 
was respectively homogenized in lysis buffer with protease 

Table I. Clinical signs scales.

Clinical score	 Clinical sign

0	 No clinical score
1	 Loss of tail tone
2	 Hindlimb weakness
3	 Hindlimb paralysis
4	 Forelimb paralysis
5	 Moribund or death
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inhibitors and RIPA for protein extraction. Tissue homogenate 
was centrifuged at 12,000 x g for 10 min at 4˚C to obtain the 
supernatants. The BCA protein assay kit was used to measure 
protein concentrations. Protein samples (30  µg/well) were 
subjected to electrophoresis on 10% SDS‑PAGE gel and elec-
trotransferred onto a PVDF membrane. After blocking with 5% 
non‑fat dry milk in Tris‑buffered saline with 0.05% Tween‑20 
(TBST) for 2 h at normal temperature, the membranes were 
separately incubated with rabbit anti‑CD4 (diluted 1:500), rabbit 
anti‑CD8 (diluted 1:500), rabbit anti‑Mac‑1 (diluted 1:300), 
rabbit anti‑IL‑17 (diluted 1:500), rabbit anti‑IL‑23 (diluted 1:500) 
and mouse anti‑β‑actin (diluted 1:1,000) overnight at 4˚C. The 
following day, membranes were washed three times with TBST 
(5 min/wash), then were incubated with peroxidase‑conjugated 
goat anti‑rabbit secondary or goat anti‑mouse secondary (diluted 
1:2,000) antibody for 2 h. Following incubation, the membranes 
were washed three times with TBST (5 min/wash). Bands were 
treated with Luminol reagent for 1 min and visualized using 
the Electrophoresis Gel Imaging Analysis system. Band density 
was calculated via Image J 1.36 software. Protein bands were 
compared with that of β‑actin to determine the relative expres-
sion level of target protein.

ELISA analysis of IL‑17 and IL‑23. On day 18 p.i., all the 
rats were sacrificed by transcardial perfusion of PBS (pH 7.4) 
through the left ventricle under anesthesia with injection of 
10% chloral hydrate (3 ml/kg) into the abdominal cavity, and 
blood was collected via retro‑orbital bleeding to collect the 
serum. IL‑17 and IL‑23 concentrations were detected using 
ELISA according to the specifications strictly.

Statistical analysis. The results are presented as the 
mean ± standard deviation. GraphPad PRISM 6.0 software 
(GraphPad Software, Inc., La Jolla, CA, USA) was utilized 
to conduct all statistical analyses. Multiple comparisons were 
performed by Kruskal‑Wallis test or one‑way analysis of 
variance, followed by the least significant differences test, as 
appropriate. P<0.05 was considered to indicate a statistically 
significant difference.

Results

TSIIA treatment relieves clinical signs. Clinical signs of EAE 
development in rats from the vehicle group began to appear 
on day 9 p.i., including loss of appetite, reduced physical 
activity, and tail and limb paralysis. However, EAE onset in 
TSIIA‑treated rats occurred on day 11 p.i. (TSIIA‑H) and 
10 p.i. (TSIIA‑L). Compared with the vehicle group, the two 

TSIIA‑treated groups received significantly lower clinical 
scores (P<0.01). Significant differences were also observed 
between the treated groups, which were dose‑dependent 
(P<0.01; Fig. 1A). Furthermore, the body weights of untreated 
EAE rats were significantly decreased, compared with the 
naive and TSIIA‑treated rats (all P<0.01) while those of 
TSIIA‑treated groups were only marginally reduced, with the 
smallest recorded weight loss in the TSIIA‑H group. Significant 
differences in body weight were observed between the two 
treatment groups (P<0.01; Fig. 1B).

TSIIA treatment improves CNS histopathology. Since 
inflammatory cell invasion and CNS demyelination are the 
key characteristics of EAE, the impact of TSIIA on these 
parameters was verified. Consistent with clinical scores, rats 
in the vehicle group exhibited typical inflammatory cell infil-
tration in the brain, as determined via H&E staining. This 
cell infiltration was dose dependently attenuated following 
TSIIA treatment (Fig. 2A). Similarly, LFB staining revealed 
large areas of demyelination in the spinal cord of rats from 
the vehicle group, which were significantly decreased in the 
treated groups (both P<0.01; Fig. 2B). These results clearly 
indicate a beneficial effect of TSIIA in reducing inflam-
matory cell infiltration and demyelination, which provide 
the basement of mitigated clinical signs following TSIIA 
treatment.

