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ABSTRACT: New polymer blend composite electrolytes
(PBCEs) were prepared by the solution casting technique using
poly(vinyl alcohol) (PVA)-polyethylene glycol (PEG), sodium
nitrate (NaNO3) as a doping salt and multiwalled carbon
nanotubes (MWCNTs) as fillers. The X-ray diffraction pattern
confirms the structural properties of the polymer blend composite
films. FTIR investigations were carried out to understand the
chemical properties and their band assignments. The ionic
conductivity of the 10 wt % MWCNTs incorporated PVA-PEG
polymer blend was measured as 4.32 × 10−6 S cm−1 at 20 °C and
increased to 2.253 × 10−4 S/cm at 100 °C. The dependence of its
conductivity on temperature suggests Arrhenius behavior. The
equivalent circuit models that represent the Rs(Q1(R1(Q2(R2(CR3))))) were used to interpret EIS data. The dielectric behavior of
the samples was investigated by utilizing their AC conductance spectra, dielectric permittivity, dielectric constant (εi and εr), electric
modulus (Mi and Mr), and loss tangent tan δ. The dielectric permittivity of the samples increases due to electrode polarization effects
in low frequency region. The loss tangent’s maxima shift with increasing temperature; hence, the peak height rises in the high
frequency region. MWCNTs-based polymer blend composite electrolytes show an enhanced electrochemical stability window (4.0
V), better transference number (0.968), and improved ionic conductivity for use in energy storage device applications.

1. INTRODUCTION
In recent times, renewable energy sources have emerged as a
viable alternative to meet the expanding demand for clean
energy. It may help us to deal with climate change related issues
as well as alternative energy resources.1,2 The electrolyte is a
critical component in the operation of several energy storage
devices. It functions as a channel for ions to travel between the
electrodes through an electrolyte. It behaves as an insulator
when the device is completely discharged and stops working
properly.3 Due to the use of liquid in electrolytes, it develops a
number of key issues such as flammability, mechanical
instability, leakage, and corrosion of metals in devices. Generally,
a polymer composite electrolyte is prepared by dissolving
inorganic salt in a polymer matrix of having a high molecular
weight along with nanofillers.4 It works as a host medium for ion
transport. The mechanism of ion conduction/transportation in
solid polymer electrolytes differs from liquid-based electrolytes.
The dissociated ions in liquid electrolytes can freely move
around.5,6 While in solid polymer electrolytes, ions move
predominantly due to segmental motion of polymer chains and
concomitant ion hopping within the polymeric matrix.7 As a
result, polar functional groups on the backbone of a chain are in
high demand for conduction mechanism. Furthermore, proper-

ties such as strong mechanical and thermal stability, a wide
electrochemical window, compatibility, nontoxicity, and process
ability are also important considerations for the above-
mentioned purpose. The commercial use of the polymer
composite electrolyte requires both low cost and high
efficiency.8,9 Poly(vinyl alcohol) (PVA) has a semicrystalline
nature. It has certain properties such as being water-soluble,
nontoxic, and environmentally friendly. This biocompatible and
biodegradable polymer is converted from polyvinyl acetate. PVA
has a high dielectric strength, good thermal and mechanical
stability, good charge storage capacity, and environmental
stability. Due to these properties, PVA is a widely studied
material and extensively used as the polymer membrane for
technology applications.10,11 Similarly, polyethylene glycol
(PEG) is another synthetic polymer which has various
advantages like, good film formation, low cost, water-soluble,
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compatibilty with the other polymer, and a wide molecular
weight range. Polyethylene glycols are known for their ability to
retain moisture. Low molecular weight PEGs are hygroscopic.
Hence, they are favored for a variety of applications due to their
moisture retention properties.12−14 PEG have a low volatility
which gives them the thermal stability needed for a variety of
applications. The combination of PVA-PEG network polymers
has become one of the most popular materials for scientific
studies. In the first network, PEG does more than just contribute
to the recovery and self-healing phenomena.15−17 By mixing the
host matrix materials such as polymers with fillers like MWCNT
we can achieve the properties of polymer composites with more
desirable goals. In recent works on carbon nanotube (CNT)
based polymer electrolytes, it is found that the carbon nanotubes
are made up of thin cylinders of carbon. The shapes are based on
the cylindrical concentric planes on the layer wall. It may be a
single layer, double layer, or multilayer structure.18 CNT-based
composite materials have a unique structural property that
improves its mechanical, electrical, thermal, and optical
properties.19 Several studies focusing on composites based on
poly(vinyl alcohol) (PVA) loaded with carbon nanotubes have
been found in the literature. The few examples of the polymer
composite are listed as poly(vinyl alcohol) (PVA)+CNT,20

poly(vinyl alcohol) (PVA)+CNT,21 poly(vinyl alcohol)
(PVA)+MWCNT,22 poly(vinyl alcohol) (PVA)+CNT,23 and
poly(vinyl alcohol) (PVA)/chitosan/CNT.24 The majority of
research has been focused on functional films. PVA possesses a
carbon backbone with hydroxyl groups that can help as a
foundation of hydrogen-bonding interactions between the
nanofiller to allow blended polymer-based nanocomposites.25

