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Abstract: Urate homeostasis in humans is a complex and highly heritable process that involves
i.e., metabolic urate biosynthesis, renal urate reabsorption, as well as renal and extrarenal urate
excretion. Importantly, disturbances in urate excretion are a common cause of hyperuricemia
and gout. The majority of urate is eliminated by glomerular filtration in the kidney followed by
an, as yet, not fully elucidated interplay of multiple transporters involved in the reabsorption
or excretion of urate in the succeeding segments of the nephron. In this context, genome-wide
association studies and subsequent functional analyses have identified the ATP-binding cassette
(ABC) transporter ABCG2 as an important urate transporter and have highlighted the role of single
nucleotide polymorphisms (SNPs) in the pathogenesis of reduced cellular urate efflux, hyperuricemia,
and early-onset gout. Recent publications also suggest that ABCG2 is particularly involved in
intestinal urate elimination and thus may represent an interesting new target for pharmacotherapeutic
intervention in hyperuricemia and gout. In this review, we specifically address the involvement of
ABCG2 in renal and extrarenal urate elimination. In addition, we will shed light on newly identified
polymorphisms in ABCG2 associated with early-onset gout.

Keywords: gout; early-onset gout; hyperuricemia; urate; uric acid; ABCG2; BCRP; ABC transporter;
single nucleotide polymorphism; SNP

1. Introduction

Gout is the clinical manifestation of hyperuricemia which is triggered by urate precip-
itation (deposition of monosodium urate crystals) in the synovial fluid of joints and other
tissues [1,2]. The disease is primarily associated with severe arthropathy, which manifests
mainly in the metatarsophalangeal joints (podagra), but also in other joints of the foot, an-
kles, knee, wrist, fingers, and elbows [3]. In the pathogenesis of the disease, urate deposits
promote inflammatory responses in the synovial membrane (synovitis) and thus arthritis
characterized by sudden, severe attacks of pain, swelling, redness, and tenderness in the
affected joints. Depending on the course of the disease, the symptoms of gout can occur
both as acute episodic flares (gout attacks) and persist chronically and, if left untreated,
can lead to irreversible deformations and impaired mobility of the affected joints [3]. In
addition, gout nephropathy, a form of chronic tubulointerstitial nephritis, induced by the
deposition of urate precipitates in the distal collecting ducts and the medullary interstitium
may cause progressive chronic kidney disease [4]. Furthermore, gout and hyperuricemia
have been associated with a subset of comorbidities including metabolic syndrome, dia-
betes, hypertension as well as cardiovascular and cerebrovascular disease [5–13]. In most
patients, the onset of gout occurs after the age of 60, with the incidence being about three
times higher in men than in women [14]. However, a significant proportion of patients
develop primary hyperuricemia and gout symptoms before the age of 40, which is defined
as the pathotype of early-onset gout [15,16]. In addition to environmental factors, genetic
predispositions leading to chronic, yet asymptomatic hyperuricemia in childhood and ado-
lescence are considered to be the main causes for the early onset of the disease. Although
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not every patient with hyperuricemia necessarily develops gout [17], it is considered to be
the major risk factor for the development and progression of the disease. In this review, we
will specifically address the pathogenesis and genetic background of early-onset gout and
highlight the role of intestinal uric acid transport in this context.

