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Kitti Koprivanacz 1, Balázs L. Merő 1, László Buday 1,4 and Virag Vas 1,*

1 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
kudlik.gyongyi@ttk.hu (G.K.); takacs.tamas@ttk.hu (T.T.); lradnai@scripps.edu (L.R.);
kurilla.anita@abc.naik.hu (A.K.); szeder.balint@ttk.mta.hu (B.S.); koprivanacz.kitti@ttk.hu (K.K.);
mero.balazs@ttk.mta.hu (B.L.M.); buday.laszlo@ttk.mta.hu (L.B.)

2 Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
3 Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
4 Department of Medical Chemistry, Semmelweis University Medical School, 1085 Budapest, Hungary
* Correspondence: vas.virag@ttk.hu

Received: 29 September 2020; Accepted: 27 October 2020; Published: 30 October 2020
����������
�������

Abstract: Scaffold proteins are typically thought of as multi-domain “bridging molecules.” They serve
as crucial regulators of key signaling events by simultaneously binding multiple participants involved
in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor
receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then
becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine
kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of
key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the
TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively.
Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor
them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been
recognized for their involvement in cellular motility, reactive oxygen species-dependent processes,
and embryonic development, among others. However, a number of novel functions have been
discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature
of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling
pathways, and interaction partners, as well as their involvement in cellular processes, including
migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe
related pathologies and the established mouse models.

Keywords: scaffold protein; tyrosine kinase substrates; TKS4; TKS5; invasion; mesenchymal stem
cells; adipose tissue; bone homeostasis; epithelial–mesenchymal transition

1. Introduction

Scaffold proteins modulate intracellular signaling by bringing regulatory proteins, enzymes, or
cytoskeletal structures in close proximity [1]. TKS molecules are large scaffold proteins earning their
name from the early observation that they serve as tyrosine kinase substrates of SRC kinase [2–4].
TKS4 and TKS5 contain one Phox Homology (PX) domain, conserved linear motifs, e.g., several
proline-rich motifs (PRMs), and four or five SRC Homology 3 (SH3) domains, respectively. Other
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names for TKS5 are SH3 and PX domain-containing protein 2A (SH3PXD2A) and Five SH3 domains
(FISH), while TKS4 is also known as SH3 and PX domain-containing protein 2B (SH3PXD2B), Homolog
of FISH (HOFI), and a factor of adipocyte differentiation 49 (Fad49), reflecting some of their known
characteristics [3,5]. The main function of the PX domain is to link the TKS scaffold proteins to
the cell membrane via phosphoinositide binding [2,6]. The SH3 domains serve as docking sites for
signaling molecules and mediate protein-protein interactions [7]. It is likely that the PRMs of the TKS
proteins represent contact sites for SH3 domain-containing molecules (Figure 1). The TKS proteins are
phylogenetically related and are expressed in vertebrates, and TKS-like genes are widely present in
invertebrates [8]. TKS scaffold proteins are broadly expressed in tissues except for the testis for TKS4,
and the spleen and testis for TKS5 [2,3]. They are also expressed in several transformed cell lines [2,9].

Figure 1. Members of the p47 organizer protein family. The p47 organizer family consists of five
structurally similar adaptor/scaffold proteins containing an N-terminal PX domain followed by several
SH3 domains, namely p40phox, NOXO1, p47phox, TKS4, and TKS5. Experimentally confirmed SRC
kinase tyrosine phosphorylation sites (“Y”) in the human and mouse TKS proteins are shown above
and below the depicted domain architecture, respectively.

In this review, we summarize the current knowledge of the properties of TKS4 and TKS5 and their
involvement in specific cellular processes, including growth factor signaling, formation of actin-rich
membrane protrusions, and generation of reactive oxygen species by regulating NADPH oxidase
(NOX) transmembrane enzyme complexes. We also provide an overview of the function of TKS
proteins in cancer metastasis and genetic diseases.

2. The Regulated Localization of TKS Proteins Determines Their Signal Recruiting Function

Both TKS4 and TKS5 have a cytoplasmic, inactive state, and a membrane-bound, active state
in cells. The transition between these states is most likely regulated by phosphorylation [2,10,11].
Direct evidence for these conformational states is still limited [12]. However, this hypothesis is
supported by the auto-inhibitory intramolecular interactions known to regulate p47phox, a homologous
protein that is structurally highly similar to the N-terminal regions of TKS4 and TKS5. Based on the
similarities in their domain architecture, all of these proteins belong to the p47-related organizer protein
family [13] (Figure 1). In mammals, the p47-related organizer family consists of five members: p40phox,
NOXO1 and p47phox, TKS4, and TKS5 [1]. These proteins share many functional and conformational
similarities [4,14]. A common feature is the presence of an N-terminal PX domain, followed by one
or more SH3 domains (Figure 1). An intramolecular regulatory mechanism was first described for
p47phox. In the auto-inhibited state, its first and second SH3 domains (“tandem SH3”) bind a specific
proline-rich motif within the C-terminal region. The assembly of this auto-inhibitory organization
makes the PX domain inaccessible for phosphatidylinositol phosphates. Therefore, p47phox remains
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in the cytoplasm [15–17]. The autoinhibitory interaction is disrupted by phosphorylation of several
C-terminal serine residues located in close proximity to the proline-rich motif. Consequently, the
tandem SH3 domains release the proline-rich motif and become available to bind an interacting partner,
p22phox. In association with these events, the locked PX domain is released and anchors the protein to
the membrane via phospholipid binding [18].

The intramolecular elements known to be necessary for the autoinhibited state of p47phox (the
tandem SH3 domains and the proline-rich autoinhibitory region) are conserved and are present in
both TKS4 and TKS5 [14]. Therefore, the similarities between the structures of the p47phox and TKS
proteins support the idea that similar intramolecular interactions could regulate their functional states.
A study by Abram and colleagues supports the existence of intramolecular regulation in TKS5 [6].
Based on their results, they speculated that, when TKS5 is in its auto-inhibited conformation, its PX
lipid recognition module is masked, and the molecule is distributed diffusely in the cell. Upon SRC
phosphorylation on tyrosine residues, the PX domain is released, thus becoming available to bind to
membrane lipids, resulting in translocation of TKS5 to the cell membrane [6]. Simultaneously, the SH3
domains can bind to signaling proteins to recruit them to the cell membrane, allowing intracellular
signal transduction [6,12,19].