To achieve the full CNT amplification which contains good
interfacial electron affinity with the matrix, a good dispersion in
matrix is needed.26 An improvement in ion transfer properties in
the CNT-based polymer matrices is observed. Also, CNT have
excellent properties for use as a reinforcing material to improve
polymer performance.27 This new class of fillers is expected to
further improve ionic conductivity, reduce crystallinity, and

provide high mechanical properties.28 Poly(vinyl alcohol) is one
of the most researched polymers. They have high mechanical
properties, plasticity, and chemical stability. Functionalized
CNT/PVA nanocomposite membranes can be used to separate
an ethanol/water mixture.29,30 Furthermore, poly(vinyl alcohol)
as the main chain has shown excellent properties under external
force. It allows the formation of composites for a variety of
applications such as supercapacitors, batteries, and chemical
sensors.31−34

In the present work, we propose to develop a polymer blend
composite electrolytes based on (PVA-PEG) +NaNO3 + xwt %
with multiwalled carbon nanotubes (MWCNTs) as fillers which
will be prepared through the standard solution cast method.
Investigation will be carried out to understand the effect of
MWCNTs concentration on the performance of structural,
thermal, and ionic conductivity properties. Fourier transform
infrared and Raman studies will be performed to understand the
chemical bond and structural properties. In addition to the
above, we are also interested in understanding the effect of ion
dissociation and association with the polymer host matrix by
adding MWCNTs. The prepared sample will be checked for
conductivity, dielectric characteristics, and an improvement in
electrochemical performance. The above key parameters are
significant for different applications and can be used in Na-
batteries, Li-batteries, and EDLC applications.

2. EXPERIMENTAL DETAILS
2.1. Materials Used. We used poly(vinyl alcohol) (PVA)

polymer with a molecular weight of 125000 g/mol and
polyethylene glycol (PEG) with a molecular weight of 6000−
7500 g/mol (CDH (P) Ltd. India). Sodium nitrate (NaNO3)
salts were purchased from Avantor Performance Materials
(RAMKEM) India Ltd., purity/assay: 99.0%, and pristine
multiwalled carbon nanotubes (MWCNTs) of diameter 30
nm and length few microns as filler were used.
2.2. Preparation of Polymer Blend Composite Electro-

lytes. Polymer blends (PVA-PEG) containing sodium nitrate

Figure 1. Flowchart of sample preparation by solution cast technique.
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(NaNO3) and MWCNTs fillers of various weight percent (x =
2.5, 5, 7.5, and 10 wt %) were prepared by standard solution
casting techniques.35 Initially, we added distilled water to PVA

(0.6 g) and PEG (0.4 g) and then put it on a magnetic stirrer for
3 h to get a uniform solution. Again, the blend PVA-PEG
solution is mixed with an optimized salt concentration and kept

Figure 2. Schematic illustration of interaction process along with sample characterization technique method.

Figure 3. (i) XRD patterns for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers. (ii) FT-IR spectra for
various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % ofMWCNTs fillers. (iii) Raman spectra for various contents: (a) 2.5 wt %, (b)
5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers.
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under magnetic stirring for the next 4 h. The MWCNTs were
dispersed separately in the DI water through the 15 min
ultrasonicated process. The optimized sodium salt concen-
tration was added to the different wt % of MWCNTs fillers (x wt
% = 2.5,5,7.5 and 10 wt %) and stirred for the12 h to get a
polymer blend composite solution. The solution was drop cast
on Petri dishes and dried in an oven at 60 °C for 2 days until dry.
Subsequently, the prepared thin films were peeled from the Petri
dishes. The flowchart of the sample preparation is presented in
Figure 1.
2.3. Characterization. We have studied the structural

properties of the prepared films by XRD equipment with a scan
rate of 8° perminute over a range of 10°−60°. Fourier-transform
infrared spectroscopy (FTIR) was done to confirmation of the
stretching mode and bending mode behavior in the prepared
films. The FTIR spectroscopy (Model: Thermo Scientific,
NICOLET iS50, -FTIR) has been performed over a wave-
number range of 400−4000 cm−1 with a spectral resolution of 4
cm−1. The morphology of the prepared films was obtained by a
field emission scanning electron microscope (FESEM) (Zeiss,
SIGMA). Raman spectroscopy was performed using an
excitation laser of wavelength 785 nm and the signal recorded
in the range of 200−3500 cm−1 (Model: Renishaw inVia Raman
microscope). DSC was performed for a (Model: LABSYS Evo
DTA/DSC - 131, France) heating rate of 10 °C/min. The AC-
impedance along with dielectric behavior of the prepared films
were characterized by a dielectric spectroscopy/impedance
analyzer (Alpha A, Novocontrole, Germany) in the frequency
range of 10−1−107 Hz and temperature range of 20−100 °C.The
electrochemical behavior of the films obtained by the two
different techniques (1) linear sweep voltammetry (LSV) and
(2) cyclic voltammetry (CV) using a potentiostat/galvanostat
and impedance analyzer PALMSENS (Netherlands), Model
PalmSens4. The ion transference number measurement was
done using a chronoamperometry (CA) technique. The
interaction process of the films along with the sample
characterization technique method are shown in Figure 2.