2. Gout and Hyperuricemia

Hyperuricemia represents a prolonged pathophysiological increased serum urate
concentration, often defined as >6.0 mg/dL (>360 µmol/L) for females and >7.0 mg/dL
(>420 µmol/L) for males [1,18], which is either caused by an increased hepatic biosynthesis
or a reduced renal or intestinal excretion of urate [19]. Under physiological conditions,
urate is derived from the enzymatic degradation of purine nucleobases/nucleotides, which
are involved in a multitude of biochemical processes, such as energy metabolism and the
formation of RNA and DNA [20]. In humans, urate is the terminal metabolite of purine
catabolism derived from purines that do not enter the salvage pathway for the resynthesis
of ATP or GTP [19]. Therefore, secondary hyperuricemia can be induced by an excessive in-
take of purine-rich food (e.g., red meat, offal, seafood) [21], cellular degradation processes,
and high cell turnover in the context of leukemia/lymphoma [22] or anticancer treatment
with chemo- or radiation therapy [23], which all increase the availability of free purines. In
addition to a diet high in purines, other lifestyle-related behaviors such as excessive intake
of fructose [24,25] and alcohol abuse [26,27] can also trigger hyperuricemia, which explains
the high prevalence in industrialized countries and the increasing prevalence in devel-
oping countries [28]. Aside from the aforementioned environmental factors, also genetic
defects in enzymes responsible for the biotransformation of purine bases can favor primary
hyperuricemia, as is the case in Lesch–Nyhan or Kelley–Seegmiller syndromes [29]. In
line with this notion, the heritability of hyperuricemia is substantial, suggesting important
genetic contributions to urate homeostasis [30]. In pharmacotherapy, uricostatic drugs
like the xanthinoxidase inhibitor allopurinol can be used to normalize hyperuricemia by
preventing the last step in urate biosynthesis. Under this treatment, intermediates of the
purine metabolism such as inosine, hypoxanthine, and xanthine accumulate, yet exhibit a
better water solubility and a lower tendency to form crystals than urate. Unlike secondary
hyperuricemias that are triggered by increased urate biosynthesis, the vast number (>90%)
of primary hyperuricemia cases result from a decreased ability of the kidney or intestine
to excrete urate [31]. The majority of urate (roughly 70%) is eliminated by the kidney,
where it is freely filtered by the glomerulus [32]. Urate homeostasis is primarily influenced
by renal proximal tubule cells, which express several transporters that either reabsorb
urate (e.g., URAT1 at the apical and GLUT9 at the basolateral membrane) [33–36] or are
involved in urate excretion (e.g., NPT1/4 at the apical and OAT1/3 at the basolateral mem-
brane) [20,35,37,38]. Indeed, uricosuric drugs such as the URAT1 inhibitors benzbromarone
as well as probenecid and lesinurad are used in pharmacotherapy to treat hyperuricemia
by inhibiting renal reabsorption of urate [39]. In addition to transporters of the salute
carrier (SLC) and the organic anion transporter (OAT) protein families, ABC transporters
such as ABCG2 and ABCC4 are also involved in urate excretion [32,37]. As the previously
mentioned other transporters, ABCG2 was shown to be located in the apical brush border
membrane of renal proximal tubule cell [40]. In the intestine, the major site for the remain-
ing 30% of urate excretion, the mechanisms of urate excretion are less well defined [38].
Urate transporters GLUT9 [41] and in particular ABCG2 [42] are highly expressed in in-
testinal epithelial cells and may thus represent interesting new pharmacological targets
for the treatment of hyperuricemia [43–47]. Nonetheless, with regard to the sites of urate
excretion (kidney & intestine) and the complex interplay of transporter-mediated excretion
and reabsorption of urate in the kidney, the mechanisms of urate homeostasis are still not
fully understood. However, single nucleotide polymorphisms (SNPs) in different genes
involved in urate transport have been associated with hyperuricemia [48], thereby empha-
sizing the multicausal complexity of gout pathology [49]. In this article, we aim to focus on
ABCG2, which has been identified as an important urate transporter in the intestine and
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the kidney [40,50–52], and discuss its role in renal and extra-renal urate excretion as well
as in primary hyperuricemia and early-onset gout.

