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Abstract

Background

Obesity is observationally associated with altered risk of many female reproductive condi-

tions. These include polycystic ovary syndrome (PCOS), abnormal uterine bleeding, endo-

metriosis, infertility, and pregnancy-related disorders. However, the roles and mechanisms

of obesity in the aetiology of reproductive disorders remain unclear. Thus, we aimed to esti-

mate observational and genetically predicted causal associations between obesity, meta-

bolic hormones, and female reproductive disorders.

Methods and findings

Logistic regression, generalised additive models, and Mendelian randomisation (MR) (2-

sample, non-linear, and multivariable) were applied to obesity and reproductive disease

data on up to 257,193 women of European ancestry in UK Biobank and publicly available

genome-wide association studies (GWASs). Body mass index (BMI), waist-to-hip ratio

(WHR), and WHR adjusted for BMI were observationally (odds ratios [ORs] = 1.02–1.87 per

1-SD increase in obesity trait) and genetically (ORs = 1.06–2.09) associated with uterine

fibroids (UF), PCOS, heavy menstrual bleeding (HMB), and pre-eclampsia. Genetically pre-

dicted visceral adipose tissue (VAT) mass was associated with the development of HMB

(OR [95% CI] per 1-kg increase in predicted VAT mass = 1.32 [1.06–1.64], P = 0.0130),

PCOS (OR [95% CI] = 1.15 [1.08–1.23], P = 3.24 × 10−05), and pre-eclampsia (OR [95% CI]

= 3.08 [1.98–4.79], P = 6.65 × 10−07). Increased waist circumference posed a higher genetic

risk (ORs = 1.16–1.93) for the development of these disorders and UF than did increased

hip circumference (ORs = 1.06–1.10). Leptin, fasting insulin, and insulin resistance each

mediated between 20% and 50% of the total genetically predicted association of obesity

with pre-eclampsia. Reproductive conditions clustered based on shared genetic compo-

nents of their aetiological relationships with obesity. This study was limited in power by the
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low prevalence of female reproductive conditions among women in the UK Biobank, with lit-

tle information on pre-diagnostic anthropometric traits, and by the susceptibility of MR esti-

mates to genetic pleiotropy.

Conclusions

We found that common indices of overall and central obesity were associated with

increased risks of reproductive disorders to heterogenous extents in a systematic, large-

scale genetics-based analysis of the aetiological relationships between obesity and female

reproductive conditions. Our results suggest the utility of exploring the mechanisms mediat-

ing the causal associations of overweight and obesity with gynaecological health to identify

targets for disease prevention and treatment.

Author summary

Why was this study done?

• Female reproductive disorders are common, yet relatively understudied, conditions

with a large impact on women’s health and overall well-being.

• Obesity has previously been associated with the risk of developing female reproductive

conditions, but estimates may be biased by weight gain caused by the disease or its treat-

ment, as well as confounding environmental and lifestyle factors.

What did the researchers do and find?

• In one of the largest publicly available datasets on human health, which includes up to

250,000 women, we saw positive associations between obesity and a range of female

reproductive disorders, including uterine fibroids, polycystic ovary syndrome, heavy

menstrual bleeding, and pre-eclampsia.

• We found that inherited genetic variation that is associated with obesity is also associ-

ated with female reproductive disorders, but the strength of these associations differs by

type of obesity and reproductive condition. As genetic variants are randomly assigned at

birth, this is a method to estimate the effect of obesity on reproductive conditions unbi-

ased by environmental and lifestyle factors or reverse causation.

• Hormones such as leptin, which is secreted by fat cells, and insulin were found to medi-

ate the genetic association of obesity with pre-eclampsia.

What do these findings mean?

• Genetics-based investigations such as these provide support for the role of obesity in

increasing the risk of reproductive conditions, reinforcing the need to address rising

obesity rates in the population.
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• Increased obesity and insulin resistance are potentially modifiable risk factors, and

addressing these risk factors could help mitigate or treat female reproductive disorders,

but further research must confirm that their manipulation influences risk of disease.

Introduction

Obesity is commonly understood as the excess accumulation of body fat, which leads to

increased health risks. In women, increased body mass index (BMI) is associated with

increased prevalence of gynaecological conditions, including excessive and abnormal

menstrual bleeding [1,2], endometriosis and uterine fibroids (UF) [3,4], polycystic ovary

syndrome (PCOS) [5,6], complications of pregnancy such as pre-eclampsia and eclampsia

[7], miscarriage [8,9], and infertility [10,11]. These are often non-linear and heteroge-

neous relationships. While the risks of anovulatory infertility and recurrent miscarriages

are highest in obese women, underweight women also have increased risk of infertility

[9,12]. The association of BMI with endometriosis varies by disease severity, as women

with advanced-stage endometriosis have lower BMI than those with minimal disease, and

the inverse BMI–endometriosis association is stronger in women with infertility [13,14].

Finally, although the severity of PCOS and menstrual disorders increases with overall obe-

sity, women presenting with these conditions are more likely to store fat in the abdominal

region, regardless of their BMI [2,5].

Previous estimates of the associations of obesity with reproductive conditions have primar-

ily been based on observational study designs including case–control studies [8,15,16] and

cross-sectional studies in randomly selected women [1], or cross-sectional studies conducted

only in women with obesity [2]. While the direction of effect is largely consistent across stud-

ies, the heterogeneity in selection of cases, controls, and populations observed in these studies

is reflected in heterogeneity in the effect estimates. Further, observational epidemiological

studies are limited in assessing causality, due to confounding and reverse causation. The Men-

delian randomisation (MR) framework is a genetics-based instrumental variable approach that

relies on the random and fixed assignment of genetic variants at conception to estimate the

causal effect size of genetically predicted exposures on an outcome. MR has previously indi-

cated causal associations of genetically predicted BMI with some subtypes of ovarian cancer

(OR = 1.29 per 5 units of BMI) [17], endometrial cancer (OR = 2.06 per 5 units of BMI) (16),

and PCOS (OR = 4.89 per 1 SD higher BMI) [18]. However, the aetiological role of obesity and

body fat distribution in many other female reproductive diseases has not been reported. It is

especially relevant to investigate the effects of fat distribution, as there are intricate metabolic

and endocrine links between adipose tissue and female reproductive organs. Yet, causal inves-

tigations of such relationships are lacking.

Leptin, which is a hormone secreted by adipocytes and elevated in individuals with obesity,

is increased in women with endometriosis, UF, and hypertensive disorders of pregnancy, even

when analyses are adjusted for BMI [7,19–22]. Obesity-induced insulin resistance additionally

increases the risk and severity of PCOS and pre-eclampsia by dysregulating steroid hormone

and metabolic pathways [5,23,24]. The dysregulation of sex hormones, including oestrogen

and testosterone, is likely to play a role in the obesity-driven development of female reproduc-

tive disorders due to its close associations with body fat [23,25]. Yet, to the best of our
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knowledge, the causal impact of these factors in mediating the relationships between obesity

and gynaecological diseases has not been detailed.

Here, we apply logistic regression, generalised additive models (GAMs), and 2-sample,

non-linear, and multivariable MR to dissect the relationships of overall obesity and body fat

distribution with a range of female reproductive disorders, and to investigate the mediating

role of metabolic factors including leptin and insulin.

