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Predictive model for microclimatic 
temperature and its use 
in mosquito population modeling
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Tyler D. Pohlenz2 & Mark Lawley1

Mosquitoes transmit several infectious diseases that pose significant threat to human health. 
Temperature along with other environmental factors at breeding and resting locations play a role in 
the organismal development and abundance of mosquitoes. Accurate analysis of mosquito population 
dynamics requires information on microclimatic conditions at breeding and resting locations. In this 
study, we develop a regression model to characterize microclimatic temperature based on ambient 
environmental conditions. Data were collected by placing sensor loggers at resting and breeding 
locations such as storm drains across Houston, TX. Corresponding weather data was obtained from 
National Oceanic and Atmospheric Administration website. Features extracted from these data 
sources along with contextual information on location were used to develop a Generalized Linear 
Model for predicting microclimate temperatures. We also analyzed mosquito population dynamics 
for Aedes albopictus under ambient and microclimatic conditions using system dynamic (SD) 
modelling to demonstrate the need for accurate microclimatic temperatures in population models. 
The microclimate prediction model had an  R2 value of ~ 95% and average prediction error of ~ 1.5 °C 
indicating that microclimate temperatures can be reliably estimated from the ambient environmental 
conditions. SD model analysis indicates that some microclimates in Texas could result in larger 
populations of juvenile and adult Aedes albopictus mosquitoes surviving the winter without requiring 
dormancy.

Vector-borne diseases have become a major public health crisis globally. In addition to high morbidity and 
mortality rates from malaria and dengue fever, recent epidemics of Zika, West Nile and chikungunya have put 
nearly 4 billion people at risk across countries around the  world1–4. Due to the role mosquitoes serve in the 
transmission of these diseases and nuisance created by the mosquito bites, it is critical to study the factors that 
influence growth and abundance of mosquito  populations5,6.

There is considerable literature available to support that environmental conditions including temperature 
affect growth of mosquito populations as well as their ability to transmit  diseases4,7–19. Mosquitos, in part due to 
their physiological structure and characteristics, display a complex and nonlinear epidemiological relationship to 
 temperature20–22. Many works often make unrealistic assumptions about the existence of a simplistic relationship 
between the mosquito population and the  environment23–26. In addition, the effects of temperature on mosquitoes 
vary based on different life  stages27–29. Population growth parameters in different stages of the life cycle such as 
development rate, fecundity, reproduction rate, and survival rates need to be modelled as temperature dependent 
for accurate population  modelling4,30–36.

Previous works have mostly relied on ambient environmental conditions to develop mosquito population 
 models29,37–42. These environmental conditions are derived from weather stations or remotely-sensed datasets and 
used for predicting mosquito presence, population growth rates, and transmission dynamics. Some works have 
tried to include the landscape data in addition to the ambient climatic  data12,43. Ambient conditions could differ 
significantly from microclimatic conditions in some breeding and resting  locations44,45. Some microclimatic loca-
tions support for higher temperatures in the winter and night times compared to ambient conditions potentially 
benefiting mosquito population dynamics. As a result, development of population models based on microclimatic 
conditions, rather than ambient conditions, will facilitate more accurate population modelling and analysis.

Microclimatic conditions and their effect on mosquito population have been studied  before44,45. These 
approaches need microclimatic data and necessitate placement of a sensor suite to collect, aggregate, process, and 
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analyze microclimatic conditions, thereby making it expensive and impractical for large scale deployment and 
wide adoption. In this work, we develop a regression model to characterize microclimatic temperature in storm 
drains, a mosquito breeding and resting site, as a function of ambient environmental conditions. Such a model 
will facilitate accurate estimation of microclimatic temperature from ambient conditions, without necessitating 
deployment of an elaborate sensor-based data collection system. Extension of the predictive model developed to 
other microclimatic conditions (humidity, light intensity lux) and sub-tropical conditions will help account for 
multivariate effects of such factors, result in more flexible and generalizable models and will alleviate the need 
for microclimatic data collection in such locations.

Materials and methods
Data collection. Microclimatic data was collected by placing data loggers (Onset Computer Corporation, 
Bourne, MA, USA: HOBO Pendant MX Temperature/Light Data Logger, MX2202) at active mosquito trap sites 
across Harris County, Texas. In addition, to capture the microclimate heterogeneity in the natural urban habitats 
of mosquitoes, data loggers were deployed in exposed and shaded sites, as well as subterranean locations such 
as storm drains and water meter boxes (Figs. 1, 2). A total of thirty-five data loggers were deployed at different 
sites, with twenty-five loggers being placed in storm drains and ten being placed near mosquito traps at resi-
dences, however due to damage and theft, only a subset of the data loggers (8) placed in storm drains provided 
useable data for the entire study period (May 2018 to June 2019). Instantaneous temperatures were recorded at 
ten-minute intervals throughout the study period.