TSIIA treatment suppresses the expression of CD4, CD8 
and Mac‑1. To identify the types of infiltrating cells in the 
CNS of EAE rats, immunohistochemistry was performed. 
Inflammatory exudates included a mixture of cell types, 
including CD4+ T cells, CD8+ T cells, microglia and 
macrophages (Fig. 3A‑L). Compared with the vehicle group, 
TSIIA administration at the two doses induced a significant 
decrease in the quantity of CD4+ T cells (P<0.01), CD8+ T cells 
(P<0.01), macrophages and microglia (P<0.01) (Fig. 3M‑O). 
The results were confirmed by quantification of the western 
blots and were consistent with the results of immunostaining 
(P<0.05; Fig. 4A, B and C).

TSIIA treatment suppresses the levels of IL‑17 and IL‑23 in 
the brain. Expression of the inflammatory cytokines, IL‑17 
and IL‑23, is usually increased in the CNS in EAE. To assess 
whether TSIIA exerts anti‑inflammatory activity in EAE 
in vivo, its effects on IL‑23 and IL‑17 levels in the brain were 
determined using immunohistochemistry. Compared with 
the naive group, expression of IL‑17 and IL‑23 in the vehicle 
groups was significantly increased (P<0.01). Compared with 

Table II. Histopathological assessment.

Score	 Inflammation	 Demyelination

0	 No inflammatory cells	 None
1	 A few scattered inflammatory cells	 Rare foci
2	 Organization of inflammatory infiltrates around blood vessels	 A few areas of demyelination
3	 Extensive perivascular cuffing with extension into adjacent	 Large (confluent) areas of demyelination
	 parenchyma or parenchyma
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the vehicle group, TSIIA treatment significantly induced a 
reduction in IL‑17 and IL‑23 expression (P<0.01). However, 
there were no significant differences between the two treat-
ment groups (P>0.05; Fig. 5). The effects of TSIIA on these 

indicators were further confirmed by quantitative western blot 
analysis (P<0.01), and significant differences were identified 
between the TSIIA-L and TSIIA-H groups in IL-17 (P<0.01)
and IL-23 (P<0.05) expression (Fig. 4 A, E and F).

Figure 1. Clinical scores and body weight curves of rats in each group. (A) Clinical score curves of rats in each group 0‑18 days post‑immunization. Compared 
with the naive group, the clinical score in the vehicle group was significantly increased (P<0.01). Compared with the vehicle group, clinical scores in the 
TSIIA‑treated groups were reduced significantly (both P<0.01), and there was a significant difference between the two treated groups (P<0.01). (B) Body 
weight curves of rats in each group. Significant weight loss was observed in the vehicle group compared with the naïve group (P<0.01), while the two 
TSIIA‑treated groups exhibited significantly increased body weights compared with the vehicle group (P<0.01), and there was a significant difference between 
the TSIIA‑L and TSIIA‑H groups (P<0.01). Values are presented as the mean ± standard deviation (n=10 per group). TSIIA, Tanshinone IIA; TSIIA‑L, TSIIA 
low dose; TSIIA‑H, TSIIA high dose.

Figure 2. Histological analysis of inflammation and demyelination. (A‑D) H&E staining. Magnification, x200; (E‑H) LFB staining. Magnification, x5; (A 
and E) naive group; (B and F) vehicle group; (C and G) TSIIA‑L group; (D and H) TSIIA‑H group. (I) Quantification of inflammatory cell infiltration (H&E 
staining, A‑D), (J) demyelination quantification (LFB staining, E‑H). Values are presented as the mean ± standard deviation (n=10 per group). ∆P<0.01, 
compared with the naive group; *P<0.01, compared with the vehicle group; #P<0.01, compared with the TSIIA‑H group. TSIIA, Tanshinone IIA; LFB, Luxol 
Fast Blue; H&E, hematoxylin and eosin.
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Figure 3. Immunohistochemistry of CD4, CD8 and Mac‑1. (A‑D)  CD4; (E‑H)  CD8; (I‑L)  Mac‑1; Magnification, x400. (A, E and I)  naive group;  
(B, F and J) vehicle group; (C, G and K) TSⅡA‑L group; and (D, H and L) TSⅡA‑H group. (M‑O) Quantitative analysis of the above immune cells. Values are 
presented as the mean ± standard deviation (n=10 per group). ∆P<0.01, compared with the naive group; *P<0.01, compared with the vehicle group; #P<0.01, 
##P<0.05 or n (not significant) compared with the TSIIA‑H group. TSIIA, Tanshinone IIA; TSIIA‑L, TSIIA low dose; TSIIA‑H, TSIIA high dose.