Methods

Observational associations in UK Biobank

UK Biobank (UKBB) is a prospective UK-based cohort study with approximately 500,000 par-

ticipants aged 40–69 years at recruitment on whom a range of medical, environmental, and

genetic information is collected [26]. We included 257,193 individuals self-identifying as

females of white ancestry in UKBB in our analyses. Baseline measurements of BMI (total body

weight [kg]/standing height squared [m2]) and waist-to-hip ratio (WHR) (waist circumference

[WC] [cm]/hip circumference [HC] [cm]), and WHR adjusted for BMI (WHRadjBMI) were

used to estimate general obesity (BMI) and central obesity (WHR and WHRadjBMI). In

response to peer review comments, comparative body size at age 10 years (as self-reported in a

questionnaire with the options ‘thinner’, ‘plumper’, or ‘about average’) was used to estimate

adiposity at an earlier time point, i.e., before diagnosis of most reproductive disorders. Cases

of reproductive conditions were identified based on ICD-9 and ICD-10 primary and second-

ary diagnoses from hospital inpatient data, self-reported illness codes, and primary care rec-

ords (Table 1). We fitted logistic regression models to estimate the associations of BMI, WHR,

and WHRadjBMI with prevalence of endometriosis (7,703 cases, 249,490 controls); heavy

menstrual bleeding (HMB) (17,229 cases, 239,964 controls); infertility (2,194 cases, 254,999

controls); self-reported stillbirth, spontaneous miscarriage, or termination (81,102 cases,

176,091 controls); PCOS (746 cases, 256,447 controls); pre-eclampsia (2,242 cases, 254,951

controls); and UF (19,192 cases, 238,001 controls). Case definitions for pre-eclampsia included

eclampsia cases to capture cases in which the former may have developed into the latter. For

each disease, individuals not included in the case group were used as controls. BMI, WHR,

and WHRadjBMI were adjusted for age, age squared, assessment centre, and smoking status.

The residuals were rank-based inverse normally transformed. Multiple testing correction for

21 tests (3 exposures × 7 outcomes) was applied using the false discovery rate (FDR) to evalu-

ate statistical significance while minimising false negatives [27,28].

We also tested associations without adjustment for smoking status, as it has previously been

suggested that higher BMI increases risk of smoking [29] and adjustment for both could there-

fore induce collider bias. Adjustment for menopause status was not performed as up to 42% of

women with reproductive disorders in UKBB report being unsure of their menopause status,

as compared to 16% of women who do not have a recorded history or presence of a reproduc-

tive condition (Table 1).

To evaluate the presence of non-linear observational associations between obesity and each

reproductive trait, fractional polynomial regression following the closed test procedure was

performed using the mfp v1.5.2 R package [30]. This algorithm tests for the presence of an

overall association, determines the likelihood of non-linearity, and selects the best-fitting frac-

tional polynomial function. We also fitted GAMs to the same data, allowing for smoothing of

the obesity trait with splines, using the mgcv 1.8–31 R package [31]. These models allow a

greater degree of flexibility in modelling curves that cannot be represented by polynomials of

the nth degree; however, they are also more complex and thus less immediately interpretable

[32]. All models were adjusted for age, age squared, assessment centre, and smoking status.
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Table 1. Summary of female reproductive disorders in UK Biobank.

Diagnosis Sample size

(prevalence)

Mean age

(years) (SD)

Mean BMI

(kg/m2) (SD)

Mean

WHR

(SD)

Smoking

prevalence

Menopause

status

Phenotype definition

None 148,493 (57.8%) 57.22 (7.85) 26.89 (5.05) 0.82 (0.07) Never—61%

Previous—

31%

Current—8%

Yes—66%

No—21%

Not sure—

13%

Endometriosis 7,703 (2.99%) 53.46 (7.89) 27.57 (5.34) 0.82 (0.07) Never—59%

Previous—

30%

Current—10%

Yes—34%

No—23%

Not sure—

42%

ICD-10 primary and secondary diagnosis

and cause of death: N80[0–9]

ICD-9 primary and secondary diagnosis:

617[0–9]

Self-reported non-cancer illness code:

1402 endometriosis

Primary care records

Heavy menstrual bleeding 17,229 (6.70%) 52.52 (7.08) 27.86 (5.61) 0.82 (0.07) Never—58%

Previous—

30%

Current—11%

Yes—38%

No—32%

Not sure—

29%

ICD-10 primary and secondary diagnosis

and cause of death: N92[0–6]

ICD-9 primary and secondary diagnosis:

626[2|3|4|5|6|8|9]

Primary care records

Infertility 2,194 (0.85%) 48.90 (6.68) 26.09 (4.85) 0.80 (0.07) Never—63%

Previous—

27%

Current—9%

Yes—31%

No—54%

Not sure—

14%

ICD-10 primary and secondary diagnosis

and cause of death: N97[0|1|2|3|4|8|9]

ICD-9 primary and secondary diagnosis:

628[0|1|2|3|4|8|9]

Self-reported non-cancer illness code:

1403 (female infertility)

Primary care records

Stillbirth, spontaneous

miscarriage, or

termination

81,102 (31.5%) 55.84 (8.04) 27.10 (5.22) 0.82 (0.07) Never—53%

Previous—35

Current—12%

Yes—58%

No—25%

Not sure—

16%

ICD-10 primary and secondary diagnosis

and cause of death: O03[0–9]

ICD-9 primary and secondary diagnosis:

634[0–9]

Self-reported non-cancer illness code:

1559 (miscarriage)

Self-reported: ‘Ever had stillbirth,

spontaneous miscarriage, or termination’

Primary care records

Polycystic ovary syndrome 746 (0.29%) 47.87 (6.83) 30.45 (7.57) 0.83 (0.08) Never—62%

Previous—

28%

Current—9%

Yes—19%

No—60%

Not sure—

21%

ICD-10 primary and secondary diagnosis

and cause of death: E282

ICD-9 primary and secondary diagnosis:

2564

Self-reported non-cancer illness code:

1350 (polycystic ovaries/polycystic

ovarian syndrome)

Primary care records

Pre-eclampsia (or

eclampsia)

2,242 (0.87%) 53.69 (8.66) 28.00 (5.57) 0.82 (0.07) Never—65%

Previous—

28%

Current—7%

Yes—48%

No—38%

Not sure—

14%

ICD-10 primary and secondary diagnosis

and cause of death: O14[0|1|2|9], O15[0|

1|2|9]

ICD-9 primary and secondary diagnosis:

642[4|5|6|7]

Self-reported non-cancer illness code:

1073 (gestational hypertension/pre-

eclampsia)

Primary care records

Uterine fibroids 19,192 (7.46%) 56.86 (7.51) 27.63 (5.26) 0.82 (0.07) Never—60%

Previous—

32%

Current—7%

Yes—46%

No—17%

Not sure—

37%

ICD-10 primary and secondary diagnosis

and cause of death: O14[0|1|2|9], D25[0|

1|2|9]

ICD-9 primary and secondary diagnosis:

218[9]

Self-reported non-cancer illness code:

1351/1352 (uterine fibroids/uterine

polyps)

Primary care records

BMI, body mass index; ICD-9/10, International Classification of Diseases–Revision 9/10; SD, standard deviation; WHR, waist-to-hip ratio.

https://doi.org/10.1371/journal.pmed.1003679.t001
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Model fits were compared with Akaike’s information criterion (AIC), with lower AIC indicat-

ing better fit [33].

As a data-driven investigation, the analyses upon which this paper is based were planned

and designed for each of the sections independently; no overall prospective analysis plan was

followed. Analyses dependent upon results from other sections, such as the mediation analysis

dependent on associations from 2-sample MR, are noted as such within each section. This

study is reported as per the Strengthening the Reporting of Observational Studies in Epidemi-

ology Using Mendelian Randomization (STROBE-MR) guideline (S1 Checklist).

Two-sample MR

Genetic instruments for BMI, WHR, and WHRadjBMI were selected based on the sentinel

variants at genome-wide significant loci (P< 5 × 10−9 to account for denser imputation data)

reported in the largest publicly available European ancestry genome-wide association studies

(GWASs), which are meta-analyses of the Genetic Investigation of ANthropometric Traits

(GIANT) and UKBB (maximum N = 806,801 individuals) [34]. Similarly, genetic instruments

for predicted visceral adipose tissue (VAT) mass (N = 325,153 individuals) [35], WC

(N = 462,166 individuals), HC (N = 462,117 individuals) [36], and waist-specific and hip-spe-

cific WHR (i.e., WHR instruments with specific effects on WC but not HC and vice versa;

N = 18,330 individuals) [37] were selected based on the largest publicly available GWASs.