Hourly ambient climate data was obtained from the NOAA  repository46. Data logger locations were mapped 
to the nearest zip code and through zip code to ambient NOAA data. This facilitated mapping of microclimatic 
temperature to ambient environmental conditions.

Methodology. Exploratory data analysis. As part of exploratory data analysis, microclimatic and ambient 
temperature patterns at different sensor locations were analyzed. Microclimatic temperature patterns are closely 
correlated to ambient patterns for exposed and shaded locations (Fig. 3 shows sample pattern from one loca-
tion). However, the microclimatic air temperature differs significantly from ambient conditions for storm drains 
(Fig. 4 shows sample pattern from one location). It appears that storm drains provide a thermal insulation effect 

Figure 1.  Logger placements: (left) in the open, (right) inside water meter.

Figure 2.  Logger placements: (left) inside storm drain, (right) under the shade.
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and facilitate warmer temperatures within these locations during the colder ambient temperatures. Depth of the 
storm drain was another factor influencing the difference in temperature patterns (Fig. 5 shows sample pattern at 
three depth locations). Based on these observations, the microclimatic model prediction was focused on storm 
drains at three different depths of 1, 3, and 7 ft in this study and depth was included as a predictor variable.

It also appears that there is a non-linear relationship between microclimatic temperature and ambient tem-
perature (Fig. 6), indicating the need for non-linear features in the predictive model and the potential influence 
of other predictor variables. Figure 6 shows a scatter plot between microclimatic and ambient temperature based 
on 8 storm drain logger data. The curve fitting was performed using a generalized additive model.

Microclimate prediction model.
A linear regression model (with non-linear features) was developed to predict microclimatic temperature 

in the storm drains using ambient weather conditions. Weather related ambient features extracted from NOAA 
data included ambient temperature, precipitation, relative humidity, lux and air pressure. A rich set of non-linear 
and linear features extracted from ambient weather, as well as contextual information (hour of the day, month, 
and logger depth) were used as predictor variables. Diurnal temperature range defined as the range between 
maximum and minimum ambient temperature in the last 24 h was included as a predictor variable. Moving 

Figure 3.  Ambient versus microclimatic temperatures (left) in open (right) tree coverage.

Figure 4.  Ambient versus microclimatic temperatures in storm drain location (L) in August (R) in January.
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Figure 5.  Storm drain temperature recorded at different depths.

Figure 6.  Scatter plot indicating non-linear relationship between ambient and microclimatic temperatures.
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average and time-lagged features were included to capture the temporal effects. The microclimate temperature 
was used as the response variable. The list of features used in the model are presented in Table 1.

The overall dataset is split into 90:10 train-test datasets. The split was made to select samples proportionately 
(90% for training and 10% for testing) from each of the  loggers47. After model development, the model was 
evaluated using the 10% withheld test dataset.

Mosquito population dynamics model. A system dynamics model was developed to analyze the Aedes albop-
ictus population dynamics under ambient and microclimatic conditions. The population model was developed 
to highlight the need for using accurate microclimatic temperature estimates. Mosquitoes have four life stages: 
eggs, larvae, pupae, and adults. The adult life stage can be divided into emerging, blood-feeding, gestating, and 
ovipositing physiological  stages48. Overwintering or diapause is not explicitly included in the model, but the 
effect of temperature on development rates are included. The development from one stage to the next and the 
mortality at each stage were temperature-driven according to the environmental conditions (Fig. 7).

Ambient weather conditions at Hobby International Airport in Houston from January 1, 2013 to March 25, 
2019 was used in the development of population dynamics model under ambient conditions due to proximity 
of the microclimatic logger used in the population model development. The model was run using the dataset of 
temperatures from January 1, 2013 to June 15, 2018 to initialize a stable starting population of each life stage. 
The remainder of the dataset was used as the ambient temperature data for simulating the population dynamics. 
Microclimate data of a storm drain in Houston from June 15, 2018 to March 25, 2019 was collected and used to 
run the alternate microclimate-based mosquito population model.