3. RESULTS AND DISCUSSION
3.1. Analysis of X-ray Diffraction (XRD). The X-ray

diffraction spectra of the polymer blend composite electrolytes
were characterized in the range of 10−60 (in degree) as shown
in Figure 3i(a−d). The obtained peaks are observed at 2θ (in
deg) = 19.20, 23.24, 26.30, 29.53, 39.09, 42.68, and 48.13, which
confirms the presence of PVA, PEG polymer, NaNO3 salt, and
MWCNTs as fillers. The diffraction peak at 19.20° represents a
dual amorphous−semicrystalline nature of PVA. The diffraction
peaks at 26.30° and 42.68°, 55°in the planes (002) and (100)
represents the presence of MWCNTs in the sample.36,37 The
main peaks of pure PEG are observed at 19.20, 23.24, and 26.30
(in °) indicating the crystalline form of PEG.38,39 The diffraction
peaks confirm the crystalline nature of PVA-PEG blends. The
intensities of all crystalline peaks are low except one at 29.53°.
This peak occurs possibly due to doping of salts and MWCNTs
filler in the PVA-PEG polymer blend. The occurrence of an
intense peak in the 5 wt % sample is the result of aggregation of
MWCNTs in this particular sample. From the available
literature, it is confirmed that the addition of salt may bring
some disorder in the polymeric chain structure and lead to a
higher amorphous phase. However, the appearance of sharp
peaks may be attributed to MWCNTs fillers in the
polymer.40−43

3.2. FTIR Studies. The FTIR technique has been used to
understand structural, microstructural and chemical structure
variations in the intensity of the distinctive bands in the polymer
composites.44,45 The salt (NaNO3) and polymer (PVA-PEG)
interaction with filler MWCNTs has been investigated by using
an FTIR spectrophotometer. The analysis of FTIR spectra of
pure PVA, pure PEG, and blended PVA-PEG are discussed in
the previous work of Sadiq et al.51 The spectra and data of
polymer blend PVA-PEG + NaNO3 + x wt % of MWCNTs and
attached functional groups are shown in Figure 3ii(a−d) and
Table 1, respectively. In the FTIR spectra of the MWCNT-

doped polymer blend the salt complex exhibits the peaks related
to pure PVA, pure PEG, NaNO3, and MWCNTs fillers and
confirmed the formation of the composite.46−49 The spectrum
also confirmed the interaction between the polymer’s functional
group and the fillers. The IR absorbance peak at 3381 cm−1

corresponds to the respective bands of O−H stretching and N−
H bonding. It is due to the stretching vibrations of the hydroxyl
groups in PVA and the absorbed water molecules in PEG. This
band represents intermolecular and intramolecular interactions
involving PVA molecules and OH groups. There was a shift
observed in the wavenumber of this band in MWCNTs samples
which varies from 3369 to 3339 cm−1.50−53 The intermolecular
and intramolecular interactions betweenOH groups in PVA and
MWCNTs fillers are measured by the broadness of the OH
band. There is also a similar fall in intensity for the weak and
medium intensity bands at 843 and 841 cm−1, respectively; this
can be associated with CH2 stretching. The C−O stretching and
vinyl ester components of polyvinyl acetate (PVA) cause the
band at 1717 cm−1 in the blend polymer, whereas the
corresponding band in composite samples is found at a
wavenumber in the range of 1725−1728 cm−1. The band at
1642 cm−1 stands for the C�C stretching band. This band
varies from 1637 to 1645 cm−1 in the case of CNT-doped PVA-
PEG composites. The bands at 2946 and 2920 cm−1 correspond
to CH2 symmetric stretch and CH2 asymmetric stretch,
respectively. The absorbance mode of −C−O stretching of
PVA peak at 1084 cm−1. In the case of MWCNTs-doped
composite films, the wavenumber changes from 1084 to 1092
cm−1 are due the complex formation between MWCNTs and
the PVA-PEG polymer blend, which comes under the influence
of intermolecular interactions within the polymer matrix.54−60

The distinguishing feature in the polymer salt complex is that the

Table 1. Band Assignments of FTIR Spectra for Polymer
Blend (PVA-PEG)-NaNO3 + xwt % of MWCNTs Containing
Various Weight Percentages (x = 2.5, 5, 7. 5, and 10 wt %)
Based Composite Electrolytes

x wt % of MWCNTs

2.5 wt % 5 wt % 7.5 wt % 10 wt % Band Assignments

838 832 843 841 CH2 stretching
946 956 962 945 C−C stretching
1084 1087 1097 1092 −C−O stretching of PVA
1262 1250 1265 1245 C−H wagging/CH2 twisting
1356 1350 1311 1351 v1 (symmetric stretching mode/

CH2 bending mode
1645 1645 1642 1637 C�C (st)
1728 1725 1728 1717 C−O stretching/vinyl ester of PVA
2920 2926 2946 2924 CH2 asymmetric stretching/C−H

stretching
3369 3378 3339 3381 O−H stretching
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anion (NO3−) has IR modes at 1351 cm−1. In view of the above
results, we may conclude that MWCNT fillers interact with the
PVA-PEG blend via a donor−acceptor pathway and enable the
conduction process.
3.3. Raman Spectroscopy. Raman spectroscopy has been

used to analyze carbon nanotube fillers and polymer blend
composite electrolytes. The Raman spectra of a polymer blend
composite augmented with carbon nanotube fillers revealed
three distinct peaks as shown in Figure 3 iii (a−d). The first peak
is a D band (1317 cm−1) attributed to defects inMWCNT fillers
and including sp3-hybridized nanofillers. The second is an
intensive G band (1592 cm−1) attributed to tangential C−C
bond stretching motion and shows the graphitic nature.61 The
final peak or 2D is a second order of the D band. It appears at
2656 cm−1 which is twice the frequency of the D band. We
compared the intensities of the D and G bands to get the ID/IG
ratio which is equal to 1.99 and reveals the defective nature. The
stretching and deformation vibrations of CH2 groups are linked
to the bands at 2910 cm−1 in the PVA. Also, O−H group
vibrations are responsible for the peak at 1086 cm−1. In sp2
carbon lattices, Raman spectroscopy can distinguish defects
related to size, resulting in varied intensity ratios depending on
the amount of disorder. However, the CH bond vibration peaks
of 849 cm−1 may be contributed by C−C. The peak at 2606
cm−1 of PVA may arise due to the overlap of PEG on the PVA
matrix.62,63 The D-band peak is broadening due to the presence
of sp3 content and impurities in the polymer composite
materials. Raman spectroscopy is an important tool to get the
information about the disorder and defects in sp2 carbon
material. This information enables us to determine the intensity
ratios depending on the amount of disorder. The calculated
values of the intensity ratio, i.e., (ID/IG) bands, are presented in
Table 2. ID/IG is used to detect the degree of defect.64 In our