Three instrument weighting strategies were considered where sex-stratified GWAS results

were available: (i) SNPs from combined-sex GWASs with combined-sex weights (effect sizes),

(ii) combined-sex SNPs with female-specific weights, and (iii) female-specific SNPs with

female-specific weights. The method of female-specific SNPs with female-specific weights pro-

duced the strongest instruments as evaluated by F-statistics, i.e., mean β2/σ2 over all SNPs in

the instrument, and was thus chosen for analysis (S1 Table). Additionally, due to concerns of

ascertainment bias in UKBB [38,39], sensitivity analyses with combined-sex instruments

(combined-sex SNPs with combined-sex weights) were also performed. In response to peer

review comments, an additional sensitivity analysis with SNPs from previous GIANT releases

for BMI [40] and WHR and WHRadjBMI [41] that do not include UKBB participants was also

performed to alleviate potential ascertainment bias. Finally, to alleviate concerns of collider

bias in the WHRadjBMI GWAS [42], we constructed a joint WHR and BMI instrument to

perform multivariable MR.

Associations of the genetic instruments for obesity traits with female reproductive diseases

were obtained by performing a fixed-effect inverse-variance-weighted (IVW) meta-analysis of

publicly available GWAS summary statistics from 2 large biobank projects—FinnGen and

UKBB [43]. The meta-analysis was performed using METAL [44] by matching the relevant

ICD codes (S2 Table) for the following traits: infertility (4,996 cases, 421,223 controls), pre-

eclampsia (2,711 cases, 480,373 controls), and UF (21,835 cases, 456,551 controls). For endo-

metriosis, summary statistics were obtained by request from a recent European ancestry

GWAS [45] and meta-analysed as above with publicly available FinnGen and UKBB summary

statistics (12,210 cases, 450,183 controls). For HMB (9,813 cases, 210,946 controls), sporadic

miscarriage (i.e., 1–2 miscarriages; 50,060 cases, 174,109 controls), and multiple consecutive

miscarriage (i.e.,�3 consecutive miscarriages; 750 cases, 150,215 controls), publicly available

summary statistics were obtained from recent European ancestry GWASs that include UKBB

individuals [3,46]. For PCOS, estimates were based on a fixed-effect IVW meta-analysis of

published GWAS summary statistics [47], publicly available GWAS results by FinnGen, and a

European ancestry GWAS run in UKBB using SAIGE (11,186 cases, 273,812 controls) (S3

Table). As a sensitivity analysis, all MR tests were performed using disease association
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estimates based on FinnGen only, where available, to alleviate bias due to sample overlap

between the exposure and outcome GWAS sources.

Power to detect MR associations was calculated using 2 methods, one designed for general

2-sample MR [48] and the other for MR performed on binary outcomes [49]. Briefly, these

methods calculate power by accounting for GWAS sample size, the proportion of cases in

case–control GWASs, and the variance explained by genetic instruments for the exposure. The

power to detect a true odds ratio (OR) association of 1.1 or more extreme at an unadjusted sig-

nificance level of 0.05 was estimated.

Instrument SNPs were extracted from the outcome GWAS results and harmonised for con-

sistency in the alleles, and MR was performed using the TwoSample MR v0.5.4 R package [50].

Two methods for MR—IVW and MR-Egger—were evaluated, and the best method was

selected via Ruecker’s framework [51]. Briefly, this framework advises to choose the MR

method with least heterogeneity as assessed by Cochran’s Q statistic, while accounting for the

trade-off between power and pleiotropy [52]. IVW results, which were chosen by Ruecker’s

framework for all tested associations, are reported in the main text. However, as these are still

susceptible to pleiotropy, results from all methods, including weighted median MR [53], are

calculated for robustness and displayed in the supplementary information. Correction for mul-

tiple hypothesis testing for 24 tests in each analysis (3 exposures × 8 outcomes) was applied

with the FDR method, and significance established at FDR< 0.05. MR-Egger intercept tests

were performed to detect horizontal pleiotropy, and single-SNP and leave-one-out analyses

were used to identify outlier SNPs driving relationships [50].

Reverse MR for obesity traits regressed on female reproductive conditions was performed

as detailed above. Genetic instruments for endometriosis (14,926 cases, 189,715 controls) [54],

PCOS (10,174 cases, 103,164 controls) [47], and UF (20,406 cases, 223,918 controls) [3] were

constructed from index variants identified by the largest European ancestry GWAS for each

trait. Instrument strength was assessed by F-statistics (endometriosis, 16 SNPs, F = 5.13;

PCOS, 14 SNPs, F = 41.6; UF, 29 SNPs, F = 11.1). Associations of genetic instruments for these

reproductive conditions with BMI, WHR, and WHRadjBMI were obtained from female-spe-

cific summary statistics from the above-mentioned GIANT–UKBB meta-analysis [34].

Non-linear MR

For non-linear MR analyses, we selected female UKBB participants of white British ancestry

with no second-degree or closer relatives in the study, as identified by the UKBB team [55], to

avoid violation of the MR assumption of random assignment of genetic variants; 207,705

women were retained following this selection. Genetic instruments for BMI were constructed

for each individual using female-specific index variants from Pulit et al.’s GIANT–UKBB

meta-analysis [34]. The instruments for BMI explained 4.15% of trait variance after adjustment

for age, age squared, smoking status, assessment centre, genotyping array, and the first 10

genetic principal components to account for population stratification. Binomial non-linear

MR, a method designed to assess genetically predicted causal relationships in different expo-

sure strata while avoiding collider bias, was performed using the fractional polynomial method

with 100 quantiles and the piecewise linear method with 10 quantiles [56]. Outcomes were

restricted to female reproductive disorders with prevalence > 5% in UKBB (i.e., HMB, miscar-

riage, and UF) to maintain sufficient sample sizes in each quantile to estimate localised average

causal estimates. We assessed non-linearity with the fractional polynomial non-linearity and

Cochran’s Q tests, and tested heterogeneity of the instrumental variable with the Cochran’s Q
and trend tests. All analyses were performed with the nlmr v2.0 R package [56].
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MR with mediation analysis

To investigate the extent to which obesity affects female reproductive disorders via hormone-

related mediators, 2-step MR by the product of coefficients method was performed using

GWAS summary statistics. This method was chosen as female reproductive disease phenotypes

are binary outcomes with disease prevalence < 10% in UKBB, for which 2-step MR provides

the least biased estimates of mediation [57]. Summary statistics for leptin (N = 33,987) [58],

fasting insulin (N = 51,750) [59], and insulin sensitivity (N = 16,753) [60] were obtained from

publicly available European ancestry GWAS sources that do not include samples from UKBB

to minimise bias from sample overlap (S1 Table).

In the first step of 2-step MR, the mediators were regressed on obesity-related exposures

using summary statistics MR methods described above. The direction of causality for all rela-

tionships was confirmed with the MR-Steiger directionality test [61], and reciprocal MR with

mediator instruments and obesity-related exposures as outcomes were performed to ensure

correct direction of causality. In the second step, multivariable MR was performed using com-

bined genetic instruments for each obesity trait and hormone to estimate the independent

effect of the mediator on each outcome after adjusting for the value of the exposure, and to

estimate the independent effect of the exposure on outcome when adjusted for the value of

each mediator. This was only done for traits where the total unadjusted effect of the exposure

on the outcome was significant (FDR< 0.05). ORs for binary outcomes were converted to log

ORs to calculate mediated effect by the product of coefficients method. The proportion of

effect mediated was calculated by dividing the indirect effect by the total effect. Standard errors

were estimated with the delta method [62].

Disease and SNP clustering

To assess similarities in the aetiological relationships of different reproductive conditions with

obesity traits, we projected single SNP genetic effect estimates for BMI, WHR, and

WHRadjBMI on the reproductive traits, estimated using the Wald ratio, in a 2-dimensional

space using the Uniform Manifold Approximation and Projection (UMAP). Briefly, each

8-by-M matrix of SNP effect estimates (for 8 female reproductive outcomes, where M is 281

for BMI, 203 for WHR, and 266 for WHRadjBMI) was reduced to a 2-dimensional representa-

tion while maintaining as close a topological relationship between the 8 reproductive outcomes

as possible, as measured by cross entropy [63]. SNPs were annotated to their nearest gene with

SNPsnap [64].