An hourly timestep based model was constructed and executed for the analysis of temperature influence on 
population dynamics. A series of differential equations were used to model the rate of changes in each of the life 
stages (Eq. 1). Parameters for the model are provided in Tables 2 and 3. 

A 7-day moving average of the temperature data was used to run each of the models. We assume that breed-
ing sites in storm drains are likely to be continuously supplied with nutrients due to run-off from irrigation 
systems. As a result, we assume constant carrying capacities for both larvae and pupae that are not impacted by 
precipitation. Additionally, adult blood-feeding mosquitoes were assumed to be inactive at temperatures below 
9.5 °C52 and aquatic development stopped below 10 °C and above 40 °C30.
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Table 1.  Variables used for modelling.

Variable name Description Estimate P value

A

Ambient climate features

Lux Luminous intensity − 0.00016 0.00222

Hourly Dew Point Temperature Dew point temperature − 0.05691  < 0.00001

Hourly Dry Bulb Temperature Ambient temperature − 0.1493  < 0.00001

Hourly Precipitation Amount of rainfall recorded every hour − 0.90674  < 0.00001

Hourly Relative Humidity Relative humidity 0.01502  < 0.00001

Hourly Station Pressure Pressure obtained from the weather sensor − 1.41615  < 0.00001

Hourly Wet Bulb Temperature Wet bulb temperature − 0.05448 0.00001

Diurnal Range Difference between the maximum and minimum ambient temperature 
recorded in the past 24 Hours 0.10055  < 0.00001

3 Hour Moving Average Moving average of ambient temperature in the past 3 h 0.09778  < 0.00001

5 Hour Moving Average Moving average of ambient temperature in the past 5 h − 0.17148  < 0.00001

7 Hour Moving Average Moving average of Dry bulb temperature in the past 7 h 0.27072  < 0.00001

Square of Diurnal Range Square − 0.00293  < 0.00001

Square of Ambient Temperature 0.00192  < 0.00001

B

Contextual variables

Depth Depth of the logger − 0.32745  < 0.00001

Month (Jan Baseline) Month of the year

Month 2 0.64201  < 0.00001

Month 3 1.57424  < 0.00001

Month 6 8.17883  < 0.00001

Month 7 9.80838  < 0.00001

Month 8 9.58742  < 0.00001

Month 9 8.33488  < 0.00001

Month 10 6.6148  < 0.00001

Month 11 3.55702  < 0.00001

Month 12 1.16736  < 0.00001

Time (Hour 24Baseline) Hour of the day  < 0.00001

Hour 1 0.11006 0.04926

Hour 2 0.11144 0.04739

Hour 3 0.15596 0.0055

Hour 4 0.20804 0.00023

Hour 5 0.1985 0.00044

Hour 6 0.14471 0.01036

Hour 7 0.05316 0.35103

Hour 8 − 0.05456 0.34973

Hour 9 − 0.24203 0.00001

Hour 10 − 0.36265  < 0.00001

Hour 11 − 0.26118  < 0.00002

Hour 12 − 0.11427 0.0652

Hour 13 0.08329 0.18359

Hour 14 0.22539  < 0.00003

Hour 15 0.2807  < 0.00001

Hour 16 0.24684 0.00004

Hour 17 0.21301 0.00035

Hour 18 0.10169 0.08383

Hour 19 0.03344 0.56421

Hour 20 − 0.06257 0.27327

Hour 21 − 0.13673 0.01549

Hour 22 − 0.12945 0.02076

Hour 23 − 0.06749 0.22592
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Figure 7.  Population dynamics model.

Table 2.  Temperature-dependent variables.

Parameter Definition References

fE Egg hatching rate 30,49,50

fL Larval development rate 50

fP Pupal development rate 50

µL Larval mortality rate 2

µP Pupal mortality rate 2

β Oviposition rate by each female 50,51

fAg Gestating adult development rate 2,30,49

µA Adult mortality rate 50

Table 3.  Constant parameters.