3. ABCG2 and Its Function in Renal Urate Elimination

ABCG2 (also known as BCRP) is a multi-drug efflux pump that has been described to
contribute to transport processes in many different tissues and cell types. It belongs to the
ABC (ATP-binding cassette) transporter superfamily [53] and has the ability to transport
a variety of substrates across the membrane [54,55]. ABCG2 is highly expressed in the
placental syncytiotrophoblasts [56], but can also be found at the entry and exit point of
the human body including endothelial cells of the cerebral blood-brain barrier [57] and
canalicular membrane of the liver [58] as well as polar epithelial cells of the intestine [42]
and the kidney [50,59]. Based on its function and localization, ABCG2 is thought to act
as a “gatekeeper”, preventing endo- or exotoxins and xenobiotics from crossing biolog-
ical barriers and entering sensitive tissues [60]. Although these functions of ABCG2 are
thought to serve to maintain the healthy state of the organism, they also appear to be
responsible for ABCG2-related interference with pharmacotherapeutic interventions to
treat certain diseases. In this regard, overexpression of ABCG2 has been associated with
multidrug resistance to chemotherapy [61,62], which is associated with poor prognosis
in the treatment of certain cancers [63,64]. With regard to its protein structure, ABCG2
consists of an ATP-hydrolyzing nucleotide-binding domain, which is located in the cy-
toplasm and provides energy for the transport process, and a transmembrane domain,
which is responsible for the binding of substrates and their transport across the membrane
(Figure 1). Moreover, ABCG2 is a so-called “half-transporter” that needs to homodimerize
to form a functional transporter [60]. Recently, several high-resolution 3D structures of
the ABCG2 protein bound to different substrates and inhibitors have been solved [65–68],
which help to understand the molecular mechanisms of substrate selection, substrate bind-
ing, and substrate transport of ABCG2 [69,70]. In addition to its role as an efflux pump
with broad specificity, ABCG2 has been proposed to be involved in renal and intestinal
urate excretion [40,50–52,71]. The function of ABCG2 as a urate transporter was inferred
from genome-wide association analyses and subsequent functional studies, which specifi-
cally demonstrated a strong association of a missense SNP in the ABCG2 gene (rs2231142;
Q141K) with hyperuricemia [72–74], an SNP that could be causally related to at least 10%
of all gout cases [50]. The Q141K polymorphism has been associated with a reduced
ABCG2 surface expression and decreases cellular urate efflux to approximately half of
wild-type ABCG2 levels [50,52,75–77]. In structural predictions derived from homology
models [78] as well as structural cryo-EM data [65], Q141 was shown to be located in the
nucleotide-binding domain of the transporter and to form a hydrogen bond to N158 of
an α-helix within the nucleotide-binding domain adjacent to transmembrane helix 1 of
ABCG2. This connection might be responsible to convey conformational changes induced
by ATP binding or ATP hydrolysis from the nucleotide-binding domain to the substrate
transporting transmembrane domain, thereby potentially explaining the partial loss of
function of the Q141K-mutated transporter. However, also misfolding, reduced protein
stability, and reduced membrane expression due to increased proteasomal degradation of
Q141K-mutated ABCG2 [75,79] are also discussed as causes of the urate excretion deficit.
Recent findings suggest that Q141K- and M71V-related dysfunction is due to aberrant
trafficking of ABCG2 to the plasma membrane due to quality control mechanisms in the
endoplasmic reticulum rather than reduced ABCG2 transport activity [80]. Moreover, the
c.C421 > A mutation that leads to the Q141K polymorphism promotes microRNA-mediated
suppression of ABCG2 translation, so that cell type-specific processing of the ABCG2 3‘UTR
along with cell type-specific microRNA expression profiles may have a profound impact
on functional ABCG2 bioavailability in individuals carrying the Q141K polymorphism [76].
In the kidney of humans and mice, ABCG2 was shown to be expressed in the apical
membrane of the brush border of proximal tubule epithelial cells [40,50], although in the
analyses of The Human Protein Atlas consortium ABCG2 could not be detected at the
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protein level in human kidney biopsies [81]. Nonetheless, also findings from other groups
indicate relevant renal ABCG2 expression [59]. The renal expression pattern of ABCG2
partially resembles the expression pattern of urate reabsorbing transporter URAT1, thereby
indicating a functional interplay of both transporters in renal urate handling [40]. However,
in measurements of renal urate excretion after a purine challenge (oral administration
of inosine, which is rapidly metabolized to urate), human subjects carrying the ABCG2