To identify the genetic instruments driving the obesity–reproductive trait association, and

identify clusters of SNPs with distinct associations, we clustered SNPs by the magnitude of

their causal estimates using mixture model clustering in the MR-Clust v0.1.0 R package [65].

For each obesity trait–reproductive disease pair, the algorithm distinguishes the genetic instru-

ments for the obesity traits that do not have an effect on the disease (‘null clusters’) from those

that have a similar scaled effect on the disease (‘substantial clusters’) and those that have a

scaled effect that cannot be grouped with other variants (‘junk clusters’).

Research ethics
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Code availability

All scripts used in analyses are deposited at https://github.com/lindgrengroup/obesity_

femrepr_MR.

Results

Obesity traits are observationally associated with female reproductive

diseases in UKBB

BMI at baseline assessment (age 40–69 years) was positively associated with the prevalence of

most female reproductive disorders in UKBB, with the strongest association observed between

BMI and PCOS (OR [95% CI] per 1 SD higher BMI = 1.87 [1.80–1.94], P = 1.90 × 10−64). Asso-

ciations with WHRadjBMI were null or lower than those for WHR (ORs for WHRadjBMI ver-

sus WHR: PCOS, 1.06 versus 1.48; pre-eclampsia, 1.02 versus 1.13; endometriosis, 1.02 versus

1.08; HMB, 1.06 versus 1.14; UF, 1.02 versus 1.08), indicating that BMI may be driving many

of the associations between WHR and female reproductive diseases (Figs 1 and 2; Table 2).

Infertility was the only disorder for which BMI (OR = 0.894, P = 2.16 × 10−07) and WHR (OR

[95% CI] = 0.927 [0.884–0.969], P = 4.08 × 10−04) were inversely associated with disease. All

associations were estimated in 257,193 women of European ancestry in UKBB, with cases

defined as in Table 1 and all non-cases as controls.

Non-linear models explained the associations of BMI with many reproductive disorders

better than linear models. We observed inverted-U and plateau relationships with endometri-

osis (linear AIC = 67,091, GAM AIC = 67,051), UF (linear AIC = 134,160, GAM

AIC = 134,094), HMB (linear AIC = 116,687, GAM AIC = 116,636), miscarriage (linear

AIC = 314,828, GAM AIC = 314,819), and pre-eclampsia (linear AIC = 24,826, GAM

AIC = 24,814) (Fig 1; S4 Table). All 3 obesity traits displayed U-shaped relationships with

PCOS.

We additionally found that having comparatively larger body size than average at age 10

years, as self-reported, was associated with increased prevalence of endometriosis (OR [95%

CI] = 1.12 [1.06–1.19], P = 2.67 × 10−04), heavy menstrual bleeding (OR [95% CI] = 1.18

[1.14–1.22], P = 3.43 × 10−15), PCOS (OR [95% CI] = 1.92 [1.75–2.10], P = 1.59 × 10−13), and

UF (OR [95% CI] = 1.07 [1.03–1.11], P = 1.03 × 10−03) (S6 Table). However, being thinner

than average in early life was also associated with increased prevalence of endometriosis (OR

[95% CI] = 1.21 [1.16–1.26], P = 1.20 × 10−13), heavy menstrual bleeding (OR [95% CI] = 1.10

[1.07–1.14], P = 7.03 × 10−08), and miscarriage (OR [95% CI] = 1.09 [1.07–1.11], P = 4.03 ×
10−18). Observational estimates for the relationship between all obesity traits and female repro-

ductive disorders did not differ with or without adjustment for smoking status (S5 Table). Sta-

tistical significance after multiple testing correction for 21 tests (3 exposures × 7 outcomes)

was established at FDR < 0.05, unadjusted P< 0.04.

Body fat distribution is genetically causally related to risk of female

reproductive diseases

Two-sample MR indicated that higher genetically predicted WHR and WHRadjBMI are asso-

ciated with higher risk of pre-eclampsia (OR [95% CI] per 1-SD increase in trait: WHR, 1.57

[1.16–2.10], P = 2.92 × 10−03; WHRadjBMI, 1.43 [1.13–1.80], P = 2.46 × 10−03), HMB (WHR,

1.28 [1.13–1.46], P = 1.42 × 10−04; WHRadjBMI, 1.16 [1.04–1.29], P = 5.20 × 10−03), endome-

triosis (WHR, 1.24 [1.05–1.47], P = 1.00 × 10−02; WHRadjBMI, 1.24 [1.08–1.41], P = 1.67 ×
10−03), UF (WHR, 1.24 [1.10–1.41], P = 6.20 × 10−04; WHRadjBMI, 1.17 [1.06–1.29],

P = 1.95 × 10−03), infertility (WHRadjBMI, 1.21 [1.03–1.43], P = 2.14 × 10−02), and PCOS
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(WHR, 1.07 [1.02–1.11], P = 4.30 × 10−03) (Table 2; Fig 2). The genetic estimates for the effect

of WHR and WHRadjBMI on several reproductive disorders were higher than their observa-

tional counterparts (heterogeneity P-het< 0.0151 for 6/14 associations). While genetically pre-

dicted BMI was also associated with increased risk of most female reproductive disorders (ORs

per 1 SD higher BMI ranged from 1.06 for sporadic miscarriage to 2.09 for pre-eclampsia),

MR estimates of associations between BMI and PCOS (OR [95% CI] = 1.13 [1.08–1.19],

P = 7.60 × 10−08) were much attenuated compared to observational results (P-het =

2.82 × 10−30).

Genetically predicted VAT mass was associated with the development of pre-eclampsia

(OR [95% CI] per 1-kg increase in predicted VAT mass = 3.08 [1.98–4.79], P = 6.65 × 10−07),

PCOS (OR [95% CI] = 1.15 [1.08–1.23], P = 3.24 × 10−05), and HMB (OR [95% CI] = 1.32

Fig 1. Predicted probability of developing female reproductive disorders as a function of obesity-related traits. A series of logistic regression,

fractional polynomial, and generalised additive models were fitted to estimate the probability of developing female reproductive disorders as a

function of obesity-related traits in UK Biobank. Predicted fits for logistic and best-fitting non-linear models were better than those for logistic

regression (as evaluated with Akaike information criterion), and 95% confidence intervals about the mean are displayed. Asterisks indicate that

non-linear models fit the data better than linear models. All models were adjusted for age, age squared, assessment centre, and smoking status. BMI,

body mass index; spont. miscarr., spontaneous miscarriage; WHRadjBMI, waist-to-hip ratio adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.g001
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[1.06–1.64], P = 0.0125) (Fig 3; S7 Table). The differential association of genetically predicted

body fat distribution with female reproductive traits was further reflected in the heterogeneous

associations of WC and HC with disease development. Increased WC posed a higher risk than

did increased HC for pre-eclampsia (OR per 1-SD increase: 1.93 for WC versus 1.40 for HC,

heterogeneity P-het = 0.0373), HMB (1.41 for WC versus 1.12 for HC, P-het = 3.60 × 10−03),

UF (1.32 for WC versus 1.12 for HC, P-het = 7.70 × 10−03), and PCOS (1.16 for WC versus

1.10 for HC, P-het = 0.0325). We did not see this heterogeneity in observational associations

(all P-het> 0.164) (Fig 3; S12 Table).

No significant associations were found when restricting MR analyses to genetic instru-

ments with a specific effect on waist but not HC, or on hip but not WC (S13 Table; S1 Fig),

but the power of these instruments to detect ORs more extreme than 1.1 was limited to

5%–20% (S14 Table). No non-linear MR models explained the genetic associations of BMI

with any reproductive disorder better than linear MR models (S4 Fig). However, the

Fig 2. Comparison of observational and genetically causal relationships between obesity-related traits and female reproductive disorders.