3. TKS4 and TKS5 Affect Multiple Biological Processes from Growth Factor Receptor Signaling
to Metastasis to Tissue Homeostasis

3.1. EGFR Signaling via TKS4 and TKS5

Receptor tyrosine kinases (RTK) are transmembrane proteins that control several cellular processes,
ranging from proliferation to differentiation and cell migration. Following the binding of their
extracellular ligands, RTKs dimerize, undergo auto-phosphorylation on multiple tyrosine residues
in their cytoplasmic region, and associate with intracellular signaling molecules. Diverse molecular
cascades transmit the signal from RTKs to their final effector molecules, ultimately leading to the
modulation of distinct biological processes within the cell [20].

Epidermal growth factor receptor (EGFR) is one of the most well-studied RTKS. Upon activation,
it initiates several signal transduction cascades, including the RAS-RAF-MEK, phosphatidylinositol 3
(PI3)-kinase-AKT, PLCγ, and JAK-STAT pathways [21]. Moreover, active EGFR binds cytosolic SRC
tyrosine-kinase, which then becomes activated [22–25]. This process leads to the phosphorylation
of SRC-substrates, including the TKS scaffold proteins, which are known to be involved in EGFR
signaling [11,26,27]. The TKS proteins serve as a platform for the recruitment of key players in
EGFR signal transduction (Figure 2, Table 1), promoting cell spreading and migration [9,11,28–30].
In response to EGFR activation, PI3 kinases are activated, and lipids are phosphorylated in the
plasma membrane. For example, phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is converted
to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) [31]. According to a model proposed by
Bögel et al., the phosphorylated lipid residues anchor the PX domain of TKS4 and translocate the
scaffold protein from the cytoplasm to the plasma membrane [11]. On the other arm of the signaling
pathway, SRC kinase is also activated by binding to the intracellular tail of EGFR [22–25] subsequently
phosphorylating tyrosine residues on TKS4 (i.e., Tyr25, Tyr373, Tyr508) (Figure 1) [2]. Phosphorylated
TKS4 can bind activated SRC by interacting with both its SH2 and SH3 domains. In this complex,
SRC remains active for a prolonged period of time and may phosphorylate multiple downstream
molecules/partners [32]. This direct interaction between TKS4 with SRC was shown to involve the
proline-rich region PSRPLPDAP (residues 466–474) and the tyrosine-phosphorylated pYEEI motif
(residues 508–511) of TKS4 (both located between the third and fourth SH3 domains) and the SH3
and SH2 domains of SRC, respectively [32]. Upon PI3 kinase activation, TKS5 also translocates to the
plasma membrane in epidermal growth factor (EGF)-stimulated cells [26]. The PX domain of both
TKS4 and 5 was found to be essential for the participation of the molecules in EGFR signaling and for
the phosphorylation of TKS4 and 5 by activated SRC [11,26]. TKS4 forms a complex with EGFR in
which either SRC or a yet unidentified protein may serve as a bridge between the two molecules [11,32].
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For example, growth factor receptor binding protein 2 (GRB2) has been identified as a binding partner
of both EGFR and TKS4 [28]. No strong interaction between TKS5 and EGFR or SRC has been detected
so far, suggesting that, despite their structural similarities, there is only a partial overlap between the
regulation of TKS4 and TKS5 in EGF signaling [11,26].
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Figure 2. The role of TKS proteins in the recruitment of signaling molecules. ADAM12/15/19–a
disintegrin and metalloprotease 12/15/19, ARP2/3–actin-related protein 2/3, GRB2–growth factor
receptor binding protein 2, MT1MMP–membrane type 1 matrix metalloprotease, NCK–non-catalytic
region of tyrosine kinase adaptor protein, N-WASP–neural Wiskott-Aldrich syndrome protein,
PtdIns–phosphatidylinositol, RUK/CIN85–regulator of ubiquitous kinase/Cbl-interacting protein of
85 kDa, SRC–proto-oncogene tyrosine-protein kinase Src.

Table 1. Known protein binding partners of TKS4 and TKS5. The known binding partners of (a) TKS4
and (b) TKS5 are shown with the methods of detection and the binding sites within the TKS molecules.
Some of the well-described functions of the binding partners are also listed. ECM–extracellular matrix,
EMT–epithelial-mesenchymal transition, ITC–isothermal titration calorimetry, NOX1–NADPH oxidase
1, PRR–proline-rich region, ROS–reactive oxygen species, RTK–receptor tyrosine kinase. * The first and
second SH3 domains cooperate to form a common “super SH3 platform” and allow the binding of the
proline-rich region of the partner protein [33].

(a)

TKS4

Partner Method TKS4-Interacting Site Function

ADAM15 [34] GST pull-down assay 4th SH3 domain Ectodomain shedding, cell
adhesion, and signaling [35]

Cortactin [9]

Co-immunoprecipitation,
GST pull-down assay,
immunofluorescence

co-localization

Unknown Regulation of actin
cytoskeleton [36]

CR16 [37] GST pull-down assay
Weak interaction with
the 2nd, 3rd, and 4th

SH3 domains

Reorganization of actin
cytoskeleton [38]

DNM2 [37] GST pull-down assay 3rd SH3 domain Endo-/exocytosis [37]

FasL (CD178) [39] Phage display screening 3rd and 4th SH3 domains Apoptosis induction [40]
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Table 1. Cont.