case, the intensity ratio decreases with the increase of CNTwt%.
A decrease in ID/IG ratio indicates that defects in CNTs have
decreased, and it represents the improvement in the graphitic
nature.
3.4. Field Emission Scanning Electron Microscopy

(FESEM). The FESEM was performed to obtain the surface
morphology of the (PVA-PEG) + NaNO3 with various weight
percent of doped MWCNTs as shown in Figure 4i(a−d). The
morphological structure of the dispersed types of composites
shows the dispersion of MWCNTs in PVA-PEG blend matrix.
The dispersion of CNTs is visible in the case of 2.5 wt % of filler,
while in the case of 10 wt % filler we observe a rough surface in
SEM image. This condition may arise due to higher
concentration of filler and poor scanning by SEM. The
morphology of polymer blend salt components is usually
characterized by a semicrystalline pattern, and the presence of
pores like texture structure confirm in the previous work of Sadiq
et al.51 At low concentrations (2.5 wt %) of the filler, the

microstructure is devoid of small pores that can modify the
surface texture. The disappearance of pore and semicrystalline
characteristics clearly shows the decrease in crystallinity of the
sample.65 At a higher concentration of 7.5 wt % of carbon
nanotubes seems to be uniformly distributed in this polymer
blend matrix. We can observe that the nanotubes are poorly
dispersed in Figure 4i (b) because SEM cannot reveal the CNTs
which are embedded inside the polymer matrix.66 We know that
CNTs have a covalent structure due to oxygen contained on the
sidewall and PVA has a noncovalent structure. On this basis, we
can say that PVAwill contribute as the dispersant andmatrix that
formed the hydrogen bond with CNTs helps to yield a
homogeneous distribution.67−69Figure 4i (d) shows the surface
morphology of a 10 wt % polymer composite film which has a
rough surface in comparison to other weight percentage samples
of the composite films.
As a result, our MWCNTs-based BPCEs with a concentration

of 10 wt % have stronger ionic conduction. Figure 4ii depicts the
elemental distribution of MWCNTs in PBCEs. The polymer
blend matrix is responsible for the presence of the carbon (C),
oxygen (O), nitrogen (N), and sodium (Na) element. In
general, the EDAX spectra Figure 4iii show the homogeneous
distribution of MWCNTs in the PVA-PEG blend matrix. The
atomic mass % for various elements are shown in Figure 4iv.
Mapping of all existing elemental assignments of the polymer
blend composite films for 10 wt % of MWCNTs contents is
shown in Figure 4v. Consequently, it implies that MWCNTs
fillers are homogeneously and evenly distributed and well
diffused in the BPCE matrix and confirms the proper
preparation of the solution by casting method.70

3.5. Thermal Properties.TheDSC curves are used to study
the thermal properties in polymeric materials such as glass
transition, crystallization, melting, and decomposition processes
which occur as the temperature of the sample rises according to a
predetermined process. In the case of the PVA-PEG blend film,
the melting peak located toward a lower temperature region
which confirms a drop in average crystallite size and a lower
degree of crystallinity.71Figure 5i(a−d) depicts the DSC curves
of PVA-PEG + NaNO3 + x wt % MWCNTs-based composite
films (x = 2.5, 5,7.5, and 10 wt %). For all prepared polymer
blend composite electrolytes, an endothermic peak (Tm1) has
developed within a temperature range of 58−61 °C. Because
PEG crystallizes around this temperature this peak can be
attributed to melting of the PEG-rich phase.72 The glass
transition temperature is a critical characteristic for under-
standing polymer mix miscibility. The value of Tg for the blend
system is determined by the structure and cooperative mobility
of polymer chain segments., while for partially blended systems
the value of Tg is taken from the individual polymer. Figure 5I
shows the melting endotherm (Tm2) for all composite films
prepared in the range of 187−195 °C and the decomposition
endotherm (TD) which is detected at 293 °C for composite films
of 2.5 wt % which is comparatively larger than other fillers of
different ratio. On addition of MWCNTs into the polymer
matrix, theTD values decrease which confirm, the intermolecular
interaction between the polymer and fillers.73,74 The TGA
curves for blend polymers based pn PVA-PEG + NaNO3 + x wt
% of MWCNTs-based composite electrolytes (x = 2.5, 5, 7.5,
and 10 wt %) are shown in Figure 5ii(a−d). The TGA curve
demonstrates an initial weight loss in the 40−200 °C range.
Another weight loss is observed in the 210−400 °C range. For
pure PVA the thermal stability is shown to be around 320 °C,
pure PEG shows thermal stability around 400 °C, and PVA-PEG