transport function impairing Q141K polymorphism showed no significant differences in
urate excretion and a fraction of filtered urate load (FEUA defined as the ratio between
the renal clearance of uric acid to the renal clearance of creatinine), although their serum
urate levels were significantly elevated [40]. In the same study, renal urate excretion
was also investigated in an orthologous Q140K knock-in mouse model. Here, only the
male animals displayed elevated serum urate levels and had, in contrast to humans, at
least a significantly reduced fraction of filtered urate load but again no change in urinary
urate excretion [40]. Interestingly, these sex-related phenotypes were consistent with the
increased prevalence of gout in human males [28]. However, the results of both human
and mouse experiments suggest that the hyperuricemia induced by the ABCG2 Q141K
polymorphism is not caused by a significant effect on renal urate excretion, but is likely to
be triggered by different mechanism [40]. These findings, which are in line with the ABCG2
expression data from The Human Protein Atlas consortium [81], also raise the fundamental
question of whether ABCG2 is in fact of any significance for renal urate excretion. In this
regard, conflicting results regarding the involvement of ABCG2 in renal urate elimination
have been obtained in experiments with ABCG2 knockout mice [51,71]. In both studies,
serum urate concentrations of ABCG2 knockout animals were elevated compared to their
wildtype littermates. However, while one study did not observe significant differences in
renal urate elimination [71], the other study found a significant reduction of about 30% [51].
Nevertheless, these two animal studies, as well as the translational study by Hoque and
colleagues, indicate that ABCG2 primarily affects extrarenal regulation of urate homeosta-
sis, which is further discussed below. It should be mentioned that in the kidney, ABCG2
is only one of many renal transporters that are able to excrete urate [37] so that ABCG2
loss of function may be compensated by other transporters. In conclusion, the previously
assumed relevance of ABCG2 for renal urate elimination has been questioned by recent
studies and therefore further future studies are needed to definitively elucidate this issue.
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Figure 1. Polymorphisms in ABCG2 protein sequence associated with pediatric-onset hyperurice-
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modified from [69]. Single membrane-spanning α-helices (TM1–6) were structured according to 
the information of published protein sequences (NCBI accession number: NP_001335914.1). The 
catalytic site for ATP hydrolysis is formed by the sequence motifs Walker A, Q-loop, Walker B, 
and H-loop of one monomer, and the c-signature and D-loop from the other monomer. Cysteine 
bridge forming residues and N-acetylation sites within extracellular loop 3 (EL3) are marked in 
grey. SNPs involved in pediatric-onset hyperuricemia and early-onset of gout published in recent 
seminal publications are highlighted in different colors (yellow, dark blue, and purple). 
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tine [42] and that ABCG2 may function as a urate transporter [50,52], it was reasonable to 
speculate that ABCG2 plays a role in extrarenal urate excretion possibly via the bile or 
intestine [82]. However, accurate non-invasive measurements of intestinal/biliary urate 
secretion are not possible in humans because the secreted urate is largely metabolized by 
the bacterial flora in the intestine. Therefore, the role of ABCG2 in extrarenal urate secre-
tion was revealed in animal experiments using the in situ intestinal “closed-loop” perfu-
sion method [51,71]. Since most vertebrates, including rodents used for animal studies, 
express the enzyme uricase which converts uric acid to allantoin and which has been lost 
during human evolution [83], a direct relation of results from animal experiments study-
ing urate metabolism and urate transport to the human organism is inadequate. To ac-
count for that, rodents used in both studies were treated with the uricase inhibitor oxon-
ate, a pharmacological intervention that increased the serum urate levels in mice and rats 
to the magnitude of serum urate levels in humans [51,71]. By administration of radioactive 
labeled uric acid, Hosomi and colleagues demonstrated that, in addition to the substantial 
fraction of renal urate elimination [51], there is direct urate excretion via the intestine 
(mainly in the ileum) and only minor urate excretion via the bile [51,71]. These findings, 
therefore, suggest that the intestine is the main site of extrarenal urate excretion. In the 
intestine of mice, ABCG2 expression is mainly located at the villi brush border of epithelial 
cells of the ileum and the jejunum [40]. Interestingly, in this study, the observed overall 
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Int. J. Mol. Sci. 2021, 22, 6678 5 of 13