(a)

TKS4

Partner Method TKS4-Interacting Site Function

GRB2 [28]

Affinity
purification–selected
reaction monitoring
mass spectrometry

Unknown

Adaptor protein involved in
the regulation of RTK

signaling, cycle progression,
actin-based cell motility,

podosome formation [41]

NOXA1 [42,43] Co-immunoprecipitation,
GST pull-down assay Unknown ROS generation through

NOX1 activation [44]

N-WASP [37] GST pull-down assay 2nd SH3 domain

A scaffold protein regulating
actin cytoskeleton

reorganization, and actin
polymerization during cell
motility and invasion [45]

OPHN1 [37] GST pull-down assay 3rd SH3 domain Endo-/exocytosis [37]

RUK/CIN85 [46] GST pull-down assay Unknown

Adaptor protein that recruits
endocytotic regulatory

proteins, and regulates RTK
internalization, trafficking,

and degradation [47]

SRC [9,32]

Co-immunoprecipitation;
GST pull-down and

fluorescence-polaziation
assays, Duolink

proximity ligation assay

PRR (aa: 466–474); P-Tyr
motif (aa: 508–511)

Regulation of cell growth,
differentiation, proliferation,

survival, adhesion, migration,
and motility [9,32]

SYNJ1 [37] GST pull-down assay
3rd SH3 domain and

weak interaction with
the 4th SH3 domain

Endo-/exocytosis [37]

(b)

TKS5

Partner Method TKS5-Interacting Site Function

ADAM12 [6]
Co-immunoprecipitation,

immunofluorescence
co-localization

5th SH3 domain

Cell adhesion and fusion,
extracellular matrix

restructuring, reorganization
of actin cytoskeleton,

regulation of ectodomain
shedding [48]

ADAM15 [6] Co-immunoprecipitation 5th SH3 domain

Cell adhesion, degradation of
ECM components, ectodomain
shedding of membrane-bound

growth factors [35]

ADAM19 [6] Phage display screen,
co-immunoprecipitation 5th SH3 domain

Extracellular matrix
breakdown and reconstruction,
ectodomain shedding, role in

embryogenesis, cardiovascular
system development, obesity,

and insulin resistance [49]

β-dystroglycan
[50]

Phage display screen,
GST pull-down assay,

co-immunoprecipitation,
immunofluorescence

co-localization

3rd SH3 domain
Links the extracellular matrix

to the intracellular actin
cytoskeleton [50]
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Table 1. Cont.

(b)

TKS5

Partner Method TKS5-Interacting Site Function

CircSKA3 [51] Co-immunoprecipitation,
pull-down assay Not specified Circular RNA, an inducer of

invadopodium formation [51]

Drebrin [52] Co-immunoprecipitation Unknown

An actin-binding protein
involved in the regulation of
actin filament organization,
role in cell migration, cell

process formation,
intercellular communication,

metastasis, and brain
development [53]

Dynamin [29,33]

Peptide spot membrane
assay, GST pull-down

assay, ITC,
immunofluorescence
co-localization, GST

pull-down assay, mass
spectrometry/Western

blotting

1st and 2nd SH3
domains; 1st and 5th

SH3 domains

Regulation of actin
cytoskeleton,

podosome/invadopodium
formation, role in endocytosis

[54]

F-actin [29] GST pull-down assay,
and mass spectrometry 5th SH3 domain Component of cytoskeleton

[55]

FasL (CD178) [39] Phage display screening 5th SH3 domain Apoptosis induction [40]

FGD1 [56]

Co-immunoprecipitation
and mass spectrometry,
GST pull-down assay,
immunofluorescence

co-localization

4th and 5th SH3 domains

A guanine nucleotide
exchange factor for the

Rho-GTPase CDC42, assembly
of podosomes and

invadopodia, control of
secretory

membrane-trafficking, and cell
cycle [56,57]

Girdin [58]
Co-immunoprecipitation,

immunofluorescence
co-localization

Unknown

actin-binding protein
regulating actin remodeling
and cell polarity, collective
migration of neuroblasts,

epithelial and cancer cells [59]

GRB2 [28,29] Co-immunoprecipitation Polyproline sequences

An adaptor protein involved
in cell cycle progression and

actin-based cell motility,
podosome formation [41]

IRTKS [60] GST pull-down assay

First binding site located
in the segment

comprising the 1st and
2nd SH3 domains,

second binding site
located in the segment
comprising the 3rd and

4th SH3 domains

Regulation of plasma
membrane dynamics, actin

cytoskeleton remodeling, cell
migration and polarization,

insulin signaling [61]

MT4-MMP [62] Co-immunoprecipitation Unknown

Induction of invadopodia and
amoeboid movement,
degradation of ECM
components, role in

hypoxia-mediated metastasis
[62]
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Table 1. Cont.

(b)

TKS5

Partner Method TKS5-Interacting Site Function

NCK [52]
Co-immunoprecipitation,

fluorescence
co-localization

Linker region between
the 3rd and 4th SH3
domains containing

pY557

Adaptor protein involved in
cytoskeletal remodeling,

invadopodium formation, cell
proliferation [63]

Nogo-B [29] GST pull-down assay
and mass spectrometry 5th SH3 domain

Roles in vascular remodeling,
cell migration and

proliferation, and EMT [64]

NOXA1 [42,43] Co-immunoprecipitation,
GST pull-down assay

One or more of the five
SH3 domains

ROS generation through
NOX1 activation [44]

N-WASP [29]

GST pull-down assay
and mass

spectrometry/Western
blotting,

co-immunoprecipitation

All five SH3 domains

A scaffold protein regulating
actin cytoskeleton

reorganization, and actin
polymerization during cell
motility and invasion [45]

p22phox [65] Co-immunoprecipitation 1st and 2nd SH3 domains
Subunit of NADPH oxidases
involved in ROS generation
through NOX activity [66]

Rab40b [67] GST pull-down assay,
co-immunoprecipitation,

PX-domain: sites
14-KRR-19 and Y24 in

23-YVYI-28

A GTPase required for the
sorting and secretion of MMP2

and MMP9, promotion of
migration, invasion, and
metastasis of cancer cells

[67,68]

