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Abstract

Bacillus cereus is a foodborne pathogen causing emesis and diarrhea in those affected. It is

assumed that the non-hemolytic enterotoxin (Nhe) plays a key role in B. cereus induced

diarrhea. The ability to trace Nhe activity is important for food safety. While assays such as

PCR and ELISA exist to detect Nhe, those methods cannot differentiate between active and

inactive forms of Nhe. The existing rabbit ileal loop bioassay used to detect Nhe activity is

ethically disfavored because it uses live experimental animals. Here we present a custom

built low-cost CCD based luminometer and applied it in conjunction with a cell-based assay

using Vero cells transduced to express the luciferase enzyme. The activity of Nhe was mea-

sured as its ability to inhibit synthesis of luciferase as quantified by reduction of light emis-

sion by the luciferase reaction. Emitted light intensity was observed to be inversely

proportional to Nhe concentration over a range of 7 ng/ml to 125 ng/ml, with a limit of detec-

tion of 7 ng/ml Nhe.

Introduction

Bacillus cereus is a toxin-producing Gram-positive, spore-forming, motile, aerobic rod that

also grows well anaerobically. Spores of B. cereus are present in the soil at high concentrations

up to 106 cfu g−1 [1] and enter the human food chain by contaminating crops used for feed

and food. Foods observed to be affected by this contamination include the following: cooked

rice [2], infant rice cereal [3], infant formula [4], dried milk products [5], dehydrated potato

products [6], eggs, meat and spices [7], causing 47% of the total cases of food poisoning in Ice-

land (1985–1992), 22% in Finland (1992), 8.5% in the Netherlands (1991), and 5% in Denmark

(1990–92) [8]. Most reported outbreaks involving B. cereus were linked to the consumption of

heat-treated foods [9] (EFSA 2016) and between 400 and 108 B. cereus CFU/g were found in

the foods found responsible in those foodborne disease outbreaks [10]. Thomas et al. estimate

that the true food poisoning incidence caused by B. cereus is underdiagnosed and is likely to be

under-reported [11]. The Centers for Disease Control (CDC) provides estimates that there are

over 63,400 cases annually within the United States of food poisoning caused by eating B.

cereus contaminated food [12]. Daelman et al., show that the proper food handling is adequate
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to prevent illnesses caused by B. cereus [13]. Samapundo et al., showed that 88% of the isolates

they studied did not grow at�8˚C [14] and Guérin A et al., showed that toxin produced by B.

cereus increased 5-fold between 8˚C and 10–15˚C and by more than 100-fold between 15˚C

and 25˚C while production of toxins is not favorable under anaerobic conditions [15]. Guérin

A et al., 2016 shows that combinations of anaerobiosis with low pH and cold temperatures

effect the growth capacities of Bacillus cereus [16]. Toxin produced by B. cereus has been linked

to acute liver failures and acute encephalopathy [17–21].

This bacterium produces a group of virulence factors causing two different types of gastro-

intestinal illness, manifested either by emesis or diarrhea [22–24]. Emesis is usually associated

with cereulide, a cyclic dodecadepsipeptide, and diarrheal symptoms associated with the

enterotoxins hemolysin BL (HBL) and non-hemolytic enterotoxin (Nhe) [25–27]. In a study of

100 B. cereus isolates, Moravek et al., found that nearly all produced Nhe and that there was lit-

tle statistical difference in the toxic activity of isolates expressing HBL and Nhe from those

expressing just Nhe [28]. It is assumed that the non-hemolytic enterotoxin (Nhe), the major

and the first enterotoxin secreted during the exponential growth phase by this bacterium [29],

plays a key role in B. cereus induced diarrhea [30]. Nhe is comprised of three protein compo-

nents: NheA (41.0 kDa), NheB (39.8 kDa), and NheC (36.5 kDa). Both NheB and NheC have

been identified as cell binding components. After NheC and NheB bind to the cell surface they

undergo a conformational change, altering the shape of their protein structure, allowing subse-

quent binding of the third component NheA, resulting in cell lysis [31].

