
molecules

Article

Comparison of the Sulfonamide Inhibition Profiles of
the β- and γ-Carbonic Anhydrases from the
Pathogenic Bacterium Burkholderia pseudomallei

Daniela Vullo 1,*, Sonia Del Prete 2,3, Pietro Di Fonzo 2, Vincenzo Carginale 2,
W. Alexander Donald 4, Claudiu T. Supuran 3,4 and Clemente Capasso 2,*

1 Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Università degli Studi di Firenze,
Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy

2 Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
sonia.delprete@unifi.it (S.D.P.); pidifo@gmail.com (P.D.F.); vincenzo.carginale@cnr.it (V.C.)

3 Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba,
Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy;
claudiu.supuran@unifi.it

4 School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia;
w.donald@unsw.edu.au

* Correspondence: Daniela daniela.vullo@unifi.it (D.V.); clemente.capasso@ibbr.cnr.it (C.C.);
Tel./Fax: +39-055-457-3005 (D.V.); +39-081-613-2559 (C.C.)

Academic Editors: Derek J. McPhee and Diego Muñoz-Torrero
Received: 6 February 2017; Accepted: 3 March 2017; Published: 7 March 2017

Abstract: We have cloned, purified, and characterized a β-carbonic anhydrase (CA, EC 4.2.1.1),
BpsCAβ, from the pathogenic bacterium Burkholderia pseudomallei, responsible for the tropical disease
melioidosis. The enzyme showed high catalytic activity for the physiologic CO2 hydration reaction to
bicarbonate and protons, with the following kinetic parameters: kcat of 1.6 × 105 s−1 and kcat/KM of
3.4× 107 M−1·s−1. An inhibition study with a panel of 38 sulfonamides and one sulfamate—including
15 compounds that are used clinically—revealed an interesting structure–activity relationship for
the interaction of this enzyme with these inhibitors. Many simple sulfonamides and clinically
used agents such as topiramate, sulpiride, celecoxib, valdecoxib, and sulthiame were ineffective
BpsCAβ inhibitors (KI > 50 µM). Other drugs, such as ethoxzolamide, dorzolamide, brinzolamide,
zonisamide, indisulam, and hydrochlorothiazide were moderately potent micromolar inhibitors.
The best inhibition was observed with benzene-1,3-disulfonamides—benzolamide and its analogs
acetazolamide and methazolamide—which showed KI in the range of 185–745 nM. The inhibition
profile of BpsCAβ is very different from that of the γ-class enzyme from the same pathogen,
BpsCAγ. Thus, identifying compounds that would effectively interact with both enzymes is relatively
challenging. However, benzolamide was one of the best inhibitors of both of these CAs with KI of 653
and 185 nM, respectively, making it an interesting lead compound for the design of more effective
agents, which may be useful tools for understanding the pathogenicity of this bacterium.

Keywords: carbonic anhydrase; metalloenzymes; pathogens; β-class; sulfonamide; Burkholderia
pseudomallei

1. Introduction

Our groups started to investigate the biochemical properties, kinetic constants and inhibition
profiles of numerous classes of carbonic anhydrases (CAs; EC 4.2.1.1) in different species of pathogenic
and non-pathogenic bacteria (see Table 1). CAs are ubiquitous metalloenzymes that catalyze the
reversible hydration of carbon dioxide with the production of bicarbonate and protons. The CA