binding domain (light green, NBD) and a transmembrane domain (light brown, TMD) modified
from [69]. Single membrane-spanning α-helices (TM1–6) were structured according to the information
of published protein sequences (NCBI accession number: NP_001335914.1). The catalytic site for ATP
hydrolysis is formed by the sequence motifs Walker A, Q-loop, Walker B, and H-loop of one monomer,
and the c-signature and D-loop from the other monomer. Cysteine bridge forming residues and
N-acetylation sites within extracellular loop 3 (EL3) are marked in grey. SNPs involved in pediatric-
onset hyperuricemia and early-onset of gout published in recent seminal publications are highlighted
in different colors (yellow, dark blue, and purple).

4. Relevance of ABCG2 in Extrarenal Urate Elimination

As earlier studies indicated that ABCG2 is also expressed in the liver [58] and intes-
tine [42] and that ABCG2 may function as a urate transporter [50,52], it was reasonable
to speculate that ABCG2 plays a role in extrarenal urate excretion possibly via the bile or
intestine [82]. However, accurate non-invasive measurements of intestinal/biliary urate
secretion are not possible in humans because the secreted urate is largely metabolized
by the bacterial flora in the intestine. Therefore, the role of ABCG2 in extrarenal urate
secretion was revealed in animal experiments using the in situ intestinal “closed-loop” per-
fusion method [51,71]. Since most vertebrates, including rodents used for animal studies,
express the enzyme uricase which converts uric acid to allantoin and which has been lost
during human evolution [83], a direct relation of results from animal experiments studying
urate metabolism and urate transport to the human organism is inadequate. To account
for that, rodents used in both studies were treated with the uricase inhibitor oxonate, a
pharmacological intervention that increased the serum urate levels in mice and rats to
the magnitude of serum urate levels in humans [51,71]. By administration of radioactive
labeled uric acid, Hosomi and colleagues demonstrated that, in addition to the substantial
fraction of renal urate elimination [51], there is direct urate excretion via the intestine
(mainly in the ileum) and only minor urate excretion via the bile [51,71]. These findings,
therefore, suggest that the intestine is the main site of extrarenal urate excretion. In the
intestine of mice, ABCG2 expression is mainly located at the villi brush border of epithelial
cells of the ileum and the jejunum [40]. Interestingly, in this study, the observed overall
expression levels of the protein in the intestine are much higher than in the kidney. In rats,
ABCG2 expression in the gut was found to further increase in response to increased blood
urate concentrations after oxonate treatment [84]. To study the contribution of ABCG2 in
intestinal urate excretion (and renal urate excretion which was already discussed above),
oxonate-treated ABCG2 knockout mice were used [51,71] and showed a reduction in in-
testinal urate elimination by roughly 40–50%. These findings also suggest that other yet
unknown transporters besides ABCG2 are involved in intestinal urate secretion [51,71]. A
similar severe loss in intestinal urate elimination was also observed in the aforementioned
study by Hogue and colleagues in an orthologous Q140K knock-in mouse model but in
absence of the uricase inhibitor oxonate [40]. Consistent with these data, Q140K knock-in
in mice resulted in a marked reduction in intestinal ABCG2 expression. In contrast, only
subtle changes in urate elimination and ABCG2 expression were observed in the kidney in
the same knock-in mouse model. These results are further supported by the observation of
other authors, which indicate that the ABCG2 Q141K polymorphism and fractional renal
clearance both contribute significantly but independently to the risk of hyperuricemia in
humans [73]. In addition, impaired intestinal urate excretion induced by the orthologous
murine Q140K mutation or complete ABCG2 knockout may explain hyperuricemia despite
unaltered renal urate excretion in the respective mouse models [71,85,86] as well as in
human individuals carrying the Q141K polymorphism [40]. However, due to the rise in
serum urate levels (sUA) caused by the lack of intestinal urate secretion, an indirect increase
in the fraction of filtered urate load (FEUA) could be expected in patients with ABCG2
dysfunction although this was not observed in the previously mentioned study [40]. In
addition, ABCG2-mediated intestinal urate elimination appears to play an important role
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in compensating for the loss of renal urate elimination in chronic kidney disease [35]. Taken
together, recent publications indicate that the major site of action of the ABCG2 transporter
is regulating urate homeostasis in the intestine.