Table 2. Raman Spectra for Polymer Blend (PVA-PEG)-
NaNO3 + x wt % of MWCNTs Containing Various Weight
Percentages (x = 2.5 wt %, 5 wt %, 7. 5 wt %, and 10 wt %)
Based Composite Electrolytes

x wt % of CNTs D-band (cm−1) G-band (cm−1) Intensity ratio, ID/IG

2.5 1317 1596 1.99
5 1320 1592 1.88
7.5 1328 1599 1.67
10 1313 1598 1.59
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blend polymer shows thermal stability 310 °C as reported in
Sadiq et al.51 The influence of filler on the polymer blend-salt
matrix decreases the thermal stability, which is due to the leading

to polymeric backbone because of the disorder the bonding and
thermal resistance of the polymers reported in Hirankumar et
al.75 The thermal stability of the polymer blend composite

Figure 4. (i) FE-SEM images for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers. (ii) Mapping elements
for various contents: 10 wt % ofMWCNTs containing oxygen (O), nitrogen (N), carbon (C), and sodium (Na). (iii) EDAX analysis, (iv) atomic mass
% for various elements, and (v) mapping of all existences by elemental assignment for 10 wt % of MWCNTs fillers.
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electrolytes raises up to above 230 °C for the 7.5 wt %
MWCNTs fillers. Consequently, standard polymer electrolyte is
thermally more stable as compared with liquid electrolyte and
favored when used in portable all solid-state electrochemical
energy storage devices.76,77 Therefore, the thermal stability of
our prepared electrolytes is better for practical applications.
3.6. AC Impedance Spectroscopy. The AC-impedance

spectra of polymer blend composites based on carbon nanotube
are shown in Figure 6i. Nyquist plots contain the general
characteristics at a high-frequency semiarc region followed by
low-frequency spikes. The semiarc corresponds to the bulk
characteristics of the system, and the low frequency peak
corresponds to the charge build up at the electrode−electrolyte
interface.78−88 The obtained experimental data of impedance
plots were fitted with an equivalent circuit model using Zsimp
Win software. The experimental data perfectly fit with the

theoretical model. The Chi-squared (χ2, i.e., the sum of the
squares of the differences between experimental data and
theoretical data point) and relative errors were chosen as criteria
for a satisfactory fit in the estimated parameters. The value of χ2
was taken in between the range of 10−3 and 10−4. The
Rs(Q1(R1(Q2(R2(CR3))))) circuit model is used and shown in
Figure 6,i,ii. The capacitance of the interfacial double layer (Cdl)
is parallel to R3. Electrolytic resistors (Rs) are connected in
parallel with R1, R2, R3, Q1, andQ2 of the constant phase element
(CPE) and η is a fitting parameter dimensionless and its value is
in the range of 0−1to form the various circuit characteristics.80,81
The electrical equivalent circuit parameters are shown in Table
3. Generally, PVA-PEG polymer blend is of insulating nature,
and its electrical conductivity is 10−9 S/cm.82 The Nyquist plots
(Z″ vs Z′) in the frequency range (10−1−107) were examined at
different temperatures (i.e., 20 and 100 °C). The conductivity of

Figure 5. (i) DSC curves for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers. (ii) TGA curves for various
contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers.

Figure 6. (i) Nyquist spectra for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % at 20 °C. (ii) Nyquist spectra for10 wt % of
MWCNTs at various temperatures. (iii) Arrhenius plot of highest conducting sample for 10 wt % of MWCNTs at various temperatures (30−100 °C).
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the prepared polymer blend composite electrolyte is calculated
using the following formula.

=
×

P
R sb (1)

Here, P is the thickness of PBCEs, S is the surface area of PBCEs,
and Rb is the bulk resistance.

83 Rb (bulk resistance) value is
determined on the x-axis of the Nyquist plots, and the obtained
conductivity result is summarized in below Table 5. The 10 wt %
of MWCNTs concentration increases the conductivity of the
composite to 4.32× 10−6 S/cm at 20 °C. Figure 6(ii) depicts the
relationship between ionic conductivity and various temper-
atures. The highest electrical conductivity (2.253× 10−4S cm−1)
has been achieved at 100 °C.
The temperature versus log σ plot follows the behavior of the

Arrhenius equation,

= A
E
kT

exp ai
k
jjj y

{
zzz (2)

Here, A is the pre-exponential factor, Ea is the activation
energy, k is the Boltzmann constant (1.38× 10−23 J/K), and T is
the temperature in Kelvin. The plot log σ and 1000/T reveals the
linear relationship between them as shown in Figure 6iii. From
the linear fitting methods, we obtain the activation energy (Ea)
values of 0.41 eV, respectively. The activation energy is the sum
of the generation and migration energies of mobile charge
carriers.84,85 In general, a polymer electrolyte with a low

activation energy will have a high ionic conductivity which is
desirable for practical applications.
3.7. Dielectric Investigations. 3.7.1. AC impedance

spectra. The AC-conductivity of PVA-PEG + NaNO3 + x wt
% of MWCNTs (x = 2.5, 5, 7.5, and 10 wt %) samples is plotted
against frequency at 20 °C (Figure 7i) and at different
temperatures in the range of 30−100 °C (Figure 7ii). The AC
conductivity was calculated from dielectric data using the
formula

= tanrac 0 (3)

where tan δ is the loss tangent and the AC impedance measures
the σac. Figure 7i,ii shows three regions. At low frequency there is
increase in conductivity with an increase of frequency followed
by a frequency-independent region, and the DC conductivity is
extracted from it. At high frequency the continuous increase in
frequency corresponds to the dispersion region.86 It may be
noted that ionic conductivity increases with temperature and
suggests the thermal activation of charge carriers. An increase of
temperature enhances the segmental motion of polymer chain
and, hence, faster ion transport.87 The direct relationship
between temperature and ionic conductivity is simply explained
in terms of hopping mechanisms between coordination sites and
movement of the polymer−salt−filler matrix component. As a
result of the internal polymer chain, it rises rapidly with the
temperature enhancement and promotes ionicmobility between