RET [69]
Co-immunoprecipitation,

immunofluorescence
co-localization

Unknown

A receptor tyrosine kinase
mediating stress fiber

formation, cell polarization,
directional migration and
invasion, enhancement of

proteolytic activity [69]

SOS1 [33]

Immunofluorescence
co-localization, peptide
spot membrane assay,
GST pull-down assay,
isothermal titration

calorimetry

1st and 2nd SH3
domains *

A guanine nucleotide
exchange factor promoting

Ras and Rac activation
downstream of a variety of
receptors such as RTKs [70]

Tubulin [29] GST pull-down assay
and mass spectrometry 3rd SH3 domain

Component of microtubules,
affects cell division,

differentiation,
intracellular transport,

motility [71]

WIP [29] GST pull-down assay
and mass spectrometry 3rd and 5th SH3 domains

Regulation of actin
cytoskeleton assembly and

remodeling [72]

XB130 [73]

Yeast two-hybrid
screening,

co-immunoprecipitation,
GST pull-down assay,
immunofluorescence

co-localization

5th SH3 domain
A scaffold protein influencing

cell growth, survival, and
migration [73]

Zyxin [29] GST pull-down assay
and mass spectrometry 3rd and 5th SH3 domains

A focal adhesion protein
involved in actin cytoskeleton

assembly [74]
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In recent years, more possible interaction partners of TKS4 have been identified (Table 1a).
One possible partner is cortactin [9], a well-known substrate of SRC localized to cortical actin structures
within cells. Cortactin can bind the actin-related protein-2/3 (ARP2/3) and neural Wiskott-Aldrich
syndrome protein (N-WASP) proteins, and it mediates actin polymerization [75–77]. Therefore,
TKS4 was expected to be involved in EGFR signaling-mediated actin cytoskeleton assembly and
rearrangement. This proposed mechanism was confirmed by Lányi et al. [9]. They found that,
in response to EGF stimulation, TKS4 associates with cellular motility-associated membrane ruffles.
They also showed that, when constitutively active SRC is present, TKS4 accumulates in podosomes
(actin-rich membrane protrusions involved in cell motility, see below) while forming a complex with
SRC and cortactin [9]. TKS5 has also been reported to bind cortactin and other proteins important
in the regulation of actin cytoskeleton assembly, including N-WASP, non-catalytic region of tyrosine
kinase adaptor protein (NCK), and GRB2 (for a full list, see Table 1b) [10,29,52,78,79].

3.2. Molecular Organizers of Podosome and Invadopodium Assembly

Podosomes and invadopodia are dynamically formed actin-rich protrusions formed on the
ventral surface of cells facing the extracellular matrix (ECM). Both structures share the function of
motility promotion and pericellular proteolytic activity [80]. The migration of normal cells is driven by
podosomes, specialized structures that allow cells to adhere to and enter into their surroundings [81].
Podosomes are formed by a variety of different cells under normal circumstances, including endothelial
cells, smooth muscle cells, osteoclasts, macrophages, and dendritic cells [82,83]. Invadopodia, by
contrast, are used by cancer cells to break ECM barriers and metastasize. Via a coordinated stepwise
process at the site of these protruding membrane structures, matrix metalloproteinases accumulate
and are secreted into the extracellular space, leading to ECM degradation to facilitate invasion [84].

Both TKS proteins have been implicated in regulating podosome/invadopodium formation
and function [2,3,27,85,86]. The processes involved in the assembly of these structures share many
similarities. Depending on the cell type, the sequential process of podosome/invadopodium assembly
can be initiated by cell adhesion via integrins [87], vascular endothelial growth factor (VEGF) [88],
platelet-derived growth factor (PDGF) [89], transforming growth factor beta (TGFβ) [90], keratinocyte
growth factor (KGF) [91], colony-stimulating factor-1 (CSF-1) [92], or EGF-derived [93] signals. Upon
receptor tyrosine kinase activation, the non-receptor c-SRC kinase becomes active and phosphorylates
several substrates, including the TKS proteins, cortactin, N-WASP, focal adhesion kinase (FAK),
and other signaling molecules [94,95]. TKS5 has a key role at this point in podosome precursor
formation [29]. The PX domain of TKS5 is responsible for docking the molecule to membranes by
binding PtdIns(3)P or PtdIns(3,4)P2 [6]. During podosome formation, TKS5 is recruited to the plasma
membrane by PtdIns(3,4)P2 and the GRB2 adaptor while binding to PtdIns(3,4)P2 via its PX domain [29].
In this way, the TKS5/GRB2 complex cooperates in the recruitment of proteins necessary for the final
podosome-maturation steps. Among the recruited proteins, N-WASP and TKS5 binding has been
analyzed in detail and it was experimentally proven that the strong protein interaction is mediated by all
five SH3 domains of TKS5, stimulating robust N-WASP accumulation at the adhesion site (Table 1b) [29].
N-WASP is a multi-functional protein containing several different protein subunits that interact with
the small GTPase CDC42, PtdIns(4,5)P2, and the actin regulatory complex ARP2/3. Upon N-WASP
activation and ARP2/3 association, new actin filament polymerization can begin [96,97]. TKS5 functions
as a platform to recruit the ARP2/3 complex and ultimately facilitates actin cytoskeleton rearrangement.
Finally, the newly formed actin branches allow the cells to change shape and protrude podosomes
(Figure 2) [98]. Meanwhile, the other TKS protein TKS4 is phosphorylated by SRC kinase and is
recruited to the site of the developing podosome, where it is directly anchored to phosphoinositide
residues via its PX domain. The suggested function of TKS4 in podosome maturation is to recruit matrix
metalloproteases (MMPs) to the protruding membrane edge and to specifically allow membrane type 1
matrix metalloprotease (MT1-MMP) activation [2]. Buschman et al. showed that loss of TKS4 results
in incomplete podosome assembly in which most of the known podosome proteins colocalize at the
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site of podosome formation but fail to associate with the filamentous actin. Furthermore, MT1-MMP
failed to localize to the sites of the pre-podosome structures, resulting in decreased ECM degradation.
TKS5 overexpression could rescue podosome formation in the absence of TKS4. However, it could
not restore ECM degradation. Thus, the two TKS proteins seem to have overlapping functions in
filamentous actin formation, and the upregulation of TKS5 expression can substitute for TKS4 in this
process [2]. TKS5 has also been implicated in regulating proper MT1-MMP cell surface expression by
controlling its exocytosis [85]. At the end of the podosome formation process (and depending on the
cell type), single, clustered, ring-like, belt-like, or rosette-like podosomes form with localized MMPs,
imparting the cells with motility and ECM-remodeling activities [99].