Odds ratios and 95% confidence intervals per 1 SD higher obesity trait displayed. Significant relationships (false discovery rate [FDR]–adjusted P
value< 0.05) are in solid lines while non-significant (n.s.) ones are shown with dotted lines. For observational results, BMI, WHR, and WHRadjBMI

adjusted for age, age squared, region (assessment centre), and smoking status are used as predictors in a logistic regression model. Causal

relationships between genetically predicted obesity-related traits and female reproductive disorders are assessed by 2-sample Mendelian

randomisation (MR). The displayed method (inverse-variance-weighted) was determined via Rucker’s model selection framework to minimise

heterogeneity of the estimate. “Miscarriage (sporadic)” is self-reported stillbirth, spontaneous miscarriage, or termination for observational results

and sporadic miscarriage for MR results. BMI, body mass index; HMB, heavy menstrual bleeding; Misc. (mult.), multiple consecutive miscarriage;

PCOS, polycystic ovary syndrome; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.g002
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power to detect non-linear effects was severely limited by the lower number of cases in

each quantile of the BMI distribution in which analyses were run. Statistical significance

after multiple testing correction for 24 tests (3 exposures × 8 outcomes) was established at

FDR < 0.05, unadjusted P < 0.03.

SNPs identified in female-only GWASs and with female-specific weights for BMI, WHR,

and WHRadjBMI [34] were found to be the strongest instruments, with F-statistics > 60;

instrument strength for WC and HC was >45 (S1 Table). We prioritised MR results based on

the IVW method over less powered MR-Egger and weighted median methods, as there was no

evidence for directional pleiotropy (MR-Egger horizontal pleiotropy P> 0.0547) and the ratio

of Cochran’s Q0 (Egger) to Q (IVW) was>0.876 (S7 Table). For the 24/64 analyses for which

IVW indicated a significant effect, the effect estimate of the other methods was either direc-

tionally consistent (13/24) or non-significant (11/24), but never opposite (S1 Fig). Estimates

were also consistent when based only on FinnGen summary statistics (heterogeneity

Table 2. Observational and genetic associations between obesity traits and female reproductive disorders.

Diagnosis Obesity trait Logistic regression Mendelian randomisation

OR (95% CI) per 1 SD higher

obesity trait

P value Number of

SNPs

OR (95% CI) per 1 SD higher

obesity trait

P value

Endometriosis BMI 1.14 (1.12–1.16) 4.45 × 10−29 264 1.04 (0.902–1.19) 0.606

WHR 1.07 (1.05–1.10) 1.00 × 10−09 190 1.24 (1.05–1.47) 1.00 × 10−02

WHRadjBMI 1.02 (0.99–1.04) 0.188 250 1.24 (1.08–1.41) 1.67 × 10−03

Heavy menstrual bleeding BMI 1.20 (1.18–1.22) 7.78 × 10−117 268 1.23 (1.10–1.37) 3.62 × 10−04

WHR 1.15 (1.13–1.16) 8.35 × 10−69 191 1.28 (1.13–1.46) 1.42 × 10−04

WHRadjBMI 1.06 (1.04–1.07) 5.30 × 10−13 251 1.16 (1.04–1.29) 5.20 × 10−03

Infertility BMI 0.894 (0.852–0.936) 2.16 × 10−07 267 0.982 (0.810–1.19) 0.856

WHR 0.927 (0.884–0.969) 4.08 × 10−04 191 1.10 (0.901–1.34) 0.355

WHRadjBMI 0.971 (0.929–1.01) 0.176 251 1.21 (1.03–1.43) 0.0214

Miscarriage (sporadic) BMI 1.03 (1.02–1.04) 4.28 × 10−14 265 1.06 (1.01–1.12) 0.0238

WHR 1.04 (1.04–1.05) 3.82 × 10−24 190 0.998 (0.947–1.05) 0.933

WHRadjBMI 1.03 (1.02–1.04) 1.87 × 10−13 250 0.996 (0.953–1.04) 0.878

Miscarriage (multiple

consecutive)

BMI 254 0.917 (0.570–1.48) 0.720

WHR 184 1.20 (0.743–1.92) 0.462

WHRadjBMI 240 0.978 (0.662–1.44) 0.911

Polycystic ovary syndrome BMI 1.87 (1.80–1.94) 1.90 × 10−64 268 1.13 (1.08–1.19) 7.60 × 10−08

WHR 1.48 (1.41–1.55) 3.32 × 10−26 191 1.07 (1.02–1.11) 4.30 × 10−03

WHRadjBMI 1.06 (0.986–1.13) 0.124 251 1.02 (0.990–1.06) 0.222

Pre-eclampsia BMI 1.25 (1.21–1.29) 3.85 × 10−25 266 2.09 (1.60–2.73) 5.16 × 10−08

WHR 1.13 (1.09–1.17) 4.97 × 10−09 191 1.57 (1.16–2.10) 2.92 × 10−03

WHRadjBMI 1.02 (0.982–1.07) 0.272 250 1.43 (1.13–1.80) 2.46 × 10−03

Uterine fibroids BMI 1.14 (1.12–1.15) 2.43 × 10−63 268 1.21 (1.08–1.35) 9.93 × 10−04

WHR 1.08 (1.06–1.09) 2.75 × 10−23 191 1.24 (1.10–1.41) 6.20 × 10−04

WHRadjBMI 1.02 (1.01–1.04) 2.94 × 10−03 251 1.17 (1.06–1.29) 1.95 × 10−03

Reported P values from logistic regression and 2-sample Mendelian randomisation, testing against the null hypothesis that association ORs are equal to 1. Logistic

regression models were adjusted for age, age squared, assessment centre, and smoking status. No values are reported for logistic regression of multiple miscarriage on

obesity traits as these data are not available in UK Biobank. Sporadic miscarriage results for logistic regression represent stillbirth, miscarriage, and spontaneous

termination in UK Biobank.

BMI, body mass index; CI, confidence interval; OR, odds ratio; SD, standard deviation; SNP, single nucleotide polymorphism; WHR, waist-to-hip ratio; WHRadjBMI,

waist-to-hip ratio adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.t002
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P> 0.163), with instruments from GIANT only (heterogeneity P> 0.0541), or with com-

bined-sex instruments (heterogeneity P> 0.999), suggesting that the findings were not sub-

stantially biased due to sample overlap between exposure and outcome GWAS sources or

ascertainment bias in UKBB [35,36] (S9 and S10 Tables; S1 and S2 Figs). Finally, results for

WHRadjBMI did not appear to be affected by collider bias, as estimates did not differ when

using WHRadjBMI GWAS instruments compared to a multivariable analysis for WHR SNPs

and BMI SNPs in the same model (S11 Table; S3 Fig).

Fig 3. Causal associations of genetically predicted visceral adipose tissue mass, waist circumference, and hip

circumference with female reproductive disorders. Odds ratios (ORs) per 1-kg increase in predicted visceral adipose

tissue (VAT) mass or per 1-SD increase in waist circumference or hip circumference and 95% confidence intervals

(CI) are estimated by 2-sample Mendelian randomisation. The displayed method (inverse-variance-weighted) was

determined via Rucker’s model selection framework. The number of cases for each disease is indicated. Significant

relationships (false discovery rate [FDR]–adjusted P value< 0.05) are in solid lines while non-significant (n.s.) ones

are shown with dotted lines. c., circumference; HMB, heavy menstrual bleeding; PCOS, polycystic ovary syndrome.

https://doi.org/10.1371/journal.pmed.1003679.g003
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We did not find evidence for reverse causal associations of endometriosis, PCOS, or UF

with BMI, WHR, and WHRadjBMI (S15 Table). However, these estimates may be biased by

weak genetic instruments for endometriosis (F-statistic = 5.13) and UF (F-statistic = 11.1) and

high heterogeneity for all associations (Cochran’s Q P< 4.71 × 10−06). We were limited in

assessing the reverse causality of other female reproductive conditions on obesity traits by the

lack of index SNPs in large-scale publicly available GWAS summary statistics.