Table 3. Impedance Spectra for Polymer Blend (PVA-PEG)-NaNO3 + x wt % of MWCNTs Fillers Containing Various Weight
Percentages (x = 2.5, 5, 7. 5, and 10 wt %) Based Composite Electrolytes for Different Parameter Values Extracted from the
ZSimpWin Program to Fit the Equivalent Circuit Model of Rs(Q1(R1(Q2(R2(CR3))))) at (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %,
and (d) 10 wt %) of MWCNTs Filler Based Composite Electrolytes

Circuit component x wt % of MWCNTs

Rs(Q1(R1(Q2(R2(CR3))))) 2.5 wt % (20 °C) 5 wt % (20 °C) 7.5 wt % (20 °C) 10 wt % (20 °C) 10 wt % (100 °C)
Rs/Ω 3.252 × 10−6 13.58 1.032 × 10−7 19.87 58.05
Q1/Yo(μS × s−n) 3.546 × 10−10 1.117 × 10−11 4.065 × 10−10 5.527 × 10−9 6.766 × 10−9

η 0.825 0.99 0.8348 0.7252 0.7802
R1/Ω 5.821 × 104 2.545 × 104 1.33 × 104 1.687E4 274.7
Q2/Yo(μS × s−n) 9.174 × 10−7 1.706 × 10−9 1.884 × 10−6 2.873 × 10−6 7.239 × 10−5

η 0.504 0.656 0.634 0.7777 0.5427
R2/Ω 1.305 × 105 1.728 × 105 1.643 × 106 3.736E11 743.6
Cdl/F 1.085 × 10−7 1.317 × 10−6 1.369 × 10−7 9.745 × 109 2.192 × 10−8

R3/Ω 3.501 × 105 7.964 × 105 8.339 × 109 1.197 × 106 0.4787
χ2 8.915 × 10−3 8.321 × 10−3 8.860 × 10−3 3.059 × 10−7 4.664 × 10−4

Figure 7. (i) AC conductivity spectra against frequency (Hz) for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % ofMWCNTs
fillers at 20 °C. (ii) A.C. conductivity spectra with frequency (Hz) for 10 wt % of MWCNTs at various temperatures.
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and within the matrix which improves the ionic conductivity of
the polymer blend composite electrolyte.88,89

3.7.2. Dielectric Constant and Dielectric Loss. The complex
dielectric properties such dielectric constant (ε′) and the
dielectric loss (ε′′) of the polymer blend composite electrolytes
are studied by the impedance spectroscopy. The mathematical
expression the real part and imaginary part of complex
permittivity can be expressed as

* =

=
+

=
+

i

C Z Z

C Z Z

Z
( )

Z
( )

o
2 2

o
2 2

l

m

oooooooooo

n

oooooooooo (4)

where Z′ and Z′′ are the real and imaginary parts of the
impedance. Co is the capacitance, and ω is the angular
frequency.90Figure 8i,iii depicts the frequency dependence of
real and imaginary part of the dielectric constant and dielectric
loss behavior at 20 °C temperature and similar in Figure 8ii,iv
show the frequency dependence of real and imaginary part of the
dielectric constant and dielectric loss behavior at various
temperature.
As per the spectra of the dielectric constant (ε′) and dielectric

loss (ε′′) it is clearly seen that their values reduced with respect
to the frequency it may be due to the reduction in the space
charge by the orientation of the dipole in the direction of the
applied electric field. At high frequency the dielectric constant
(ε′) and dielectric loss (ε′′) become minimal due to the lack of
charge accumulation at the electrolyte−electrode interface.87,88
We observed the high dielectric constant (ε′) value at low

frequencies that may be due to the electrode polarization effect
where the dipoles are oriented in the direction of the applied
electric field. Figure 8iii,iv shows the temperature-dependent
dielectric constant and dielectric loss as the frequency for the
sample (10 wt %) at various temperatures. In the low frequency
region, on increasing the temperature the dielectric constant and
loss both are increased it may be due to the induction of space
charge by the thermal activation phenomena and formation of
dipoles which induced the polarization effect at the electrode−
electrolyte interface.89,90 At high frequency the dielectric
constant and loss reduced drastically because high field aligned
the dipoles and reduced the space charge effect by the fast
movement of ions through the electrolyte−electrode inter-
face.91−96 When the temperature rises, the ion-pair dissociation
process increases as well as the free carrier density at the
interface increases. We know that the conductivity is highly
influenced by temperature; hence, dielectric loss increases as the
temperature increases. This thermal activation of charge carriers
results in enhance polarization and, hence, dielectric constant
(ε′). Therefore, an increase in dielectric loss (ε″) leads to
hopping of charge carriers in the polymer electrolytes.