Molecules 2017, 22, 421; doi:10.3390/molecules22030421 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 421 2 of 15

superfamily includes seven distinct classes known as the α, β, γ, δ, ζ, η, and θ [1–13]. The α-, β-, δ-, η-,
and perhaps θ-CAs use Zn(II) ions at the active site, the γ-CAs are probably Fe(II) enzymes (but they
are also active with bound Zn(II) or Co(II) ions) [14–21], and the ζ-class CAs are cambialistic enzymes,
active both with Cd(II) or Zn(II) bound within the active site in order to perform the physiologic
reaction catalysis [22–24]. The metal ion from the CA active site is coordinated by three His residues in
the α-, γ-, δ-, and probably θ-classes, by one His and two Cys residues in β- and ζ-CAs, or by two His
and one Gln residues in the η-class, with the fourth ligand being a water molecule/hydroxide ion acting
as nucleophile in the catalytic cycle of the enzyme [11,25–30]. All CAs identified in animal systems
belong to α-class. CAs identified in plants and algae belong to the α-, β-, γ-, δ-, and θ-classes; fungi
encode for α- and β-CAs; protozoa encode for α-, β-, or η-CAs. As shown in Table 1, bacteria encode
for enzymes belonging to the α-, β-, and γ-CA classes [11,12,27,29,31–33]. Moreover, as described in
literature, the genome of Gram-negative bacteria belonging to the genera Buchnera and Rickettsia does
not encode for any CAs [29]. Thus, the distribution pattern of CAs in bacteria is very fascinating [29].
In the last year, it has been demonstrated in vivo that the inhibition of bacterial CAs influences the
pathogenicity and/or the growth of the microorganism [27,34–39]. These promising data on live
bacteria allow us to propose bacterial CAs inhibition as an approach for obtaining anti-infective agents
with a new mechanism of action compared to classical antibiotics. At present, infectious diseases are
the second-leading cause of death in the world, and the development of bacterial antibiotic-resistance
is an inevitable and widespread phenomenon inherent to most drugs. Several classes of CA inhibitors
(CAIs) are known to date, among which the metal complexing anions and sulfonamides and their
bioisosteres are the most investigated for the inhibition of the bacterial CAs [12,40–44]. Anions such as
the inorganic metal-complexing or more complicated species such as the carboxylates bind to CAs,
but generally with less efficiency compared to the sulfonamides [45]. Anions may bind either the
tetrahedral geometry of the metal ion or as trigonal–bipyramidal adducts [45]. The antibiotic revolution
in medicine was represented by sulfonamides, which were the first antimicrobial drugs (Figure 1) [31,41].
Sulfonamide derivatives that were used clinically, including acetazolamide, methazolamide,
ethoxzolamide, dichlorophenamide, dorzolamide, and brinzolamide, bind in a tetrahedral geometry
to the Zn(II) ion in deprotonated state, with the nitrogen atom of the sulfonamide moiety coordinated
to Zn(II) and an extended network of hydrogen bonds involving amino acid residues Thr199 and
Glu106 (numbering system used for the human CA, isoform I) also participating in the anchoring
of the inhibitor molecule to the metal ion [31,41,46]. The aromatic/heterocyclic part of the inhibitor
interacts with hydrophilic and hydrophobic residues of the cavity. The protein fold in the diverse CA
classes (seven CA-classes) is highly different [14–21], mainly due to their different oligomeric state.
Successful inhibition studies with sulfonamides should allow the discovery of highly isoform-selective
CAIs, which may lead to a new generation of drugs targeting these widespread enzymes.
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Figure 1. Structure of sulfonamides/sulfamates investigated in the present study. AAZ: acetazolamide; 
BRZ: brinzolamide; BZA: benzolamide; CLX: celecoxib; DCP: dichlorophenamide; DZA: dorzolamide; 
EZA: ethoxzolamide; HCT: hydrochlorothiazide; IND: indisulam; MZA: methazolamide; SLP: sulpiride; 
SLT: sulthiame; TPM: topiramate; VLX: valdecoxib; ZNS: zonisamide. 
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Figure 1. Structure of sulfonamides/sulfamates investigated in the present study. AAZ: acetazolamide;
BRZ: brinzolamide; BZA: benzolamide; CLX: celecoxib; DCP: dichlorophenamide; DZA: dorzolamide;
EZA: ethoxzolamide; HCT: hydrochlorothiazide; IND: indisulam; MZA: methazolamide; SLP: sulpiride;
SLT: sulthiame; TPM: topiramate; VLX: valdecoxib; ZNS: zonisamide.