Leptin and insulin mediate the genetically predicted causal associations of

obesity with female reproductive disorders

We applied a series of MR-based mediation analyses [66,67] to study the role of hormonal fac-

tors—leptin and insulin resistance—in mediating the relationships between obesity and female

reproductive health (Fig 4A). The effects of BMI, WHR, and WHRadjBMI on endometriosis,

PCOS, pre-eclampsia, and UF were attenuated (95% CIs of ORs all contain 1) when adjusted

for leptin, fasting insulin, or insulin sensitivity as measured by the modified Stumvoll Insulin

Sensitivity Index (ISI) (Fig 4B, S16 Table). Furthermore, leptin and insulin influence risk of

pre-eclampsia independently of obesity. After adjustment for BMI, leptin (β ± standard error

[SE] = 0.887 ± 0.232, P = 1.28 × 10−04), fasting insulin (β ± SE = 1.42 ± 0.441, P = 1.29 × 10−03),

and ISI (β ± SE = −0.503 ± 0.169, P = 2.99 × 10−03) were all associated with risk of pre-eclamp-

sia (Fig 4C; Table 3). Similarly, fasting insulin (β ± SE = 1.27 ± 0.473, P = 7.15 × 10−03) and ISI

(β ± SE = −0.793 ± 0.183, P = 1.46 × 10−05) had genetic associations with pre-eclampsia upon

adjustment for WHR. Leptin, fasting insulin, and ISI did not have significant genetic associa-

tions with endometriosis, PCOS, or UF after adjustment for obesity traits, nor did they have

any associations with the obesity traits themselves (S19 Table). Statistical significance after

multiple testing correction for 48 tests (3 exposures × 4 outcomes × 4 adjustments) was estab-

lished at FDR< 0.05, unadjusted P< 0.01.

We calculated the proportion of total obesity effect mediated by leptin, fasting insulin, and

ISI for disorders where the effects of obesity traits and mediators were significant at unadjusted

P< 0.05. We found that leptin (50.2% of the effect of BMI on pre-eclampsia), fasting insulin

(27.7%–36.6%), and ISI (19.1%–50.1%) each mediated the total genetically predicted effects of

obesity traits on female reproductive disorders (Table 4).

Other metabolic and hormone pathways may drive the aetiological

relationships of obesity with female reproductive diseases

We assessed the similarities in the aetiological relationships of different reproductive condi-

tions with obesity, by projecting the single SNP genetic effect estimates for BMI, WHR, and

WHRadjBMI on the reproductive traits in a 2-dimensional space using UMAP (Fig 5A). The

UMAP projections based on all obesity traits clustered female reproductive diseases into three

groups; one, consisting of endometriosis, UF, infertility, and HMB, which was separated from

the second (sporadic and multiple consecutive miscarriage). Group 3 consisted of PCOS and

pre-eclampsia, which clustered closely in UMAP plots of the effect of WHR and WHRadjBMI

variants, but were separated by BMI-associated variants. This reflects a shared genetic compo-

nent of the aetiological role of general and central obesity in the 3 groups of reproductive

conditions.

We further examined whether different aspects of obesity play an aetiological role in differ-

ent reproductive conditions. For each obesity trait–reproductive disease pair, we grouped the

genetic instruments for the obesity traits by those that do not have associations with the disease

(‘null clusters’), those that have a similar scaled association with the disease (‘substantial clus-

ters’), and those that have a scaled association that cannot be grouped with other variants
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Fig 4. Hormone mediation of genetically predicted causal effect of obesity on female reproductive disorders. (A) Method outline for 2-step

Mendelian randomisation (MR) to estimate hormonally mediated effects between obesity and female reproductive disorders. In step 1, the effect of

exposures on mediators is estimated using instruments for the exposure alone, while in step 2 the independent effect of the mediators on outcomes

is estimated using multivariable MR (MVMR) adjusted for exposures. All SNP–phenotype effect estimates come from different genome-wide

association studies. (B) Estimated effects of obesity traits on female reproductive disorders adjusted for mediators. MVMR was performed with

combined genetic instruments for each exposure–mediator combination, displayed here for relationships where unadjusted (unadj.) exposure–

outcome effect was significant (false discovery rate [FDR]< 0.05). (C) Example of a mediated relationship, shown here for BMI effect on pre-

eclampsia. Estimated effects for exposure–mediator (betas and standard errors) and for mediator–outcome (log odds ratios and standard errors)

effects are shown. Repr., reproductive; BMI, body mass index; n.s., not significant; PCOS, polycystic ovary syndrome; sensitiv., sensitivity; WHR,

waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.g004
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Table 3. Mendelian randomisation estimates of female reproductive disorders regressed on metabolic hormones, adjusted for obesity traits.

Exposure Outcome Obesity trait adjusted for β ± SE per 1 SD higher exposure P value

Leptin Endometriosis Unadjusted −0.0745 ± 0.188 0.692

BMI −0.0457 ± 0.102 0.654

WHR −0.131 ± 0.126 0.297

WHRadjBMI −0.0964 ± 0.128 0.453

Uterine fibroids Unadjusted −0.132 ± 0.323 0.683

BMI 0.0881 ± 0.102 0.389

WHR −4.12 × 10−03 ± 0.138 0.976

WHRadjBMI −0.0834 ± 0.14 0.550

PCOS Unadjusted −0.134 ± 0.0701 0.0567

BMI 0.0491 ± 0.0409 0.231

WHR 8.44 × 10−03 ± 0.0476 0.859

WHRadjBMI −0.0310 ± 0.0473 0.511

Pre-eclampsia Unadjusted 0.181 ± 0.501 0.718

BMI 0.887 ± 0.232 1.28 × 10−04

WHR 0.468 ± 0.309 0.129

WHRadjBMI −0.102 ± 0.333 0.760

Fasting insulin Endometriosis Unadjusted 0.150 ± 0.247 0.544

BMI 0.0996 ± 0.209 0.634

WHR 0.186 ± 0.254 0.465

WHRadjBMI 0.423 ± 0.239 0.0770

Uterine fibroids Unadjusted 0.0263 ± 0.342 0.939

BMI 0.311 ± 0.183 0.090

WHR 0.313 ± 0.209 0.135

WHRadjBMI 0.262 ± 0.202 0.195

PCOS Unadjusted −0.0334 ± 0.158 0.833

BMI 0.0283 ± 0.0772 0.714

WHR 0.0932 ± 0.0788 0.237

WHRadjBMI 0.0289 ± 0.0726 0.690

Pre-eclampsia Unadjusted −0.0379 ± 0.873 0.965

BMI 1.42 ± 0.441 1.29 × 10−03

WHR 1.27 ± 0.473 7.15 × 10−03

WHRadjBMI 0.476 ± 0.467 0.308

Insulin sensitivity Endometriosis Unadjusted −0.0940 ± 0.133 0.478

BMI −0.101 ± 0.0864 0.244

WHR −0.131 ± 0.100 0.192

WHRadjBMI −0.102 ± 0.106 0.336

Uterine fibroids Unadjusted −0.223 ± 0.137 0.103

BMI −0.0951 ± 0.0716 0.184

WHR −0.202 ± 0.0830 0.0151

WHRadjBMI −0.120 ± 0.0855 0.165

PCOS Unadjusted −0.0239 ± 0.0616 0.698

BMI −0.0257 ± 0.0290 0.376

WHR −0.0355 ± 0.0293 0.226

WHRadjBMI −0.0443 ± 0.0294 0.132

Pre-eclampsia Unadjusted −0.354 ± 0.295 0.229

BMI −0.503 ± 0.169 2.99 × 10−03

WHR −0.793 ± 0.183 1.46 × 10−05

WHRadjBMI −0.519 ± 0.205 0.0110

P values calculated from multivariable Mendelian randomisation, testing against the null hypothesis of effect estimate (beta) equal to 0. Unadjusted estimates are from

2-sample MR with SNPs for exposures only, while adjusted estimates are from multivariable MR with SNPs for exposures and the adjustment factor, i.e., BMI, WHR, or

WHRadjBMI.