5. ABCG2 Polymorphisms in Pediatric-Onset Hyperuricemia and Early-Onset Gout

Hyperuricemia and gout pathology has often been shown to be related to genetic
predisposition [30] and to be affected by SNPs in many of the genes encoding urate trans-
porters [87,88]. Among these, especially SNPs of ABCG2 have been highly associated with
pediatric-onset hyperuricemia and early-onset gout [89–93]. These polymorphisms are
summarized and organized in Table 1 according to the standard nomenclature rules for
molecular diagnostics [94]. Furthermore, the localization of these polymorphisms on the
protein sequence of ABCG2 is shown in Figure 1. It should be noted that there is a subset
of other function-impairing SNPs in ABCG2 [95,96], but most of them have not yet been
associated with pediatric hyperuricemia or early-onset gout. One of the best-studied varia-
tions of the ABCG2 amino acid sequence is the previously discussed Q141K polymorphism,
which also gives rise to other important clinical phenotypes, such as in the pharmacoki-
netics and tissue distribution of drugs transported by ABCG2 [97]. The polymorphism
is highly associated with early-onset hyperuricemia, gout, and hyperuricemia-associated
comorbidities, which cause a high mortality rate in hemodialysis patients [98]. Although
the F489L polymorphism has not been as well studied in the context of disease, it shows a
similar inhibitory effect on the ABCG2 transport function as the Q141K mutation. As with
the Q141K mutation, ABCG2 carriers with the F489L mutation show reduced expression
and reduced ABCG2 transport capacity [75]. Inhibition of proteasomal degradation could
partially restore the transport function of both ABCG2 variants. In contrast to the Q141K
polymorphism, which causes amino acid sequence alterations in the nucleotide-binding
domain, the F489L polymorphism is localized in the transmembrane domain. This shows
that the impairment of ABCG2 function can be caused by changes in amino acid structure
in different domains of the transporter. Polymorphisms in the transmembrane domain
have often been associated with decreased surface expression of the ABCG2 transporter
and impaired substrate transport abilities [99]. However, there is not much literature to
support their clinical impact in both late and early-onset hyperuricemia and gout. The
clinical importance of a certain polymorphism on the development of hyperuricemia and
gout usually is related to its minor allele frequency in humans and its functional impact
on the protein of interest. Due to genetic drift caused by spatial separation of popula-
tions, certain polymorphisms have accumulated in different ethnicities. For example, the
frequency of V12M polymorphism is high in Mexican Indians but low in Caucasian and
Middle Eastern populations [97]. In contrast, the Q141K and Q126X polymorphisms are
enriched in Japanese populations, whereas in Caucasians, Q141K is not as common and
Q126X is virtually absent [97]. Our understanding of the genetic variations in the ABCG2
sequence associated with hyperuricemia and gout is still incomplete, as evidenced by the
recent discovery of less common polymorphisms previously unrecognized or not studied
in the context of hyperuricemia and gout [89,90,95,100]. Two of these newly identified rare
polymorphisms have been recently described in a case report of a 12-year-old Czech girl of
Roma ethnicity with chronic asymptomatic pediatric-onset of hyperuricemia [89]. In this
regard, several rare diseases have been found to occur primarily or exclusively in individ-
uals of Roma ethnicity, and many of the mutations underlying these diseases have been
recently discovered, such as for Charcot-Marie tooth disease types 4D and 4G [101,102], the
congenital cataract facial dysmorphism neuropathy [103], the Gitelman syndrome [104],
and the Galactokinase deficiency [105]. In the afore-mentioned case of the 12-year old girl,
DNA sequencing analysis of the ABCG2 gene revealed the presence of heterozygously
expressed missense (c.393G > T, p.M131I) and nonsense (c.706C > T, p.R236X) mutations
(Figure 1, blue residues) causing the pediatric-onset of hyperuricemia observed in the girl‘s
ancestry and the early-onset of gout especially in male individuals of the maternal line of
inheritance. In the study, the functional consequences of the mutations were investigated