In this context, we cloned, expressed, and purified the recombinant β-CA (BpsCAβ, Accession
number: WP_004550949.1) identified in the genome of Burkholderia pseudomallei, a Gram-negative
saprophytic bacteria responsible of melioidosis, which is an endemic disease of tropical and sub-tropical
regions [47]. The B. pseudomallei genome encodes for only β- and γ-CAs. In the present manuscript,
the inhibition profile of BpsCAβ was investigated using a wide series of sulfonamides/sulfamates.
The inhibition profile of BpsCAβ was compared with those obtained for the human α-CAs (hCA I
and hCAII) and the other bacterial BpsCAγ previously identified in the genome of Burkholderia
pseudomallei [7] and investigated by our groups for its inhibition profiles with anions and sulfonamides.
This study may be of interest for designing new types of inhibitors that may have clinical applications,
because Burkholderia pseudomallei is fundamentally resistant to penicillin, ampicillin, first-generation
and second-generation cephalosporins, macrolides, quinolones, and most aminoglycosides [48].
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Table 1. Bacterial carbonic anhydrases (CAs) investigated by our groups for their biochemical properties, kinetic constants, and inhibition profiles.

Bacterium
CA Characteristics Inhibition

Class Acronym Pathogenicity Disease Sulfonamides Anions

Vibrio cholerae [8,49,50]
α VchCAα + Cholera + +
β VchCAβ + +
γ VchCAγ + +

Helicobacter pylori [36,51,52] α hpαCA + Gastritis, gastric + +
β hpβCA ulcers + +

Streptococcus mutans [11,53,54] β SmuCA + Caries + +
Haemophilus influenzae β HICA + Influenza − +
Neisseria gonorrhoeae α NgoCA + Gonorrhea + +

Neisseria sicca α NsiCA + Septicemia + −

Porphyromonas gingivalis [11,13,55–57] β PgiCA β + Periodontitis, + +
γ PgiCA γ rheumatoid arthritis + +

Legionella pneumophila [42] β LpCA1 + Legionellosis + +
β LpCA2 + +

Clostridium perfringens [58] β CpeCA + Food poisoning − +

Brucella suis [34,59,60]
β bsCA 1 + Brucellosis + −
β BsCA II + −

Burkholderia pseudomallei [1,7,61] β BpsCAβ + Melioidosis − +
γ BpsCAγ + +

Salmonella enterica [62,63]
β stCA 1 + Salmonellosis + +
β stCA 2 + +

Streptococcus pneumoniae [64] β PCA + Pneumonia + +

Mycobacterium tuberculosis [65–67]
β mtCA 1 + Tuberculosis + −
β mtCA 2 + −
β mtCA 3 + −

Methanobacterium thermoautotrophicum [68] β Cab − − + +

Methanosarcina thermophila [69] γ Zn-Cam − − + +
γ Co-Cam − − + +

Sulfurihydrogenibium yellowstonense [19,70–72] α SspCA − − + +
Sulfurihydrogenibium azorense [73–76] α SazCA − − + +

Colwellia psychrerythraea [10,38] γ CpsCA − − + +
Pseudoalteromonas haloplanktis [77,78] γ PhaCAγ − − + +
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2. Results and Discussion