Figure 4. (A) Determination of CD4, CD8, Mac‑1, IL‑17 and IL‑23 protein expression via western blot analysis. Quantitative analysis of (B) CD4, (C) CD8, (D) Mac‑1, 
(E) IL‑17 and (F) IL‑23. Values are presented as the mean ± standard deviation (n=10 per group). ∆P<0.01, compared with the naive group; *P<0.01, compared with 
the vehicle group; #P<0.01, ##P<0.05 or n (not significant) compared with the TSIIA‑H group. TSIIA, Tanshinone IIA; IL, interleukin; TSIIA‑L, TSIIA low dose; 
TSIIA‑H, TSIIA high dose.
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TSIIA treatment reduces the expression of IL‑17 and IL‑23 
in the serum. The serum contents of IL‑17 and IL‑23 are 
usually upregulated and closely associated with the develop-
ment of EAE. The highest concentrations of serum IL‑17 
and IL‑23 among all groups were found in vehicle‑treated 
rats, which decreased significantly in the two TSIIA‑treated 
groups (P<0.01). The serum level of IL‑17 in the TSIIA‑H 
group was lower than that in the TSIIA‑L group (P<0.01). 
However, no significant difference was identified in the serum 
concentrations of IL‑23 between the two TSIIA‑treated 
groups (Fig. 6).

Discussion

TSIIA has been shown to alleviate several CNS disorders in 
animal models, possibly through its anti‑inflammatory and 
neuroprotective properties. However, the effects of TSIIA on 
EAE have not been determined to date. In the current study, an 
experimental model was established to determine the effects 
of TSIIA on EAE and its mechanisms of action.

In MS and EAE, CD4+ T cells, CD8+ T cells, macrophages 
and resident microglia orchestrate a series of inflammatory 
reactions in the CNS of humans and animals, resulting in 

Figure 5. Immunohistochemistry of IL‑17 and IL‑23. (A‑D) IL‑17; (E‑H) IL‑23; Magnification, x200. (A and E) Naive group; (B and F) vehicle group; 
(C and G) TSIIA‑L group; and (D and H) TSIIA‑H group. Quantitative analysis of (I) IL‑17 and (J) IL‑23 was conducted. Values are presented as the 
mean ± standard deviation (n=10 per group). ∆P<0.01, compared with the naive group; *P<0.01, compared with the vehicle group or n (not significant) between 
the TSIIA‑L and TSIIA‑H groups. IOD, integral optical density; IL, interleukin; TSIIA, Tanshinone IIA; TSIIA‑L, TSIIA low dose; TSIIA‑H, TSIIA high 
dose.

Figure 6. Measurement of serum production of (A) IL‑17 and (B) IL‑23 via enzyme‑linked immunosorbent assay. ∆P<0.01, compared with the naive group; 
*P<0.01, compared with the vehicle group; #P<0.01 or or n (not significant) compared with the TSIIA‑H group. IL, interleukin; TSIIA, Tanshinone IIA; 
TSIIA‑L, TSIIA low dose; TSIIA‑H, TSIIA high dose.
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persistent disability. CD4+ cells are undoubtedly the pivotal 
pathogenic cells in MS and EAE that facilitate inflammatory 
reactions and subsequent neurodegeneration. These cells induce 
neuronal death under pathological conditions through a variety 
of mechanisms, such as triggering antigen‑independent calcium 
oscillations and TRAIL‑mediated injury in neurons (20,21). A 
number of therapeutic options that reduce the T cell‑ and partic-
ularly, CD4+ cell‑mediated damage of neurons are extensively 
applied in the clinic. For example, natalizumab, an effective 
drug for MS, decreases the number of CD4+ cells in the brain 
and inhibits peripheral lymphocyte migration into the CNS (22). 
CD8+ T cells are also crucial in CNS autoimmunity. These cells 
are abundant in active demyelinating lesions in MS, and induce 
inflammation and demyelination in EAE (23). Furthermore, there 
is a positive correlation between the degree of axonal injury and 
the quantity of CD8+ T cells as well as macrophages/microglia in 
the brain tissue from patients with MS, suggesting their impor-
tant effects on axon loss (24). Cytotoxic CD8+ T cells secrete 
various pro‑inflammatory cytokines, including perforin (25) 
and granzymes (26), which trigger autoimmune injury medi-
ated by cells in the CNS. Sodium tanshinone IIA sulfonate, a 
water‑soluble derivative of TSIIA, has been shown to markedly 
suppress the proliferation of spleen T lymphocytes and reduce 
the CD4+ and CD8+ T cell percentage in peripheral blood in a 
rat skin transplantation model (27). Additionally, TSIIA inhibits 
the maturation of dendritic cells and suppresses the expression 
of pro‑inflammatory cytokines, weakening their capacity to 
stimulate T‑cell proliferation (28). Data from the current study 
showed that TSIIA downregulates the increase in CD4+ and 
CD8+ T cells in the CNS and relieves clinical symptoms.