The existing assay to detect the diarrheal activity of B. cereus virulence factors is an in vivo
rabbit ileal loop bioassay. This process includes ligating a segment of ileum into which is trans-

ferred supernatant from a culture suspect, leading to secretion of fluids into the intestinal loop

[32]. Mice and rats have also been used in place of rabbits although requiring more animals for

a given number of samples [27]. Because of ethical and policy concerns about the use of live

experimental animals, this in vivo method is not preferred. An alternative method uses poly-

merase chain reaction (PCR) to detect the genes for the toxin but not the toxin itself. This

method is rapid and has high sensitivity and specificity [33, 34] but is not quantitative. For the

assessment of food safety it is important not only to monitor for the presence of the organism

as through PCR but also the actual toxic potential of those foodborne strains [35]. Thus toxin

quantification is necessary because there is a very wide variation in the amount of enterotoxins

produced by different strains of the bacterium and PCR tests that verify the presence of genes

for the toxins cannot predict the expression level of the toxin [28] nor whether those genes are

associated with viable bacteria. An actual quantitative test for the toxin is best able to assess the

potential toxicity of isolates. Another approach is the use of immunoassay. However the avail-

able immunoassay kits target only one of the three elements of the Nhe toxin, specifically

NheA [22, 36], while NheB and NheC are necessary for the complete toxin to bind the cell

membrane of its target and only with all three elements present does the toxin have activity.

Because of this and also because immunoassays respond to the presence of a particular epitope

and not the active conformation of that epitope, they are unable to discern active Nhe from

inactive forms and are not acceptable alternatives to the ileal loop assay to demonstrate the

presence of biologically active toxin [26]. An alternative ex-vivo bioassay method that directly

measures toxin activity quantifies the uptake and incorporation of C14 radiolabeled leucine

across the plasma membrane of Vero epithelial cells [24]. Toxin activity is measured by reduc-

tion of incorporation of radioactive C14 into newly synthesized protein. While this method

directly detects Nhe toxin activity without the use of living animals it still requires radioiso-

topes and expensive equipment such as a scintillation counter to detect the uptake of C14-leu-

cine. As an improvement to this cell based approach, in this study we generated recombinant

adenoviral vectors for the expression of the firefly luciferase enzyme (Ad-Luc) and used these
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to transduce Vero cells to create a light reporting system to measure Nhe inhibition of protein

synthesis. We also evaluated the assay in a custom built low-cost CCD based luminometer and

sensor, quantitatively measuring the emitted light intensity of the reaction catalyzed by the

expression of luciferase in transduced Vero cells.

Materials and methods

Materials

Custom made analysis plates were fabricated from black 1/8" thick polymethyl methacrylate

(PMMA), 3MTM adhesive transfer tape (double sided, #9770) and thin polycarbonate sheet, all

purchased from Piedmont Plastics, Inc. (Beltsville, MD, USA). Luciferase Assay System

reagent was purchased from Promega (Sunnyvale, CA, USA). Bacillus cereus toxin was a gift

from Toxin Technology (Sarasota, FL, USA). HEK293 cells (ATCC CRL-1573), a cell line orig-

inating from human embryonic kidney, and epithelial Vero cells (ATCC CCL-81), a cell line

originating from the kidney of African green monkey, were obtained from the American Type

Culture Collection (Manassas, VA, USA).

Cell culture medium

Dulbecco’s Modified Eagle Medium (DMEM) Life Technologies (Grand Island, NY, USA)

supplemented with 10% fetal bovine serum (FBS) and 100 units/mL penicillin and streptomy-

cin was used for the maintenance of the Vero and HEK293 cell lines.

Photodetector system

A simple and inexpensive device for simultaneous photodetection from an entire assay plate

was constructed from a cooled astronomical CCD camera with 16-bit greyscale resolution and

equipped with a 12 mm f1.2 lens. The model SXVF-M7 CCD camera was obtained from Adi-

rondack Video Astronomy (Hudson Falls, NY, USA) and the lens was purchased from Spy-

town (Utopia, NY, USA). Custom assay plates were fabricated by laser machining sheets of

black PMMA previously coated on one side with double sided adhesive tape (3MTM 9770).

Microplate wells were laser cut as round holes through both the PMMA and tape layers. The

plates were completed by applying thin polycarbonate sheet material on the surface coated

with adhesive tape. To prevent or minimize the transfer of light from one well to another the

PMMA sheet was selected to be black and opaque.

Processing of images

The imaging of the low cost luminometer is achieved through the cooled CCD SXVF-M7 cam-

era which efficiently converts photons of light into a corresponding electrical current with lin-

ear response and generates high-quality, low noise images. Processing of the images and

quantification of light intensity was performed with the ImageJ software application [37]. The

background signal of each pixel in the digital image was measured and averaged. Images of

sample wells were similarly processed and the background signal subtracted. The background

signal was recorded by capturing images with exposure and gain settings identical to those

used to image samples. Each data point was computed as the mean pixel intensity of three

samples.