Int. J. Mol. Sci. 2021, 22, 6678 7 of 13

in comparative in vitro experiments. Due to the in-frame stop codon induced by the R236X
mutation, the ABCG2 protein sequence was truncated to about 1/3 of the full-length pro-
tein, with the mutant protein lacking a functional transmembrane domain. Therefore, no
plasma membrane localization and no urate transport activity of the mutant protein could
be observed. In contrast, the M131I mutation was translated to a full-length protein with
no impairments in N-glycosylation at residue N596 and normal membrane localization.
However, the urate transport capabilities of the M131I mutant were reduced to <15% of
wildtype levels [89]. M131 itself was found to be a highly conserved residue that is local-
ized close to the Q-loop within the nucleotide-binding domain of ABCG2 (Figure 1). The
conserved glutamine Q126 in the center of the Q-loop is responsible for the coordination of
the magnesium ion associated with ATP in the catalytic center of the protein [68]. M131I
may thus alter the spatial orientation of the Q-loop or sterically hinder the coordination of
Mg-ATP, thereby drastically reducing ABCG2′s ATP hydrolysis capabilities necessary for
providing the energy for substrate transport across the membrane. Another newly identi-
fied polymorphism associated with pediatric hyperuricemia and early-onset gout is I242T,
which was found in the lineage of another young European girl and was analyzed in a
similar way [93]. Like the aforementioned M131I mutant, the I242T mutant ABCG2 variant
showed no impairment in glycosylation and membrane localization, although its urate
transport abilities were drastically reduced. This effect could be coincidentally related to
the close localization of the mutants at the conserved H243 within the H-loop or also called
histidine switch of the catalytic center of ABCG2 (Figure 1). The H-loop is responsible
for coordinating the γ-phosphate of ATP, which is responsible for ATP hydrolysis. For
further research, I242T and M131I may represent interesting new candidates to study the
consequences of ABCG2 loss-of-function without disrupting ABCG2 membrane localiza-
tion and protein-protein interactions. These representative case reports also show that
depending on the severity of the disruption of the urate transportability of ABCG2, homo-
or heterozygosity of the dysfunctional polymorphisms and further genetic predispositions
in other genes involved in urate homeostasis [106], hyperuricemia can already occur in
childhood (pediatric-onset), which increases the risk for the development of early-onset
gout. This allows the risk allele of a particular polymorphism to be identified and consid-
ered for clinical diagnosis. Interestingly, compared to patients with late-onset gout, patients
with early-onset gout also show clinical symptoms that indicate a more severe disease
pattern. This includes a prolonged disease duration, a different localization of the first
occurring arthritis (with a lower incidence of typical metatarsophalangeal manifestations
and a higher incidence of ankle- or mid-foot involvement in early-onset gout), a higher
flare frequency (gout attacks), and an increased overall number of involved joints [15,16].
In terms of gout-associated comorbidities, late-onset gout patients are more likely to
suffer from chronic kidney disease, metabolic syndrome, and cardiovascular disease, a
phenomenon probably related to the age difference between the two patient groups [16].
However, these comorbidities occur at a younger age in patients with early-onset gout. In
contrast, a recent study showed that patients diagnosed with gout at age 40 or younger
may be at increased risk for cardiovascular disease and recurrent gout compared to those
diagnosed later in life [107]. In this study, of 427 adult patients diagnosed with gout at a
New England multispecialty group practice, 327 who were aged 40 years or younger at
diagnosis were more likely to have cardiovascular risk factors. For example, these younger
patients had a significantly higher body mass index than gout patients over 40 years of age,
and a substantial proportion of the younger patients also suffered from hypertension or
hyperlipidemia. Moreover, early-onset gout patients were less likely to achieve a serum
uric acid level below 6.0 mg/dL after therapeutic intervention as compared to late-onset
gout patients. Therefore, clinical screening for hyperuricemia in genetically predisposed
families and prompt urate-lowering therapy in pediatric, adolescent, or young adult pa-
tients with still asymptomatic chronic hyperuricemia could help delay the onset of gout
and the development of hyperuricemia-related comorbidities [108–110]. With regard to the
treatment of cardiovascular comorbidities in hyperuricemia patients, it should be noted
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that blood pressure-lowering drugs such as the AT1 receptor blocker telmisartan have been
shown to inhibit the transport activity of ABCG2 [75] thereby potentially exacerbating
hyperuricemia in patients with a corresponding genetic predisposition. In view of the
emerging role of ABCG2 and its importance for intestinal excretion of uric acid, it may in
principle represent a novel pharmacotherapeutic target to lower uric acid levels [43–47].
As speculation, this may be accomplished by modifying ABCG2 expression and function
in intestinal epithelial cells. For example, in patients expressing mutant forms of ABCG2,
this opens up the possibility of developing small molecule drugs with high pre-systemic
elimination to target the function, cellular handling, or expression of ABCG2 predomi-
nantly in intestinal epithelial cells, thereby locally normalizing the impaired intestinal
uric acid excretion in these individuals without interfering with the function of ABCG2 in
other tissues (e.g., extrusion of xenobiotics). This area of research, therefore, shows great
potential for the development of targeted pharmacotherapies for specific populations of
genetically predisposed individuals with early-onset gout and thus warrants innovative
research in the near future.