Macrophages in the CNS are derived from peripheral 
monocytes, and microglia are resident macrophages. Once 
activated, microglia and macrophages cause mitochon-
drial dysfunction through induction of reactive oxygen 
and nitrogen species, which contribute to axon injury and 
subsequent neuronal cell death  (29). Activated microglia 
and macrophages produce pro‑inflammatory cytokines and 
enhance sensitization of axons to glutamate, with subse-
quent initiation of an indirect immunological attack on 
oligodendrocytes and neurons (30,31). TSIIA reduces the 
release of LPS‑induced pro‑inflammatory cytokines, such as 
IL‑1, IL‑6 and tumor necrosis factor (TNF)‑α, from macro-
phages during inflammation (32‑34). Microglial activation, 
a hallmark of CNS pathology in MS and other neurode-
generative diseases, triggers cytotoxic effects and drives 
neuronal damage, which can be suppressed by TSIIA in 
experimental models of SNL‑induced neuropathic pain (35) 
and Parkinson's disease  (13). Macrophage depletion  (36) 
and microglial paralysis  (37) markedly alleviate disease 
progression. Consistently, compared with wild‑type mice, 
Mac‑1‑deficient mice displayed attenuated EAE with lower 
levels of gliosis, axonal degeneration and demyelination (38). 
To the best of our knowledge, no studies regarding the impact 
of TSIIA on microglia/macrophages in CNS of EAE are 
have been conducted. The results from this study showed 
that following TSIIA treatment, microglia/macrophage 
numbers are decreased following decreased demyelination 
and inflammatory cell infiltration in the CNS of EAE rats.

The IL‑17/IL‑23 pathway is associated with the pathogen-
esis of autoimmune disorders, including MS, psoriasis and 

inflammatory bowel disease  (39‑41). IL‑23‑deficient mice 
are unable to induce EAE (42). IL‑23 is reported to promote 
polarization, development and expansion of pathogenic T cells; 
thus, it is essential for EAE induction. (43‑45). As a lineage of 
major pathogenic T cells, Th17 cells not only autosynthesize but 
also promote other types of cells to generate pro‑inflammatory 
cytokines (46). Furthermore, Th17 cells transmigrate efficiently 
across the blood brain barrier, damage neurons and contribute 
to CNS inflammation through CD4+ lymphocyte accumula-
tion (47). Targeting IL‑23‑p19 with neutralizing antibodies has 
been shown to reduce the IL‑17 level in the CNS and serum, 
which was also shown to prevent EAE relapse during disease 
remission (48). Serum IL‑17 levels are positively correlated 
with disease severity (49) and EAE is inhibited in IL‑17‑/‑ mice 
whose CD4+ T cells are incapable of inducing EAE efficiently, 
compared with wild‑type T cells (50). IL‑17 also stimulates 
microglia  (51) and astrocytes  (52) to secrete inflammatory 
cytokines and chemokines, resulting in recruitment of neutro-
phils (53). In collaboration with TNF‑α, IL‑17 promotes oxidative 
stress‑induced apoptosis of oligodendrocytes, causing axonal 
loss and subsequent neurological deficits (54,55). In an earlier 
phase II clinical trial, following treatment with secukinumab, 
an antibody that neutralizes IL‑17, MS patients displayed 
fewer new CNS lesions observed using magnetic resonance 
imaging, and lower annualized recurrence rates, compared with 
placebo‑treated patients (56). Therefore, blockage of the IL‑23/
IL‑17 pathway in the clinical treatment of MS has recently 
received considerable research attention, in view of accumu-
lating data highlighting its vital role in MS/EAE. TSIIA has 
been shown to inhibit IL‑17‑induced vascular remodeling in 
systemic sclerosis patients (17). However, no research to date 
has investigated the impact of TSIIA on IL‑17 and IL‑23 levels 
in EAE/MS. To the best of our knowledge, this is the first study 
to demonstrate a significant decrease in serum and brain expres-
sion of IL‑17 and IL‑23 in EAE following TSIIA treatment.

In conclusion, this study provides preliminary evidence 
supporting the use of TSIIA as a potential novel therapeutic 
option for MS. However, rats in this study were only treated 
acutely, and the feasibility and safety of TSIIA require 
validation in the clinic.
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