Adenoviral vector construction for expression of the firefly luciferase gene

To quantify Nhe activity we measured its inhibition of firefly luciferase gene expression levels

in transduced Vero cells. The firefly luciferase gene was isolated from pGL3-Basic Vector
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(Promega) and was subcloned into the adenoviral shuttle plasmid flanked by the adenovirus

E1 sequences. This adenoviral shuttle plasmid and the plasmid pJM17 containing the full

length of the adenovirus genome were co-transfected in HEK293 cells. After 10 days, structural

changes in transfected HEK293 cells emerged. The cells became round and detached from the

6-well plate. The HEK293 cells with cytopathic effect were analyzed for luciferase expression.

Quantifying Nhe activity

Aliquots of 1x104 Vero cells in 100μl of medium were transferred per well onto 96-well plates or

custom assay plates and incubated overnight at 37˚C in an atmosphere of 5% CO2 to promote

cell attachment. The attached cells were then transduced with Ad-Luc at MOI of 100 and after 1

h, Nhe was added to each well and incubated for 72 h at 37˚C in a 5% CO2 incubator. The

medium was removed, and cells were washed three times with pH 7.4 phosphate buffered saline

(PBS). The luciferase enzyme activity was determined according the manufacturer’s instructions

for Luciferase Assay System (Promega, Madison, WI, USA) using a Synergy HT Multi-Detec-

tion Microplate Reader (BioTek, Winooski, VT, USA) or the CCD photodetector system.

Statistical analysis

All experiments were repeated at least three times and one-way analysis of variance (ANOVA)

was performed using SigmaStat 3.5 for Windows from Systat Software (San Jose, CA, USA) to

compare between the different Nhe treatments. Statistical significance of results was estab-

lished with p< 0.05.

Results

The suitability of the bioluminescence assay for quantitative measurement of B. cereus nonhe-

molytic enterotoxin complex (Nhe) was first tested using a commercial microplate reader as

luminometer. We transduced Vero cells with adenovirus to express the firefly luciferase gene

as a reporter of protein synthesis and inhibition. The transduced Vero cells were immobilized

in a 96-well plate and incubated in the presence of different Nhe concentrations. The lumines-

cence from the cells was measured by a commercial luminometer microplate reader contain-

ing a photomultiplier tube that generates an amplified electric signal derived from photons of

light striking its photosensitive cathode surface. The data presented in Fig 1, show that the

light intensity (relative luminescence units) is inversely proportional to different Nhe concen-

trations. A dose dependent response is observed between 7 ng/ml and>62.5 ng/ml of Nhe. At

Nhe concentrations higher than 125 ng/ml the toxin blocks luciferase enzyme synthesis and,

therefore, the transduced Vero cells produce no light and the signal is at background level of

untransduced cells. The statistical comparison test shows that the detection limit of 7 ng/mL

has P-value < 0.05 compared to transduced cells without Nhe present.

We next examined the suitability of the low-cost CCD based luminometer as an alternative

to the photomultiplier based commercial microplate reader for quantitative measurement of

the light intensity from transduced Vero cells. The identical procedure was repeated over the

same Nhe concentration range with the assay sample mixtures being transferred to custom

9-well sample assay plates. Initially, an CCD astronomy camera from Point Grey Research was

considered for quantification of the intensity of light produced by the luciferase-catalyzed

luciferin reaction. These tests were disappointing as it was determined that this camera was

too noisy to discern the luminescence signal levels from the background. Even with the shutter

left open to obtain longer light exposure does not overcome the problem because both signal

and thermal noise inherently generated in the silicon chip of the CCD increase with exposure

time. We next selected an astronomical SXVF-M7 camera with a cooled CCD and producing a
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16-bit resolution grayscale image. The camera was fitted with a Pentax 12 mm f1.2 lens and

connected to a computer to control acquisition of images and for their subsequent analysis. A

focused image of the assay plate is projected upon the CCD chip inside the camera. The silicon

CCD chip divided into an array of pixels, converts incident photons into an electronic signal

proportional to photon intensity of the corresponding image. Because the camera uses Peltier

cooling of the CCD chip the thermal noise background of the image is reduced. Fig 2 illustrates

a digital image of an example assay plate containing transduced Vero cells after Nhe at concen-

trations of 1000, 500, 250, 125, 62.5, 31.25, 15.625, 7.8125 and a control 0 Nhe ng/ml were

added to the well numbers 1,2, 3, 4, 5, 6, 7, 8 and 9 respectively. Those experiments were done

in triplicate. The signal intensity was averaged over three replicated images over all pixels as

measured and reported by the freely distributed ImageJ imaging software [37]. Similarly, an

average of the background signal was calculated and was subtracted from the averages from

the images of the assay samples. The resultant relative signal intensity is described in relative

analog-digital units (ADU) and was plotted against concentration of Nhe. The bar graph in

Fig 3 shows a proportional relationship between light intensity and Nhe concentration.