Invadopodium assembly is very similar to podosome assembly [80]. However, there are a few
differences. While podosomes usually contain an actin-rich core surrounded by a vinculin/paxilin
adhesion ring, this organized ring structure is absent in invadopodia [100]. NCK1 and GRB2, two
TKS-interacting partners (Table 1), have been shown to be present in podosomes and invadopodia.
However, their localization patterns are different in the two structures [101]. According to Oser et
al., the adaptor protein NCK1 is specifically restricted to invadopodia while GRB2 functions mainly
in podosome-like structures and not in the invadopodia of metastatic cells [101]. It is likely that the
two degradative cell compartments use distinct mediators for N-WASP recruitment to the site of
action [93,96]. For example, in invadopodia, TKS5 might recruit N-WASP via NCK1, while TKS5
interacts with GRB2 during podosome assembly [29,52]. This feature might explain how the different
invasive structures can both assemble using the same scaffold molecule.

Besides endowing the cell with an invading phenotype and coordinating cell motility, podosomes
might also play a role in cell-cell communication. It was demonstrated that the fifth SH3 domain
of TKS5 associates with the intracellular tail of certain ADAM (a disintegrin and metalloprotease)
protein family members (Table 1b). TKS5 and ADAM 12, 15, and 19 co-immuno-precipitate and
co-localize at podosome sites in SRC-transformed fibroblasts [6]. Although only in a GST pull-down
experiment, TKS4 was also reported to bind ADAM15 with its fourth SH3 domain (Table 1a) [34].
An interesting feature of these membrane-localized proteases is that they can act as sheddases [102].
In fact, ADAM proteins are involved in the growth factor or ligand activation by cleaving the
inactive, membrane-anchored forms of these molecules to release the active forms, which has been
demonstrated in the case of an insulin-like growth factor-binding protein (IGF-BP) [103], Delta-like
ligand 1 (DLL1) [104], E-cadherin [105], amphiregulin [106], heparin-binding EGF-like growth factor
(HB-EGF) [107], transforming growth factor alpha (TGFα), EGF [108], or tumor necrosis factor alpha
(TNFα) [109]. After cleavage by ADAMs, the released cytokines can act on the same, adjacent, or distant
cells to allow the “signal sender” cell to communicate with “receiver” cells.

Based on these observations, we propose that TKS proteins might be involved in diverse cell
fate-determining mechanisms via podosome organization.

3.3. Significance of TKS5 in Invasiveness

TKS5 has been described in several studies as an invadopodium (and podosome) marker [110–118],
as it is not found in other types of protrusions and adhesive motility structures [80]. Elevated
expression levels of the protein have been reported in a number of cancer types [119,120]. As already
discussed, TKS5 is involved in the regulation of invadopodium formation and is also known as
a key player in metastasis-related processes [85,121]. So far, elevated TKS5 expression has been
demonstrated in lung adenocarcinoma [122], glioblastoma cells [119], breast cancer, melanoma
cells [120], and keratocystic odontogenic tumor samples [123], where it is primarily correlated with the
invasive phenotypes. In addition, upregulated TKS5 expression has been linked to a tissue-invasive,
hypermobile pro-inflammatory T cell phenotype in a rheumatoid arthritis model [124]. Analogous
to metastasis formation in vivo, it has been shown that altered TKS5 expression can influence the
invasive properties of tumor cell lines in vitro [86]. In lung adenocarcinoma, it was also demonstrated
that the tumor cell invadopodium activity and metastatic behavior depended on the TKS5 isoform
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type present [122]. The TKS5 protein has three isoforms (molecular weights of ~150 kDa, ~140 kDa,
~130 kDa) generated via alternative promoter usage as a result of intron 5 retention [125]. Li et al.
found that the expression level of the long TKS5 isoform was elevated in metastasis-derived cells
when compared with its level in non-metastatic tumor cells [122]. Moreover, a higher TKS5 long/TKS5
short isoform ratio induces invadopodium formation and mediates the development of an invasive
phenotype. The functional differences between the isoforms depend on the fact that both transcripts
encode five SH3 domains, while the PX domain is missing from the short TKS5 isoform. This short
TKS5 cannot organize invadopodium assembly as effectively as the long isoform due to the lack of
proper PX domain-dependent membrane localization [122]. Although TKS4 also has several isoforms
(~75 kDa, ~90 kDa, ~120 kDa, and ~160 kDa) [46], such a biased isotype preference in invadopodia
formation has not been reported.

Metastatic cancer cells cross the basement membrane using MMPs enriched in the invadopodium
machinery [126]. In addition to degrading the ECM, the proteolytic activity of ADAM proteases
might also facilitate the release of ECM-bound tumor-supporting factors (e.g., EGF and TNFα) and
maintain the invasive ability of cancer cells [127,128]. In the context of this special type of tumor
cell-extracellular environment communication, invadopodium development and exosome formation
were described as connected processes [129]. Exosomes are secreted membrane vesicles that contain a
cargo of proteins, mRNAs, and miRNAs highly specific to the “exosome-sender” cell [130]. In terms
of cancer, exosomes secreted by tumor cells help establish a tumor-promoting niche via the release
of angiogenic and survival factors. It has been demonstrated that TKS5 inhibition in the context of
invadopodium formation also greatly decreases exosome formation in a carcinoma cell line [129].
Consistent with this observation, the existence of invadopodia might be an important determining
step in exosome formation, representing a newly described cell communication method involved in
cancer progression.