2.1. Purification and Protonographic Analysis

The recombinant BpsCAβ was heterologously expressed as soluble protein in the cytoplasm of
the E. coli (DE3) codon plus cells and produced as a fusion protein containing a His-tag tail at its
N-terminal amino acid sequence. After sonication and centrifugation, BpsCAβ was purified from
the cell extract using the His-select HF Nickel column as the affinity column. The fusion protein
showed an apparent molecular weight of about 30 kDa, as indicated by sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis (PAGE) (SDS-PAGE, Figure 2A). The apparent molecular
weight of 30 kDa on the SDS-PAGE is due to the SDS concentration, which determines the separation of
the subunits of the BpsCAβ. Generally, β-CAs catalyze the hydration of carbon dioxide to bicarbonate
and protons when the β-CAs monomers assemble into dimers, tetramers, or octamers. To investigate
the hydratase activity of BpsCAβ and bCA (commercial α-CA from bovine erythrocytes, purchased
from Sigma) on the SDS-PAGE gel, samples of BpsCAβ or bCA were prepared and loaded on the
gel. The protonography technique is based on the monitoring of pH variation in the gel due to the
catalyzed conversion of CO2 to bicarbonate and protons. The production of hydrogen ions during the
CO2 hydration reaction due to the bCA or BpsCAβ hydratase activity lowers the pH of the solution
until the color transition point of the dye (bromothymol blue) is reached (pH 6.8) [79–81]. This dye
appears blue in its deprotonated form, while its color changes to yellow in the protonated form.
The protonated form of bromothymol blue has its peak absorption at 692 nm, thus reflecting yellow
light in acidic solutions, and the deprotonated form has its peak absorption at 602 nm, thus reflecting
blue light in more basic solutions [79–81]. Figure 2 shows the results of the protonographic analysis,
and the enzyme activity was detected as yellow bands against the blue background. The protonogram
of BpsCAβ (Figure 2B) showed a 30 kDa band of activity. As described in the literature, mammal
α-CAs are monomeric, and the protonogram of bCA showed a single band of activity corresponding
to a monomer of 30 kDa. However, as mentioned previously, β-CAs are active enzymes for the CO2

hydratase reaction when assembled into dimers, tetramers, or octamers. The yellow bands found
corresponding to the inactive monomeric form of BpsCAβ is due to the fact that at the end of the
electrophoretic run, the SDS is removed from the gel. This procedure may lead to the rearrangement of
BpsCAβ monomers in the gel, and the final result is the reconstitution of the active oligomeric forms
of BpsCAβ.
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Figure 2. Comparison between SDS-PAGE and protonography of recombinant B. pseudomallei
β-CA (BpsCAβ). (A) SDS-PAGE of bCA and BpsCAβ. The gel was stained with Coomassie blue;
(B) Protonogram of α-CA from bovine erythrocytes (bCA) and BpsCAβ. The yellow bands on the blue
background correspond to the bCA and BpsCAβ activity, which determine the drop of pH from 8.2 to
the transition point of the dye (pH 6.8). Yellow bands were obtained with an incubation time of 15 s.
STD: molecular markers starting from the top had the following molecular weights: 50 kDa, 37 kDa,
25 kDA, and 20 kDa (see bold numbers on the figure).



Molecules 2017, 22, 421 6 of 15

2.2. Kinetic Constants

In Table 2 are shown the rate constants (kcat, KM, and kcat/KM) of the BpsCAβ identified in the
genome of Burkholderia pseudomallei and the inhibition constant (KI) using the inhibitor acetazolamide.
These constants were compared with the kinetic parameters of the α-CA from the Homo sapiens
(isoforms hCA I and hCA II) and with those obtained from BpsCAγ that were reported previously [7].
The catalytic activity values of these enzymes were determined using the “stopped-flow” technique.
BpsCAβ showed a kcat of 1.6 × 105 s−1 and a kcat/KM of 3.4 × 107 M−1·s−1. It was slightly less active
than the human isoform hCAI (kcat = 2.0 × 105 s−1). Interestingly, the γ-CA from B. pseudomallei
showed a kcat = 5.3 × 105 s−1, which is 3.3 times higher than the BpsCAβ (kcat = 1.6 × 105 s−1).
This is also evident for the γ-CA from V. cholerae, which was 2.21 times more active than VchCAβ

(kcat = 7.39 × 105 s−1). In addition, acetazolamide was found to be a less effective inhibitor for BpsCAβ

(KI = X nM) and BpsCAγ (KI = Y nM) [48–50] than for hCA II, VchCAα, and hpβCA.