Table 1. Polymorphisms in ABCG2 protein sequence associated with pediatric-onset hyperuricemia
and early-onset gout.

rs ID Coding Sequence Protein Sequence Citation

rs72552713 c.376C > T p.Q126X [92]
rs759726272 c.393G > T p.M131I [89]

rs2231142 c.C421 > A p.Q141K [91,92]
rs140207606 c.706C > T p.R236X [89]

not annotated c.725T > C p.I242T [93]
rs769734146 c.1301C > T p.T434M [90,100]

6. Conclusions

Gout is a major health care burden in developed countries, where it affects about 1%
to 2% of the adult population and is the most common cause of inflammatory arthritis
in men. In addition to obesity and hyperuricemia, lifestyle changes that have developed
in industrialized countries in recent decades, such as a diet rich in red meat and fructose,
physical inactivity, and increased alcohol consumption, may play a role in the shift toward
a younger age of manifestation of gout in the population and require early intervention.
As there is evidence that early onset of hyperuricemia and gout is associated not only
with a severe clinical course of gouty arthritis, but also with other comorbidities, such as
hypertension, metabolic syndrome, and cardiovascular complications, early detection of
hyperuricemia in younger patients with genetic predisposition and early uric acid-lowering
therapy should be considered to reduce morbidity and mortality in these patients.
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