3.4. The Possible Role of TKS4 and TKS5 in the Compartmentalization of Oxidative Processes

In general, reactive oxygen species (ROS), including hydrogen peroxide (H2O2), superoxide anion
(O2−), and hydroxyl radical (·OH), are generated as by-products of normal metabolic processes [131].
These molecules act as secondary messengers in normal and pathological cells in which they
orchestrate various biological processes [131,132]. However, at high concentrations, they can potentially
damage vital signaling molecules and the genome [133]. At specific ROS concentrations and under
biological control [134], several ROS-dependent processes and signaling pathways exist, including
angiogenesis [135], Notch and Wnt stem cell fate determining signaling [136], the anti-microbial
function of phagocytes [137], and pain processing within the nociceptive system [138]. But, how can
molecules as simple as ROS modulate such diverse pathways? The best way to answer this question is
to briefly summarize the regulation of NADPH oxidase (NOX) transmembrane enzyme complexes
(i.e., NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2) as natural ROS sources [139]. At the
molecular level, ROS-generating enzyme-complexes comprise a catalytic subunit (one of the NOX
family oxidases), an activity providing subunit (p22phox), and several regulatory cytosolic proteins (e.g.,
members of the p47phox protein family) (Figure 3) [140,141]. Each mammalian NADPH oxidase has a
distinct tissue-specific expression pattern [142]. To precisely channel ROS production to the intended
targets and to achieve ROS-pathway specificity, NADPH oxidase activity must be compartmentalized
within the cells and restricted to spatial cellular microdomains [138,143].
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Figure 3. Assembly of NADPH oxidase multi-protein enzyme complexes with the P47 organizer
family members. The core of the intracellular enzyme is formed via an interaction between a specific
NOX oxidase and p22phox accompanied by activity-modulating organizers such as PX-SH3-structured
proteins (NOXO1, TKS4/5, p47phox, p40phox). The extra-membrane-produced O2 is rapidly transformed
into H2O2 and can passively diffuse through the cell-membrane. (Reviewed in Reference [144]).

Three members of the p47 organizer protein family (i.e., p47phox, p40phox, and NOXO1) have
well-known functions in the regulation of oxidative processes [145]. It was suspected that TKS
proteins, which are members of the same family, can also play regulatory roles in channeling and
localizing the NOX enzymes to the podosome/invadopodium membrane to locally increase the ROS
concentration [65,146]. TKS5 has been shown to colocalize with ROS [147]. Furthermore, Diaz et al.
showed that TKS5 associates with p22phox and the TKS proteins can be involved in processes involving
both the NOX1-based and NOX4-based enzyme complexes [65]. In an accompanying paper, Gianni et
al. demonstrated that, in a colon cancer cell line, TKS4 recruits the NOX1 NADPH oxidase to the sites of
invadopodia and allows ECM degradation [42]. These results raised the possibility that the modulation
of ROS levels plays a regulatory role in a subcellular compartment of invadopodia [4,43,146].

It has already been reported that, in the presence of ROS, redox-sensitive cysteine residues in several
proteins become oxidized, demonstrating that the conformation of certain enzymes can be changed in
an ROS-dependent manner [148]. This remodelling can lead to altered three-dimensional structures
in the target proteins that might also alter their catalytic activity [149]. The most highly studied
ROS-targeted enzymes are phosphatases (PTPases). When PTPases are inhibited by ROS-dependent
cysteine modifications at a site in the catalytic domain, they cannot dephosphorylate their substrate
proteins. For example, SRC kinase dephosphorylation in invadopodia is known to be regulated
by this mechanism [150]. In an interesting model of invadopodium turnover, the NADPH oxidase
regulated by the TKS scaffold proteins produces ROS near the cell-membrane, leading to PTPase
inactivation via cysteine modification. The inactivated PTPase then primes the sustained activation of
phosphorylated SRC kinase [65]. This process might lead to extended activation of all SRC substrates,
including the TKS proteins. At this point in invadopodium development, the TKS scaffold proteins can
recruit actin-organizing complexes to the sites of membrane protrusion to stabilize the invadopodium.
It is tempting to speculate that the concerted action of the TKS proteins is central in controlling
invadopodium turnover via ROS-dependent phosphatase inactivation and coordination of distinct
intracellular signaling.

To avoid the harmful side-effects of free radicals, cells control ROS levels by maintaining a balance
between ROS production and elimination [151,152]. TKS proteins, as regulators of NOX localization,
participate in this process by regulating ROS compartmentalization. Moreover, via their SH3 domains,
they facilitate the recruitment of actin cytoskeleton modifiers and ECM degrading machinery in
invadopodia [133]. Future studies are needed to determine whether cooperation between the TKS
molecules and the NOX complex is also involved in podosome and invadopodium formation in vivo.