Table 2. Kinetic parameters for the CO2 hydration reaction catalysed by the human cytosolic isozymes
hCA I and II (α-class CAs) at 20 ◦C and pH 7.5 in 10 mM HEPES buffer and 20 mM Na2SO4, β- and
γ-CAs from B. pseudomallei measured at 20 ◦C, pH 8.3 in 20 mM TRIS buffer and 20 mM NaClO4 [82], α-,
β-, and γ-CAs from Vibrio cholerae [8,49,50], and β-CA from Helicobacter pylori [36,51,52]. Acetazolamide
inhibition data are also shown.

Enzyme Activity Level Class kcat (s−1) kcat/Km (M−1·s−1) KI (Acetazolamide) (nM)

hCA I moderate α 2.0 × 105 5.0 × 107 250
hCA II very high α 1.4 × 106 1.5 × 108 12

BpsCAβ moderate β 1.6 × 105 3.4 × 107 745
BpsCAγ moderate γ 5.3 × 105 2.5 × 107 149
VchCAα high α 8.23 × 105 7.0 × 107 6.8
VchCAβ moderate β 3.34 × 105 4.1 × 107 451
VchCAγ high γ 7.39 × 105 6.4 × 107 473
hpβCA high β 7.1 × 105 4.8 × 107 40

2.3. Sulfonamides and Sulfamates Inhibition Profiles

A panel of simple aromatic and heteroaromatic sulfonamides of types 1–24 and clinically
used derivatives such as AAZ–HCT (Figure 1) was used to investigate the sulfonamide/sulfamate
inhibition profile of BpsCAβ. Acetazolamide (AAZ), methazolamide (MZA), ethoxzolamide (EZA),
and dichlorophenamide (DCP) are the classical systemically acting CAIs [51–59]. Dorzolamide (DZA)
and brinzolamide (BRZ) are topically-acting anti-glaucoma agents; benzolamide (BZA) is an orphan
drug belonging to this class of pharmacological agents; whereas topiramate (TPM), zonisamide (ZNS),
and sulthiame (SLT) are widely used antiepileptic drugs [60–65]. Sulpiride (SLP), indisulam (IND),
valdecoxib (VLX), celecoxib (CLX), and hydrochlorothiazide (HCT) were shown by these groups to
belong to this class of pharmacological agents, acting as efficient inhibitors against many enzymes from
mammals, plants, and microorganisms such as bacteria, protozoa, and fungi [66–79]. Sulfonamides
1–24 and the clinically used agents investigated in this study were either commercially available or
were prepared as reported earlier by our group [21,25,42].

Inhibition data with the 39 investigated sulfonamides/sulfamates against the two enzymes from
B. pseudomallei BpsCAβ and BpsCAγ, as well as the human main isoforms hCA I and II (as possible off
targets) are shown in Table 3. The following structure–activity relationship (SAR) can be drawn from
the data of this table:

(i) Some sulfonamides, including 1, 4, 6–9, 18, 19, 24, SLP, VLX, CLX, SLT, and the sulfamate TPM
did not inhibit BpsCAβ significantly up to 50 µM concentration of inhibitor within the assay
system (Table 3). They include a variety of chemotypes, such as simple benzenesulfonamides
with compact meta- or para-substituents (1, 4, 6, 18), halogen sulfanilamides (7–9), the compounds
with elongated molecules 19 and 24, as well as the clinically used compounds with a rather bulky
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scaffold such as the two coxibs, sulpiride and the sugar sulfamate TPM. It is thus difficult to
draw a precise SAR for this limited number of inhibitors with such diverse structural features in
their molecules.