In terms of sensitivity and limit of detection, this bioluminescence assay can detect 31.25 ng/

mL of Nhe with a P-value of 0.05 (p< 0.05) found by a statistical comparison test against the con-

trol case in the absence of toxin. This data compares with that for the plate reader results shown in

Fig 1, although that instrument had a lower detection limit of 7.85 ng/ml. The dynamic range of

the plate reader was 7.85–62.5 ng/ml compared to 31.25–125 ng/ml for the CCD system.

Discussion

This study has been directed toward developing inexpensive methods for detecting and quanti-

fying active B. cereus virulence factors that do not require the use of an in vivo rabbit ileal loop

bioassay to avoid ethical concerns regarding the use of experimental animals. Our previous

Fig 1. Determination of the biological activity of Nhe by measuring the decrease in light from the luciferase

reaction as a result of inhibition of luciferase enzyme synthesis. Transduced Vero cells with adenoviral vectors that

express the luciferase gene (Ad-Luc) were incubated with various concentrations of Nhe. The photon emission was

detected by Bio Tek plate reader measured as relative light units. Values significantly different (P<0.05) from control

without Nhe are marked with an asterisk. Error bars represent standard errors.

https://doi.org/10.1371/journal.pone.0238153.g001
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work has focused on the fact that B. cereus secretes virulence factors that inhibit protein syn-

thesis when grown at 37˚C for 24 h in Luria Broth nutritionally rich medium [38]. The present

study is focused on the virulence factor of purified Nhe. We generated adenoviral vectors that

encode and express firefly luciferase enzyme (Ad-Luc) that can be used to transduce the Vero

cell line to create a light reporting system to measure Nhe inhibition of protein synthesis. We

also constructed a low-cost CCD based luminometer and sensor to quantitatively measure the

luciferase light emission intensity from transduced Vero cells. The data presented here show

that purified Nhe at a concentration of 62.5 ng/ml has the same protein synthesis inhibition

effect as the secreted B. cereus virulence factors diluted 16 times [38]. That fact suggests that

the concentration of virulence factors secreted after 24 h by B. cereus have the effective activity

of 1000 ng/ml purified Nhe.

Alternative detection methods for Nhe include ELISA, PCR and lateral flow apparatus

(LFA). ELISAs have a comparable detection limit to our assay with a range of 2–5 ng/ml and

the LFA has a detection limit around 20 ng/ml [35]. It is difficult to determine a detection

limit for PCR, but has been shown to produce a negative result in samples where the LFA will

produce a positive result. This indicates that the detection limit of PCR is higher than that of

20 ng/ml. However, none of these methods demonstrate the presence of the biologically active

form of Nhe and PCR and LFA produce only qualitative results. Our assay involves a 72 hour

incubation. A shorter incubation could be used but would reduce the sensitivity of the assay.

The data presented here show that a low cost cooled CCD camera designed for astrophotog-

raphy utilized in combination with this cell based assay expressing firefly luciferase enzyme

Fig 2. Image of an example custom bioluminescence assay plate that shows an inverse dose-response relationship

between Nhe concentration (wells 1–9 highest to lowest) and increasing levels of bioluminescence intensity from

the reaction mixture in the custom assay plate wells.

https://doi.org/10.1371/journal.pone.0238153.g002
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can be used for quantitative measurement of the bioluminescence response to Nhe activity at

levels similar to sensitive commercial luminometers costing 30 times more than a CCD device.

Adoption of this technique is especially suitable and appropriate in locations where resources

are limited. Additionally, the simplicity and reduced cost facilitates expanded Nhe testing for

the advancement of food safety. However, this assay will need a cell culture facility and a

freezer for the substrate. A further advantage of the CCD device over the luminometer is in the

effective multiplexing of data measurements; the CCD device can measure the light emission

of multiple tests at the same time whereas the luminometer is a sequential analytic machine.

The light levels generated by the luciferase catalyzed oxidation of luciferin to oxyluciferin

were found to be inversely correlated to Nhe concentration with a linear correlation of R2 =

0.99. Biologically active Nhe was assayed with a detection limit of 7 ng/mL using this method

and cell-based assay. This approach has a distinct advantage over the qualitative in vivo rabbit

ileal loop bioassay based on the observation of diarrhea produced in response to administered

B. cereus secreted virulence factors that disrupt the integrity of the plasma membrane of epi-

thelial cells in the small intestine.
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