BMI, body mass index; PCOS, polycystic ovary syndrome; SD, standard deviation; SE, standard error; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio

adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.t003
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(‘junk clusters’) using MRClust [65]. One substantial cluster was identified for each pair of

obesity traits and reproductive conditions. The only exception to this was the pair

WHRadjBMI and UF, for which 2 substantial clusters were identified, one with positive

genetic association and the other with negative association (S5 Fig; S17 Table). Of the 4 SNPs

in the negative effect cluster, rs2277339 (missense variant in PRIM1 and upstream of

HSD17B6, involved in steroid biosynthesis) is associated with primary ovarian insufficiency,

early menopause, and PCOS [68,69], and rs11694173 is intronic to THADA, which is also asso-

ciated with PCOS [47]. On the other hand, 4 of 10 SNPs in the positive effect cluster are associ-

ated with metabolic traits—rs12328675 and rs2459732 are associated with circulating leptin

[70], rs6905288 is associated with type 2 diabetes and thyroid stimulating hormone [71,72],

and rs4686696 is intronic to insulin-like growth factor IGF2BP2.

SNPs with high probability of belonging to the substantial cluster (�80% probability) were gen-

erally unique to each obesity–disease relationship, with no more than 2 variants shared between

any 2 clusters (Fig 5B). However, 6 BMI index SNPs had positive genetic estimates for both PCOS

and pre-eclampsia, including rs1121980 in the adipose-associated gene FTO and rs7498665 in

SH2B1, linked to insulin resistance in obesity. The BMI-associated variant rs7084454 (intronic to

MLLT10) was shared by substantial clusters for PCOS, endometriosis, and UF, while rs114760566

(mapped to HMGA1, associated with type 2 diabetes and multiple lipomatosis) was shared by

endometriosis and UF. We evaluated the biological effect of the top SNPs in each substantial clus-

ter with the DEPICT algorithms for pathway enrichment and gene prioritisation. We recapitulated

the known association of the GEMIN5 subnetwork with PCOS in SNPs causal for BMI–PCOS

[73]. Gene prioritisation for WHR–endometriosis causal SNPs highlighted TBX15, an important

mesodermal transcription factor with roles in endometrial and ovarian cancer [74,75].

Discussion

In this systematic genetics-based causal investigation of the aetiological role of obesity in

female reproductive health, we report evidence that common indices of obesity are associated

Table 4. Proportion of effect mediated for exposure–mediator–outcome relationships.

Exposure Mediator Outcome Log OR (SE) per 1 SD higher exposure, P value Proportion of effect mediated (95% CI)

Exposure–outcome Mediator–outcome Exposure–mediator

BMI Leptin Pre-eclampsia 0.737 (0.135),

P = 5.16 × 10−08
0.887 (0.232),

P = 1.28 × 10−04
0.417 (0.0262),

P = 7.94 × 10−57
50.2% (18.2%–82.2%)

Fasting insulin 1.42 (0.441),

P = 1.29 × 10−03
0.144 (0.0141),

P = 1.61 × 10−24
27.7% (7.40%–48.0%)

Insulin sensitivity −0.503 (0.169),

P = 2.99 × 10−03
−0.281 (0.0490),

P = 9.83 × 10−09
19.1% (3.33%–35.0%)

WHR Fasting insulin Pre-eclampsia 0.449 (0.151),

P = 2.92 × 10−03
1.27 (0.473),

P = 7.15 × 10−03
0.129 (0.0159),

P = 5.04 × 10−16
36.6% (0%–73.7%)

Insulin sensitivity −0.793 (0.183),

P = 1.46 × 10−05
−0.283 (0.0601),

P = 2.44 × 10−06
50.1% (4.98%–95.3%)

Insulin sensitivity Uterine fibroids 0.218 (0.0637),

P = 6.20 × 10−04
−0.202 (0.083),

P = 1.51 × 10−02
−0.283 (0.0601),

P = 2.44 × 10−06
26.2% (0%–54.4%)

WHRadjBMI Insulin sensitivity Pre-eclampsia 0.358 (0.118),

P = 2.46 × 10−03
−0.519 (0.205),

P = 1.14 × 10−02
−0.168 (0.0427),

P = 8.21 × 10−05
24.4% (0%–51.8%)

P values calculated from 2-sample (exposure–outcome, exposure–mediator) or multivariable (mediator–outcome) Mendelian randomisation, testing against the null

hypothesis of effect estimate (beta) equal to 0.

BMI, body mass index; CI, confidence interval; OR, odds ratio; SD, standard deviation; SE, standard error; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio

adjusted for BMI.

https://doi.org/10.1371/journal.pmed.1003679.t004
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Fig 5. Clustering of the genetic effect of obesity on female reproductive disorders. (A) Female reproductive disorders separated by the genetic

effects of different obesity traits on reproductive conditions. Uniform Manifold Approximation and Projection (UMAP) was used to plot the

separation of diseases based on genetic effects of obesity instruments, evaluated by 2-sample Mendelian randomisation. (B) Number of SNPs in

substantial clusters for each obesity × female reproductive condition relationship. SNPs with�80% probability of belonging to a substantial cluster

(MRClust) are displayed with their nearest gene as annotated by SNPsnap and ‘+’ or ‘−’ representing causal effect direction. BMI, body mass index;

Endo, endometriosis; HMB, heavy menstrual bleeding; Infert., infertility; M. misc., multiple consecutive miscarriage; PCOS, polycystic ovary

syndrome; PE, pre-eclampsia; S. misc., sporadic miscarriage; UF, uterine fibroids; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted

for BMI.

https://doi.org/10.1371/journal.pmed.1003679.g005
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with increased risk of a broad range of reproductive conditions, and these associations may be

non-uniform across the obesity spectrum. The strongest association of generalised obesity was

found with pre-eclampsia, while more modest associations were observed for nearly all other

studied conditions. We identified endocrine mechanisms, including those related to leptin and

insulin resistance, as potential drivers of aetiological relationships of both generalised and cen-

tral obesity with female reproductive health. Finally, we found genetic evidence that certain

groups of reproductive conditions, such as UF and endometriosis, may share a mechanistically

similar relationship with obesity.

The results from our MR investigations are less likely to be biased by confounding or

reverse causation than observational epidemiological results. We undertook multiple supple-

mentary and sensitivity analyses to evaluate the plausibility of instrumental variable assump-

tions and robustness to horizontal pleiotropy, outliers, collider bias, and sample overlap that

may invalidate or bias MR estimates. While causal associations from MR must be interpreted

with caution as several assumptions of the method are untestable, the concordance of our esti-

mates from different methods and analytical approaches indicates strong support for a causal

role of obesity in the aetiology of female reproductive conditions.

Our findings highlight that the relationships between obesity and female reproductive

disorders are (i) non-uniform in their nature and strength and (ii) observationally non-

linear across the obesity spectrum. We report substantial differences in the genetically

predicted causal associations of BMI with reproductive diseases, with each 1-SD increase

in BMI associated with double the risk of pre-eclampsia, but more moderately

(ORs = 1.01–1.25 for PCOS, miscarriage, UF, and HMB) or not at all (infertility and endo-

metriosis) affecting other conditions. Conversely, central fat distribution independent of

BMI showed substantial genetically predicted effects on both infertility and endometriosis

(ORs per 1-SD increase in WHRadjBMI = 1.21–1.46) as well as on pre-eclampsia and UF

(ORs = 1.17–1.43), but not on PCOS, HMB, and miscarriage. These findings highlight

that the aetiological role of obesity in female reproductive diseases is heterogeneous in its

effect strength, and may be driven by overall adiposity (PCOS, HMB, and miscarriage), by

isolated central obesity (infertility and endometriosis), or by both generalised and central

obesity (pre-eclampsia and UF).