(ii) A large number of the investigated sulfonamides were moderately potent inhibitors of BpsCAβ,
with inhibition constants in the micromolar range. They include: 2, 3, 5, 10, 13–16, 21–23, EZA,
DZA, BRZ, ZNS, IND, and HCT (Table 3), and their KI range between 1500 and 5200 nM. Several
interesting SAR data can be observed: the shift of the amino moiety from meta (as in 1) to para
(as in 2) led to a net increase in the inhibitory action, as sulfanilamide 2 is moderately potent
whereas metanilamide 1 was devoid of activity. The same activity was shown by 5, which has
an extra methylene moiety compared to sulfanilamide, but the increase of the linker to two
methylene groups (as in 6) leads to the complete loss of activity. It is also interesting to note that
the introduction of halogens in the sulfanilamide 2 scaffold (as in 7–9) led to a loss of activity
against BpsCAβ, although the halogenated sulfonamides were more effective hCA I and II
inhibitors compared to sulfanilamide itself (Table 3). For the phenol/alcohols 15–17 on the other
hand, the increase of the linker between the OH moiety and the aromatic ring from 0 to 2 led
to an increase of the BpsCAβ inhibitory action, with the best inhibitor being the hydroxyethyl
derivative 17 (KI of 417 nM). However, for the similar subseries 22–24, the SAR is more complex,
with 23 acting as the best inhibitor and the shorter or the longer molecule congeners (22 and 24)
showing a decrease (or a loss) of activity (Table 3). The bulky clinically used derivatives EZA,
DZA, BRZ, ZNS, IND, and HCT also belong to this category of CAIs with medium potency
inhibitory action against BpsCAβ

(iii) The most efficient BpsCAβ inhibitors detected among the investigated sulfonamides were 11,
12, and DCP (belonging to the benzene-1,3-disulfonamide class of compounds), 17 (already
mentioned above), 20, and BZA (benzolamide-type CAIs possessing an elongated molecule
and two sulfonamide functionalities), AAZ, and MZA. These sulfonamides showed KI in the
range of 185–745 nM (Table 3). The following SAR is obvious: the deacetylated derivatives of
AAZ (13) and MZA (14) were much less effective BpsCAβ inhibitors compared to the clinically
used drugs. This is a general phenomenon seen for many other CAs investigated earlier [65–79].
The best BpsCAβ inhibitors were MZA and BZA, with an almost identical inhibition constant
(185–186 nM). It is interesting to note that MZA—which differs only by a CH2 moiety from
AAZ—was four times stronger as an inhibitor than acetazolamide. Considering benzolamide
(BZA), the introduction of a 4-amino moiety as in aminobenzolamide (20), led to a small decrease
of the inhibitory activity from 185 nM to 266 nM (Table 3). Such compounds belong to a class
of disulfonamide CAIs, which are highly effective against many CAs [80]. As mentioned above,
the same efficient inhibitory action was observed for the benzene-1,3-disulfonamides DCP, 11,
and 12, which incorporate two primary sulfonamide moieties in their scaffolds. Overall, the
main conclusion is that several important CAI scaffolds lead to effective BpsCAβ inhibition, but
compounds with an inhibition constant <100 nM were not identified in this study.

(iv) The inhibition profile of BpsCAβ differs substantially from that of the γ-class enzyme from the
same pathogen (BpsCAγ) that was recently investigated by this group [7]. A relatively limited
number of sulfonamides that have been investigated act as effective CAIs against both the β- and
γ-CAs from this bacterium (Table 3). Among them are 20, AAZ, MZA, and BZA, with the latter
compound having the most promising profile (KI of 653 and 185 nM, respectively). Thus, BZA
might be considered an important lead compound for obtaining more effective CAIs targeting
Burkholderia pseudomallei.
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Table 3. Sulfonamides/sulfamates inhibition constants (KI, nM) for the human α-CAs (isoforms hCA I
and II) and the β-/γ-CAs identified in the genome of B. pseudomallei, assayed by a CO2 hydrase stopped
flow method [7,50].