3.5. Absence of TKS4 Induces Epithelial-Mesenchymal Transition (EMT) and Promotes Invasive Behavior

A novel function of TKS4 in EMT-like processes has been recently discovered by Szeder and
colleagues [153]. During EMT, epithelial cells lose epithelial features and functions. The expression
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levels of E-cadherin, claudins, occludins, and α6β4 integrins are reduced. Thus, cells lose apicobasal
polarity and cell-cell attachment ability. This loss of epithelial characteristics is concomitant with the
gain of mesenchymal-like features, including N-cadherin, vimentin, fibronectin, β1 and β3 integrins,
and MMP expression, as well as the acquisition of motility and invasive properties. These changes
are governed by the EMT-inducing transcription factors zinc finger E-box-binding homeobox (ZEB),
Snail, and Twist, which inhibit expression of genes responsible for epithelial characteristics and
activate expression of mesenchymal-associated genes [154,155]. EMT occurs at certain stages of
developmental processes and wound-healing and is an important mechanism in cancer progression
from tumor initiation to metastasis and colonization [154,156]. According to Szeder et al., TKS4
knockout (KO) HCT116 colon cancer cells showed a mesenchymal morphology with increased motility
and decreased cell-cell adhesion. Loss of E-cadherin and apicobasal polarity was observed together
with increased fibronectin and Snail2 transcription factor expression, indicating a shift from an epithelial
to mesenchymal-like phenotype. Furthermore, decreased spheroid forming capacity and increased
invasiveness in collagen matrix were also observed [153]. The exact mechanism for how the absence of
TKS4 may induce EMT in these cells remains unknown. However, two cellular processes known to be
influenced by TKS4, i.e., EGFR signaling [157,158] and ROS balance [159,160], have been implicated
in affecting EMT in various cancer model systems (see above). EGFR signaling is a known inducer
of EMT, causing increased Snail2/Slug and ZEB1 levels and decreased E-cadherin levels [157,158].
Thus, changes in EGFR or ROS signaling in the absence of TKS4 might cause these cancer cells to
shift into EMT. Szeder et al. hypothesized that a temporary loss of TKS4 could negatively affect
podosome-related cell migration (as described earlier), while the prolonged effect of the absence of the
molecule could be increased invasiveness by activating an EMT-like program. They also concluded
that the molecule might act differently in cells of epithelial origin (like HCT116) than in those of
mesenchymal origin [153]. Despite these interesting findings on the role of TKS4 in EMT processes,
more studies are needed to confirm the results of Szeder et al. and to elucidate the exact mechanisms
behind this phenomenon.

EMT, along with the reverse process known as mesenchymal-epithelial transition (MET), are crucial
processes involved in embryonic development during which they facilitate body formation and tissue
and organ differentiation. EMT is involved in such central developmental processes as gastrulation
and neural crest cell formation, somitogenesis, cardiac morphogenesis, and trophoblast invasion,
which affects placental development, among others [161,162]. A disturbance in EMT (or in MET) can,
therefore, have diverse developmental consequences that could also explain the phenotype observed
in patients [163–165] and mouse models [34,164,166] that lack a functional TKS4 protein.

3.6. Cell Differentiation Modulated by TKS Molecules

Cellular differentiation is a fundamental process throughout the lifetime of an organism. During
embryogenesis, the spectrum of cells comprising the tissues and organs, which perform a vast number of
functions, are derived from a single zygote via differentiation and proper localization in the developing
organism via migration [167,168]. During the lifetime of tissues and organs, cells lost through injury or
normal cell turnover must be continuously replaced via differentiation from tissue-resident stem and
progenitor cells [169,170]. The role of TKS proteins in such contexts will be discussed in this section.

The first observation regarding the role of the TKS proteins in cell fate determination came from
Hishida et al. They reported that TKS4 expression is necessary in the early phase of adipogenesis for
the expansion and commitment toward adipocytes [12]. By using the 3T3-L1 mouse cell line as an
in vitro adipocyte differentiation model in conjunction with a TKS4-silenced derivative, they found
that TKS4 down-regulation impaired adipocyte differentiation. (This study was performed before the
detailed description of TKS4. Therefore, the original name of the protein, Fad49, was based on its
newly identified function, i.e., factor for adipocyte differentiation 49.)

A recent analysis of bone marrow-derived mesenchymal stem/stromal cells (MSCs) revealed a
central role of TKS4 in the adipogenesis and osteogenesis of MSCs [166]. These cells serve as common
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precursors of adipocytes and bone-forming osteoblasts (among others) [171]. During adipogenic or
osteogenic induction of mouse MSC cultures, differentiating TKS4 KO cells failed to accumulate lipid
droplets or deposit calcium-containing minerals, respectively. Analysis of the expression levels of
lipid-regulated genes during adipogenic induction revealed reduced or delayed levels of adipogenic
transcription factors, genes driving lipid droplet formation, and sterol and fatty acid metabolism in
TKS4 KO cultures [166]. Furthermore, PPARγ2, which is a key transcription factor and regulator
of adipose tissue expansion [172], showed no detectable expression at the protein level in TKS4 KO
MSC cultures [166]. Upon osteogenic induction, the key osteogenesis-driving transcription factors
RUNX2 and osterix showed highly reduced expression levels in TKS4 KO cultures accompanied by
reduced bone-forming capacity when compared to wild-type MSCs [166]. Related to this topic, Vas et
al. published interesting findings by studying the adipogenic potential of adipose tissue-derived
stromal vascular fraction cells. These cell populations also contain MSCs. However, no difference
was found between the adipogenic and osteogenic differentiation potential of cells isolated from
TKS4 KO and wild-type mice [173]. Perhaps the complexity of the adipose tissue microenvironment
(MSCs, preadipocytes, vascular endothelial cells, pericytes) together with the ECM can rescue the
differentiation defects of TKS4 KO MSCs or preadipocytes (e.g., 3T3-L1 cells), which fail to properly
differentiate in pure in vitro cultures.

It was hypothesized by Oikawa et al. that TKS5 might have an effect on cell-cell fusion. In two
studies, TKS5 expression was found to be induced during the course of osteoclast development [19,60].
Osteoclast precursor cells developed podosome-like structures characterized by TKS5 enrichment
during the multinucleation process. RNAi-mediated knockdown of TKS5 markedly reduced podosome
formation in maturing monocytes (the precursors of osteoclasts) and abolished cell-fusion. The authors
also suggested that TKS5, as a master regulator of invadopodium formation, might mediate the
fusion-competent protrusion generation necessary for bone metastasis.