3.7.3. Electric Module. The electric module behavior has
been studied by using the formula

* = +
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Figure 8. (i) Dielectric constant (ε′) and (iii) dielectric loss (ε′′) against frequency for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d)
10 wt % ofMWCNTs fillers at 20 °C. (ii) Dielectric constant (ε′) and (iv) dielectric loss (ε′′) with frequency for 10 wt % ofMWCNTs fillers at various
temperatures.
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where M′ and M′′ are the real and imaginary parts of electric
modulus, ω is the angular frequency, Cois the capacitance of the
dielectric material and Z′ andZ′′ are the real and imaginary parts
of the impedance.97 Since both the value M′ (see Figure 9i) and
M″ (see inset of Figure 9ii) are very close to zero at the lower
frequency side which shows the migration of ions in polymer/
polymer-blend and M′ (i.e., = ωCoZ′′) and M″ (i.e., =
ωCoZωCoZ′), both shifts toward higher frequency side with
increasing temperature (i.e., the motion of ions became faster
and hence charge carriers are thermally activated) and
MWCNTs fillers, although, the values of M′ and M″ both are
very close to zero at lower frequency and increase at higher

frequency. The occurrence of peaks occurs in the modulus
formalism (at higher frequencies for all polymer-blend systems)
and temperatures because of the localized motion of ions as
shown in Figure 9iii,iv. At lower frequency region the values of
M′ and M″ specify the negligible electrode polarization.98,99 In
addition, the appearance of a long tail at the lower frequency side
shows that the electrodes might be associated with large
capacitance. The smaller value of M′ (at lower frequency side)
confirms that no any involvement of electrode polarization
(followed by continuous dispersion on increasing frequency due
to conductivity relaxation phenomenon). This is because of the
lack of restoring force governing the mobility of charge carriers

Figure 9. (i) Real part (M′) and (ii) Imaginary part (M′′) of electric modulus against frequency (Hz) for various contents: (a) 2.5 wt %, (b) 5 wt %, (c)
7.5 wt %, and (d) 10 wt % of MWCNTs fillers at 20 °C. (iii) Real part (M′) and (iv) imaginary part (M′′) of electric modulus with frequency (Hz) for
10 wt % of MWCNTs fillers at various temperatures.

Figure 10. (i) tan δ against frequency for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % ofMWCNTfillers at 20 °C. (ii) tan δ
with frequency for 10 wt % of MWCNTs fillers at various temperatures.
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under the influence of steady electric field.100 From the above
observations, we can say that the addition of MWCNTs in
polymer/polymer-blend system increases the amorphous phase
in the polymer matrix. This relaxation process existed in higher
frequency region may be due to increased flexibility of host
matrix.
3.7.4. Tangent Delta. The dielectric behavior of the polymer

blend composite electrolytes plotted against frequency is shown
in Figure 10i,ii. The mathematical expression for tan (δ) is given
by eq 6.

=

=

tan

tan

l
m
oooo
n
oooo (6)

From Figure 10i, it can be found that the shift in relaxation
peaks toward higher frequency with an increase in the
MWCNTs concentrations into PBCEs films.101−104 Although
Figure 10ii shows temperature-dependent tan δ against a
frequency (Hz) plot for the sample containing 10 wt % of
MWCNTs which exhibits a frequency shift with temperature
(from 30 to 100 °C) the relaxation peaks shift toward higher
frequency regions. This shift in relaxation frequency may due to
increased segmental motion of the polymeric chains. Therefore,
it favors the conduction of ion inside the matrix of polymer, i.e.,
thermally activated behavior of dielectric polarization. Also, the
tangent delta is powerfully impacted by the ions because of the
existence orientation of dipole into the polymeric matrix and
hence to the ionic conductivity (which can also be seen in the
relaxation time). Furthermore, the maximum value of tangent

delta against frequency can be determined by using the relation
ωτ = 1 where ω and τ, respectively, are the angular frequency
and relaxation time.105−107 The relaxation time (τ = 1/(2πfmax)
has also been calculated as presented in Table 4 and obtained as
a minimum relaxation time for PBCEs films having 10 wt %
MWCNTs content and a maximum for the sample containing
10 wt % MWCNTs. The decrease in the dielectric loss tangent
relaxation process and a reduction in relaxation time signify less
hindrance in the segmental dynamics of polymeric chains (i.e.,
conductivity relaxation).108−110 This finding is most favorable to
the result of dielectric permittivity as already discussed.
3.8. Electrochemical Performance. The electrochemical

stability of polymer blend composite electrolytes was performed
by the linear sweep voltammetry (LSV) technique. The highest
conducting sample (i.e., 10 wt %) composite electrolytes
operating within the potential range (−3 to +3) V under a
scan rate of 10 mV/s are presented in Figure 11i. The maximum
operating potential range of the electrolyte, i.e., the decom-
position potential, is 4.0 V of the PBCEs at 30 °C. It has been
observed that the current remained constant initially and then
rapidly increased. This phenomenon occurs due to the
electrolyte breakdown at the inert electrode contact.111,112

The highest conducting sample of blend polymer composite
film is 10 wt % and was scanned at a rate of 10 mV/s at 30 °C
within the potential range of−3 to +3 V. The cyclic voltammetry
(CV) plot is shown in Figure 11ii. The absence of cathodic and
anodic peaks can be seen in voltammograms throughout the
cycles.113,114 Furthermore, after one cycle, the polymer
electrolyte’s stability remains the same and its stability window
is up to 4.0 V which establishes it as a promising candidate to use

Table 4. Values of Relaxation Time for Polymer Blend (PVA-PEG)-NaNO3 + x wt % of MWCNTs Containing Various Weight
Percentages (x = 2.5, 5, 7. 5, and 10 wt %) Based Composite Electrolytes at 20 °C and Highest Conducting Sample x = 10 wt % of
MWCNTs Fillers at Various Temperatures

Highest conducting (10 wt %) sample

Sample concentration x wt % of MWCNTs
(20 °C)

Angular frequency
(ωmax)