Inhibitor
KI, nM *

hCA I hCA II BpsCAγ BpsCAβ

1 45,400 295 574 >50,000
2 25,000 240 1720 3895
3 28,000 300 1550 3170
4 78,500 320 >50,000 >50,000
5 25,000 170 >50,000 3900
6 21,000 160 >50,000 >50,000
7 8300 60 >50,000 >50,000
8 9800 110 12,500 >50,000
9 6500 40 >50,000 >50,000
10 6000 70 >50,000 4100
11 5800 63 14,000 425
12 8400 75 23,500 307
13 8600 60 18,400 3065
14 9300 19 1810 2500
15 6 2 9650 4345
16 164 46 10,800 2215
17 185 50 1825 417
18 109 33 1500 >50000
19 95 30 1838 >50000
20 690 12 1810 266
21 55 80 1335 1650
22 21,000 125 1805 5200
23 23,000 133 1700 1500
24 24,000 125 24,500 >50,000

AAZ 250 12 149 745
MZA 50 14 1595 186
EZA 25 8 1865 3850
DCP 1200 38 >50,000 529
DZA 50,000 9 2260 3670
BRZ 45,000 3 1270 4270
BZA 15 9 653 185
TPM 250 10 3010 >50,000
ZNS 56 35 >50,000 4060
SLP 1200 40 5600 >50,000
IND 31 15 1800 4375
VLX >50,000 43 >50,000 >50,000
CLX 50,000 21 >50,000 >50,000
SLT 374 9 8900 >50,000
HCT 328 290 >50,000 3490

* Mean from three different assays. Errors in the range of ±10% of the reported values (data not shown).

3. Materials and Methods

3.1. Gene Identification and Cloning

The identification of the gene encoding B. pseudomallei β-CA (BpsCAβ) was performed as
described by Del Prete et al. [61] Briefly, the β-CA gene of B. pseudomallei with the accession number
WP_004189176.1 was identified running the “BLAST” program, using the nucleotide sequences
of bacterial β-CAs as query sequence. The GeneArt Company (Invitrogen)—specializing in gene
synthesis—designed the synthetic BpsCAβ gene (BpsCAβ-DNA) encoding for the BpsCAβ (protein of
256 amino acid residues) containing four base-pair sequences (CACC) necessary for directional cloning
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at the 5′ end of the PfCAdom gene. The recovered PfCAdom gene and the linearized expression vector
(pET-100/D-TOPO) were ligated by T4 DNA ligase to form the expression vector pET-100/BpsCAβ.

3.2. Expression and Purification of the Recombinant BpsCAβ

BL21-CodonPlus(DE3)-RIPL competent cells (Agilent) were transformed with pET-100/BpsCAβ,
grown at 37 ◦C, and induced with 1 mM isopropil-β-D-1-tiogalattopiranoside (IPTG). After 30 min,
ZnSO4 (0.5 mM) was added to the culture medium and cells were grown for an additional 3 h.
Subsequently, cells were harvested and re-suspended in the following buffer: 50 mM Tris/HCl, pH 8.0,
0.5 mM phenylmethylsulfonyl fluoride (PMSF), and 1 mM benzamidine. Cells were then disrupted
by sonication at 4 ◦C. After centrifugation at 12,000× g for 45 min, the supernatant was incubated
with His Select HF nickel affinity gel resin (Sigma) equilibrated in lysis buffer for 30 min. Following
centrifugation at 2000× g, the resin was washed in buffer (50 mM Tris/HCl, pH 8.3, 500 mM KCl,
20 mM imidazole). The protein was eluted with the wash buffer containing 300 mM imidazole. The
collected fractions were dialyzed against 50 mM Tris/HCl, pH 8.3. At this stage of purification, the
protein was at least 95% pure and the obtained recovery was of about 20 mg of the recombinant protein.