Parameter Definition Value References

µE Egg mortality rate 0.05 1,2

µAem Emerging adult mortality rate 0.1 2

µr Adult mortality related to risky behavior 0.08 2,52

fAem Emerging adult development rate 0.4 2

fAb
Blood-feeding adult development rate 0.2 2,52

fAo Ovipositing adult development rate 0.2 2,30,52

kL Larval carrying capacity 250,000 1,2

kP Pupal carrying capacity 250,000 1,2

σ Percentage of females at emergence stage 0.5 30

TDDAg Temperature development days required for gestation 77 4

TAg Minimum temperature (°C) required for gestation 10 4



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18909  | https://doi.org/10.1038/s41598-021-98316-x

www.nature.com/scientificreports/

Results and discussion
Microclimate prediction model. The final model with significant features and corresponding p-values 
are shown in Table 1. This model resulted an  R2 value of 94.78%. Significant variables include season (month), 
hour of the day, depth of the storm drain, ambient temperature, precipitation, relative humidity, atmospheric 
pressure, diurnal temperature range in the last 24 h, moving average of ambient temperature in the last 7 h, 
squares of the ambient temperature and diurnal temperature range. The overall root mean-square error (RMSE) 
when the model is evaluated on the independent test dataset is 1.57 °C. A logger-wise characterization of model 
performance can be found in Table 4.

The comparison of time-indexed actual and predicted values for a sample logger (U40) is shown in Fig. 8(Left). 
Comparison of actual and predicted values for all the loggers is summarized in Fig. 8(Right).

Gestation rate: fAg (T) =

(

T − TAg

)

TDDAg

if T > TAg , 0 otherwise

Eggs produced: B(T) = max
{

−15.837+ 1.289T − 0.0163T2, 0
}

Adult mortality rate: µA(T) = min

{

1
∣

∣−0.1921 ∗ T2 + 8.147 ∗ T − 22.98
∣

∣

, 1

}

Table 4.  Prediction performance for different loggers.

Logger ID Zip code RMSE

U43 77,336 1.83

U40 77,346 1.65

U84 77,379 1.43

U76 77,069 1.53

U39 77,070 1.58

U69 77,520 1.16

U41 77,008 1.59

U59 77,521 2.15

Overall 1.57

Figure 8.  (Left) time sequenced actual versus predicted values for U40; (Right) actual vs predicted values of all 
the loggers.
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The high  R2 of the regression model and low RMSE on the test data indicates the validity of the developed 
microclimate prediction model. The regression diagnostic plots also conform the fit of the developed regression 
model (Fig. 9).

Mosquito population model. The juvenile and adult population dynamics under ambient and microcli-
matic conditions are summarized in Figs. 10 and 11.

Under ambient condition modeling, the egg and juvenile population is almost reduced to zero and adult 
mosquito population is reduced to 23% during the winter time (Left panes in Figs. 10, 11). However, when 
microclimatic conditions are used, the insulated conditions in the storm drain results in the survival of 84% 
of juvenile and eggs and 96% of adults during the winter time (Right panes in Figs. 10, 11). It can be inferred 
that storm drains which are potential developmental and resting sites for  mosquitoes53provide enough insula-
tion from ambient weather conditions to facilitate juveniles and adults surviving the cold conditions without 

Figure 9.  Linear regression diagnostic plots: (Left) QQ-plot (Right) residual plots.

Figure 10.  Eggs and Juvenile population under (a) ambient and (b) microclimatic conditions.

Figure 11.  Adult mosquito population under (a) ambient and (b) microclimatic conditions.
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requiring dormancy. The results reinforce the necessity to use accurate micoclimate estimates for reliable analysis 
of mosquito population dynamics.

Conclusions
Accurate analysis of mosquito population dynamics requires information on microclimatic conditions at breed-
ing and resting locations. We explore the concept and utility of microclimatic prediction model that can be used 
to infer microclimatic conditions at storm drains, a potential breeding and nesting location, based on ambient 
conditions and contextual information, thereby eliminating the need for implementing complex sensor data 
collection and processing systems. Microclimatic temperatures in storm drains might provide enough insula-
tion from ambient weather conditions to facilitate juveniles and adults avoid overwintering. The prediction 
model developed has high performance on training  (R2) and test (RMSE) datasets validating the feasibility of 
the approach. The results are based on multiple loggers placed in storm drains in Houston. Collection of data 
from different geographical (tropical and sub-tropical) locations and vegetation, and development of predictive 
models for other microclimatic conditions such as humidity and light intensity will help generalize the model 
to these locations and conditions. We also present system dynamics-based Aedes albopictus mosquito popu-
lation dynamics models to characterize the effect of the temperature on mosquito populations. Comparison 
of the model results based on ambient and microclimatic conditions indicate the necessity of using accurate 
temperature estimates in population dynamics analysis and thus the utility of microclimatic prediction model 
presented in this study.
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