Relaxation time
(τ, s)

Temp
(°C)

Angular frequency
(ωmax)

Relaxation time
(τ, s)

2.5 wt % 1303.01 7.67 × 10−4 30 1904.30 5.25 × 10−4

40 6709.30 1.49 × 10−4

5 wt % 33.37 2.99 × 10−2 50 10513.31 9.51 × 10−5

60 13512.83 7.40 × 10−5

7.5 wt % 6448.61 1.55 × 10−4 70 15974.11 6.26 × 10−5

80 24702.45 4.04 × 10−5

10 wt % 664.41 1.50 × 10−3 90 40808.40 2.45 × 10−5

100 62279.21 6.60 × 10−5

Figure 11. (i) Linear voltammetry curve of polymer blend composite electrolytes at 10 wt % of MWCNT fillers. (ii) Cyclic voltammetry curve of
polymer blend composite electrolytes at 10 wt % of MWCNTs fillers.
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in the electrochemical devices, electrochemical double layer

capacitors, and sodium ion battery applications.
3.9. Chronoamperometry (CA) Studies. The DC polar-

ization technique was used to quantify the transference number

of ions (tion) and electrons (tele) at a potential of 2 V for 600 s.

Figure 12 depicts the results of the measurements. As the mobile

ions at the electrode/electrolyte contact are polarized, the peak

current diminishes instantly. The current usually approaches

zero for pure ionic conductors or reaches a constant residual

value for mixed ionic and electronic conductors. The initial

current (Ii) is caused either by ions or by a combination of ionic

and electronic conduction, whereas the constant residual

current is caused solely by electron conduction. The polarization

current vs time data was used to calculate the transference

numbers for ions (tion) and electrons (telec) of PBCEs films which

can be calculated by using the equation as
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where Ii(solely due to ions) and If (due to electrons/ions)
denote the starting and ending currents, respectively, at times ti
and time tf. The contribution of ionic and electronic
conductivity is calculated by the expression given in eq 8.

= +i i it ion ele (8)

The contribution of ionic conductivity and electronic
conductivity in the PBCEs films was also estimated by using
the following relationship.115,116

= ×
= ×

t

t
ionic electrical ion

electronic electrical electronic

l
moo
noo (9)

The maximum transference number of ion (tion) was 0.968 for
10 wt %, and the transference number of electronic telec is 0.035

Figure 12. Constant current vs time (s) for various contents: (a) 2.5 wt %, (b) 5 wt %, (c) 7.5 wt %, and (d) 10 wt % of MWCNTs fillers at room
temperature.

Table 5. Electrical Conductivity and Transference Number Measurement for Polymer Blend (PVA-PEG)-NaNO3 + x wt %
MWCNTs Containing Various Weight Percentages (x = 2.5, 5, 7. 5, and 10 wt %) Based Composite Electrolytes

Transport no. Conductivity (S cm−1)

x wt % of MWCNTs Electrical conductivity (S cm−1) 20 °C tion tele σionic(S cm−1) σelectronic(S cm−1)

2.5 wt % 4.989 × 10−7 0.868 0.132 4.33 × 10−7 6.65 × 10−8

5 wt % 1.02 × 10−7 0.845 0.156 8.86 × 10−8 1.59 × 10−8

7.5 wt % 3.59 × 10−6 0.879 0.112 3.15 × 10−6 4.02 × 10−7

10 wt % 4.32 × 10−6 0.968 0.035 4.21 × 10−6 1.51 × 10−7
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for the 10 wt % sample. The estimated values of transference
number and their corresponding electrical conductivity are
given in Table 5. Table 5 shows that the ionic transference
number is nearly ∼1 and does not change significantly with
salinity. Above that, the increased mobility of electron may be
because there is no possibility of formation of ion clusters.
Therefore, the mechanism of charge transport into the prepared
PBCEs electrolyte films is predominantly due to ions.

4. CONCLUSION
Using the solution standard casting technique, we prepared
polymer blend composite electrolytes based on (PVA-PEG) +
NaNO3 + x wt% of MWCNTs (where x = 2.5, 5, 7.5, and 10 wt
% of MWCNTs fillers). X-ray diffraction spectra and FESEM
confirm the formation of polymer composites. FTIR and Raman
spectroscopy confirmed the presence of structural-phase
formations and the interactions between polymers, salt,
MWCNTs, and ions. Surface morphology of the prepared
polymer blend composite electrolytes was analyzed by using
FESEM. The thermal properties of the PBCE films were
effectively determined by DSC. The ionic conductivity was
obtained in the case of 10 wt % ofMWCNTs filler which is equal
to 4.32 × 10−6 S cm−1 at 20 °C. At higher temperature, the
enhancement in ionic conductivity has been observed. The
obtained value is 2.253 × 10−4S/cm at 100 °C. AC conductivity,
dielectric properties, and tan δ values were effectively obtained
through an impedance spectroscopy. The dielectric constant,
dielectric loss, and loss tangent values were found to rise due to
its dependence on temperature and frequency. In addition, the
highest conductivity sample is checked with linear sweep
voltammetry (LSV) and cyclic voltammetry (CV) approaches
was used to calculate the potential window. The voltage stability
is found to be 4.0 V at room temperature for 10 wt % of
MWCNTs. The cyclic voltammetry (CV) technique has been
used to identify and make sure that there is no single oxidation
and reduction peak in the polymer blend composite electrolytes.
These finding are important and suggest that the device is suited
for EDLC supercapacitors, Na-battery, Li-battery, fuel cells, and
other energy applications.
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