For several reproductive conditions, we found substantial differences between the observa-

tional and genetically predicted causal estimates, which may indicate a bidirectional relation-

ship between obesity and reproductive health. For instance, while the observational analyses

suggested an 87% increase in PCOS risk per 1 SD higher BMI, the MR analyses indicated that

each 1 SD higher genetically predicted BMI was associated with an increased PCOS risk of

only 13%. Similarly, 1-SD increases in genetically predicted WHR and WHRadjBMI were

associated with a 24% increase in endometriosis risk, while the observational analyses suggest

more modest increases in risk of 7% and 2%, respectively. This discrepancy may in part be due

to reverse causality, which we were not powered to detect in this study, as the available genetic

instruments for reproductive conditions are substantially fewer in number and weaker than

those for BMI and WHR. The obesity traits upon which the observational analyses were based

were measured at ages 40–69 years, which was for most conditions likely to be several years or

decades after women developed the condition, and often post-menopause. While our observa-

tional analyses adjusted for the effect of age on obesity traits, adjusting for menopause status

proved to be unreliable as up to 42% of women with reproductive diseases in UKBB—some of

whom had undergone hysterectomies—were unsure of their menopause status, as opposed to

16% of female participants without a diagnosis of any of the studied conditions. The observa-

tional estimates may therefore capture both the effect of obesity on disease risk as well as any

downstream effects of the disease or commonly used treatments on body weight and fat
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distribution. For instance, the large observational effect of BMI on PCOS prevalence may

reflect both a causal association of obesity with disease risk [76], as captured by the genetically

predicted effect, as well as weight gain as a consequence of PCOS [77]. Other potential contrib-

uting factors to the differences between genetic and observational estimates are confounding

by unmeasured variables, leading to inflated observational associations [78,79]; referral bias,

wherein obesity status affects the likelihood of receiving a diagnosis [80,81]; and differences in

pre- and post-menopausal weight and body fat distribution not captured by age [82].

While the observational relationships between obesity and some female reproductive disor-

ders were non-linear, we did not find non-linearity in the genetically predicted effects of BMI

on these diseases. The non-linear MR analyses were likely underpowered to detect associa-

tions, with few cases in each quantile of the BMI spectrum. However, as current GWAS

approaches are focused on identifying genetic determinants of BMI across the full BMI spec-

trum, it is possible that the instruments used here do not capture genetic factors that specifi-

cally explain variations in BMI among those with lower (20–25 kg/m2) or higher (40–45 kg/

m2) BMI. There is currently no evidence for this, but if this were the case, then our analysis

would not identify non-linear causal associations.

We noted that genetic estimates for the effect of fat distribution were not similarly attenu-

ated when compared to BMI effects. This disparity may be due to the differing impacts of over-

all and abdominal (central) adiposity, as the latter is thought to be biologically more directly

linked to female reproductive health than generalised obesity, via pathways including insulin

resistance and hyperandrogenaemia [5,15,16,83]. Supporting the stronger effect of central

body fat, we also reported greater genetic effect estimates of WC than HC with HMB, PCOS,

pre-eclampsia, and UF. Genetically predicted VAT mass was associated with increased risk of

PCOS and pre-eclampsia, in line with observational studies [84]. VAT mass is also observa-

tionally associated with UF [16], yet we did not find a significant association of genetically pre-

dicted VAT mass with development of UF, which may suggest a bidirectional or reverse causal

relationship.

Endometriosis and infertility were the only reproductive conditions that did not show a

consistently positive link with obesity. The modest observational associations of both BMI and

WHR with higher endometriosis prevalence in UKBB contradict previous studies, including

prospective cohort studies, which reported that lower BMI was associated with increased dis-

ease prevalence [14,85,86]. The positive association with endometriosis may in part be due to

weight gain as a consequence of the disease, for instance due to hormonal treatments [87–89],

chronic pain [90], inflammation [91], or earlier onset of menopause [92]. We however did not

find evidence that generalised obesity plays a causal role in the aetiology of endometriosis,

which suggests that the observational finding reflects a reverse causal relationship. Indeed, we

noted that being thinner than average at age 10 years posed a higher risk for development of

endometriosis than did having comparatively larger body size, although both were associated

with higher prevalence of disease compared to those who reported average body size in early

life. Conversely, the positive genetically predicted effect of WHRadjBMI on endometriosis risk

indicates a causal role for abdominal fat distribution. For infertility, we observed a similar

divergence between the observational and genetically predicted effects of obesity traits, with

BMI showing a negative observational association, but WHRadjBMI a genetically predicted

positive association. The causes of female infertility are multiple, ranging from PCOS [93] and

anovulation [94] to tubal disease [95], endometriosis [96], low oocyte quality [97], hormonal

and immunological dysfunction [98–101], and yet unknown mechanisms. Each of these may

have distinct and complex relationships with obesity, which cannot be captured by studying

the links with infertility of any cause. Non-linear effects, such as the increased association of
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under- and overweight with incidence of infertility [12,102], may also obscure these estimates,

although our observational analyses did not provide evidence for a non-linear relationship.

We conducted one of the first genetics-based investigations of the mediating hormonal

pathways underlying the causal relationships between obesity and female reproductive health.

We identify mechanisms related to insulin resistance and leptin as mediators of the effects of

obesity traits on UF and pre-eclampsia. The latter is consistent with hypotheses that obese

women with metabolic dysregulation are at highest risk of developing hypertensive disorders

of pregnancy via angiogenic and pro-inflammatory mechanisms. Increased circulating leptin

may have a vasoconstrictive, hypertensive effect, which may be worsened by attenuation of

insulin-induced vasorelaxation and increased levels of TNF-alpha and IL6 [7,22].

Finally, genetic clustering of female reproductive conditions revealed evidence supporting

common genetic causes for the effects of obesity on endometriosis, UF, and HMB, which are

known to share mechanisms of development [3,103]. The projection of infertility with these

diseases merits following up on the genetic basis of endometriosis-related infertility, with an

eye to prevention and treatment. The main strength of our work is the systematic approach to

characterising the relationship between a broad range of obesity traits and common female

reproductive conditions using both observational and genetic approaches. All observational

associations were estimated in the same large-scale cohort study, which tends to lead to less

biased estimates than case–control studies, upon which most previous results were based.

Moreover, to the best of our knowledge, we have conducted the first genetics-based mediation

analyses to pinpoint the mechanisms driving the causal association of obesity with reproduc-

tive diseases.

Reproductive conditions remain underdiagnosed and underreported in the UK, which was

reflected in their low prevalence among female UKBB participants (Table 1). Although we

based our case definitions on 3 distinct sources, i.e., participants’ responses to interviews and

structured surveys, primary care electronic health records dating back to 1938 at the earliest,

and secondary care hospital in-patient records dating back to 1981 at the earliest, a partici-

pant’s diagnosis may have been missed if, for example, the diagnostic code was not entered,

the diagnosis was made in a setting where electronic health records were not implemented, or

the participant could not recall ever having received such a diagnosis at baseline assessment.

The low prevalence of female reproductive disorders posed a limitation to our analyses in

UKBB by reducing power to identify significant associations. For this reason, we opted to use

broad case categories, such as infertility of any cause, as we had insufficient power and infor-

mation to examine conditions by subtypes. We also restricted our analyses to women of Euro-

pean ancestry, due to a lack of genetic data on women of other ancestries. Many of the

reproductive diseases included here, with UF being the most notable example [104,105], are

more prevalent in non-European populations, and our results may not be transferable to

women of other ancestries [88,106,107], which highlights the urgent need to set up large-scale

studies similar to UKBB with participants of non-European ancestry. We were further limited

in investigations of metabolic, hormonal, and inflammatory mediating mechanisms by a lack

of publicly available GWAS summary statistics for these traits. Finally, the lack of data on BMI

and WHR prior to disease onset, and limited information on the age at which reproductive

conditions were first diagnosed, complicated the interpretation of our findings from observa-

tional analyses in UKBB.

Key priorities for the future are the further exploration and validation of the pathways

through which obesity increases the risk of female reproductive disease. Notably, our finding

that insulin resistance may be an important mediating mechanism warrants further attention,

as affordable and safe treatments are available to increase insulin sensitivity. This is demon-

strated by the successful use of metformin treatment in women with PCOS [108], but such a
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treatment strategy has not yet been explored for other reproductive conditions linked to obe-

sity. More generally, better and more detailed diagnostic information on reproductive health

in large-scale cohort studies is urgently required for future research on the causes, conse-

quences, and aetiological mechanisms of female reproductive illnesses.

In conclusion, we provide genetic evidence that both generalised and central obesity play

an aetiological role in a broad range of female reproductive conditions, but the extent of this

link differs substantially between conditions. Our findings also highlight the importance of

hormonal pathways, notably those involving leptin and insulin resistance, as mediating mech-

anisms and potential targets for intervention in the treatment and prevention of common

female reproductive conditions.
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