3.3. Protonography

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) was performed as
described by Laemmli [83]. Wells of 12% SDS-gel were loaded with bCA or BpsCAβ mixed with
Laemmli loading buffer without 2-mercaptoethanol and without boiling the samples in order to avoid
protein denaturation. The gel was run at 180 V until the dye front ran off the gel. Following the
electrophoresis, the gel was removed from glass plates and soaked in 2.5% Triton X-100 for 1 h on a
shaker and then twice in 100 mM Tris, pH 8.2 containing 10% isopropanol for 10 min. Subsequently,
the gel was incubated in 0.1% bromothymol blue in 100 mM Tris, pH 8.2 for 30 min and then immersed
in CO2-saturated ddH2O to visualize the hydratase activity of the enzyme. The assay was performed
at room temperature and the CO2-saturated solution was prepared by bubbling CO2 into 200 mL
distilled water for approximately 3 h. The local decrease in pH due to the presence of CA activity
was evidenced by the formation of yellow bands due to the change of the indicator color from blue
(alkaline pH) to yellow (acidic pH) [79–81].

3.4. Kinetic and Inhibition Assay

An Applied Photophysics stopped-flow instrument has been used for assaying the CA-catalyzed
CO2 hydration activity. [82] Phenol red (at a concentration of 0.2 mM) was used as indicator, working
at the absorbance maximum of 557 nm, with 20 mM TRIS (pH 8.3) as buffer, and 20 mM NaClO4

(for maintaining constant the ionic strength), following the initial rates of the CA-catalyzed CO2

hydration reaction for a period of 10–100 s. The CO2 concentrations ranged from 1.7 to 17 mM for
the determination of the kinetic parameters (by Lineweaver–Burk plots) and inhibition constants. For
each inhibitor, at least six traces of the initial 5%–10% of the reaction were used to determine the initial
velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitor (10–100 mM) were prepared in distilled-deionized water,
and dilutions up to 0.01 mM were done thereafter with the assay buffer. Inhibitor and enzyme solutions
were preincubated together for 15 min at room temperature prior to assay in order to allow for the
formation of the E-I (Enzyme-Inhibitor) complex or for the eventual active site-mediated hydrolysis of
the inhibitor. The inhibition constants were obtained by non-linear least-squares methods using PRISM
3 and the Cheng–Prusoff equation (as reported earlier), and represent the mean from at least three
different determinations. All CA isoforms were recombinant ones obtained in-house. All salts/small
molecules were of the highest purity available, from Sigma-Aldrich (Milan, Italy).
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4. Conclusions

We have cloned, purified, and characterized a β-CA from the pathogenic bacterium
Burkholderia pseudomallei, responsible for the tropical disease melioidosis, named here BpsCAβ.
The enzyme showed a relatively high catalytic activity for the physiologic CO2 hydration reaction to
bicarbonate and protons, with the following kinetic parameters: kcat of 1.6 × 105 s−1 and kcat/KM of
3.4 × 107 M−1·s−1. An inhibition study with a panel of 38 sulfonamides and one sulfamate—including
many agents that are used clinically—revealed an interesting structure–activity relationship for the
interaction of this enzyme with its inhibitors. Many simple sulfonamides and clinically used agents
such as topiramate, sulpiride, celecoxib, valdecoxib, and sulthiame were ineffective BpsCAβ inhibitors
(KI > 50 µM). Other drugs, such as ethoxzolamide, dorzolamide, brinzolamide, zonisamide, indisulam,
and hydrochlorothiazide were moderately potent micromolar inhibitors. The most promising inhibition
was observed using benzene-1,3-disulfonamides, benzolamide and its analogs, acetazolamide, and
methazolamide, which showed KI in the range of 185–745 nM. The inhibition profile of BpsCAβ

differs substantially from that of the γ-class enzyme from the same pathogen (BpsCAγ), making it
rather difficult to propose compounds that would effectively interact with both enzymes. However,
benzolamide was one of the most promising inhibitors of both these CAs, with KI of 653 and 185 nM,
respectively. Thus, benzolamide is an interesting lead compound for the design of more effective such
agents, which may be useful tools for understanding the pathogenicity of this bacterium.
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