TKS scaffold proteins have an instructive effect not only on cell specialization in adult organisms
but also during embryonic development. The morphogenic effects of TKS5 were studied by Murphy
et al. and Cejudo-Martin et al. in zebrafish [174] and mouse [125] embryos, respectively. TKS5 was
found to be necessary in neural crest patterning in zebrafish. TKS5-morpholino zebrafish have
cardiac failure, abnormal craniofacial structures, and melanophores with decreased pigmentation.
These morphological defects might be explained by reduced neural cell migration during embryonic
development due to abnormal podosome-like structure formation in neural stem cells [174]. TKS5
gene-trapped mice are born with a complete cleft of the secondary palate and die shortly after birth [125].
Since trophoblast podosome formation is important in trophoblast function and implantation, and
because TKS4 and TKS5 have been implicated in influencing podosome formation, the question arose
whether the absence of TKS proteins causes lethality before or after implantation. By genotyping E3.5
pre-implantation blastocysts from TKS4-TKS5 double heterozygous intercross matings, Cejudo-Martin
et al. found adequate amounts of double-null blastocysts, suggesting a post-implantation role for TKS5
in mammalian development [125]. These results reveal that the influence of TKS proteins seems to
extend to several steps and processes involved in differentiation and embryonic development.

3.7. Role of TKS4 in Tissue Homeostasis

As described in the previous section, TKS proteins seem to have determining roles in the cell
specialization processes of tissues. A role of TKS4 has also been implicated in the homeostasis of
mature adipose and bone tissue. A genome-wide association scan on obesity in a large US Caucasian
population found a strong link between body mass index and the chromosomal region of 5q35 with the
Sh3pxd2b gene [175], supporting the idea that TKS4 has a role in adipose tissue development and/or
regulation. No similar association was found by Vogel et al. based on a dataset from children and
adolescents [176]. These contradictory results most likely reflect the multifactorial nature of obesity.
The development of obesity is dependent on alterations in the composition of the adipose depots [177].
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A recent study revealed that TKS4 KO mice had a disturbed adipose depot phenotype involving
the beige-ing/browning of white adipose tissue (WAT) depots and a concomitant “whitening” of
brown adipose tissue (BAT) [173]. WAT was found to be enriched with smaller and more multi-locular
adipocytes and showed higher expression of uncoupling protein 1 (UCP1) at both the RNA and
protein levels in tissue samples of TKS4 KO mice compared with the same features in wild-type
samples [173]. UCP1 is a marker of brown and beige adipocytes, which are responsible for uncoupling
the mitochondrial respiratory chain to stimulate heat production instead of ATP generation [178]. UCP1
showed increased expression in TKS4 KO WAT, indicating white adipocyte beige-ing/browning [173].
The reverse trend was true for the BAT of TKS4 KO mice, which showed an increased adipocyte size
with fewer multilocular cells and reduced UCP1 expression, indicating BAT “whitening” or impaired
BAT function. A more detailed analysis of one WAT depot showed a shift in the expression patterns of
PPARγ-regulated adipogenesis-related genes (e.g., downregulation of the PPARγ target genes Cebpd,
Lpl, Lipe, and Adipoq and upregulation of the beige transcription factors Prdm16 and Ppargc1a), favoring
beige-ing and highlighting PPARγ as a central regulator through which TKS4 can exert its effect on
adipocyte homeostasis [173]. Based on these results, TKS4 emerged as an organizer molecule of
adipocyte homeostasis-regulating signaling networks.

Studies of the bone structure of a patient with a defective TKS4 gene and TKS4 KO mice revealed
altered trabecular systems with increased trabecular separation and porosity resembling an osteoporotic
phenotype [179]. Osteoporosis arises from dysregulated bone tissue remodeling when the fine-tuned
balance between bone formation and bone resorption is disturbed [180], even though the exact
mechanisms of osteoporotic processes are still under investigation. Vas et al. demonstrated that the
osteoporotic-like phenotype in TKS4 KO mice did not arise due to an increased osteoclast number or
activity and that it likely arose instead due to defective osteoblast differentiation and activity [179].
As it has been mentioned above, TKS4 was found to be indispensable in the differentiation of bone
marrow MSCs into functioning osteoblasts [166]. The higher TKS4 expression levels in the immature
cell type-enriched fraction of the bone marrow and its presence throughout the differentiation process
of osteoblasts as they arise from their precursors (bone-marrow MSCs) highlight the importance of
the molecule in bone differentiation [179]. TKS4 was also shown to affect the levels of bone formation
markers, i.e., decreased RUNX2 expression in KO bone tissue and reduced osteocalcin levels in TKS4
KO bone marrow, suggesting a role of TKS4 in osteoporotic processes and bone homeostasis [179].

4. TKS4- and TKS5-Related Pathological Conditions and Mouse Models

4.1. Pathological Conditions Related to TKS Protein Dysfunction

Frank-ter Haar syndrome (FTHS, OMIM:249420) is a rare autosomal recessive disease described
and named by two groups in the 1970s [181,182]. Most families affected by FTHS have documented
consanguinity, and most affected individuals carry a homozygous mutation in the TKS4 gene (Sh3pxd2b)
on chromosome 5q35.1 [164,165]. FTHS is characterized by craniofacial abnormalities, including a
wide anterior fontanel, prominent eyes, and dental anomalies. Other skeletal malformations, including
bowing and shortened long bones and kyphosis, are often associated with FTHS, and the most
fatal consequences of the disease are cardiac anomalies caused by valve or septal defects. Genome
analysis of FTHS patient samples uncovered several major mutations in the TKS4 region, including
mutations in the PX domain and between the second and third SH3 domains as well as an extensive
deletion from exon 13 that leads to a truncated TKS4 protein/gene product with only two SH3 domains
(Figure 4a) [164,165,183,184]. Early stop codon-introducing homozygous mutations (c.147insT or
F49X) or a deletion (c.969delG), which lead to the expression of truncated TKS41-48 and TKS41-341

mutant proteins, respectively, were detected in some FTHS-affected families (Figure 4a) [164,185].
In transfected cells, the truncated mutant TKS41-48 protein showed no expression, while TKS41-341

abnormally accumulated in the nucleus, suggesting that these mutations result in dysfunctional TKS4
proteins that could lead to FTHS [5]. Recently, another two mutations in the TKS4-encoding gene
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(in intron 5 and exon 13) have been linked to an FTHS-related phenotype (Figure 4a) called Borrone
dermato-cardio-skeletal syndrome (BDCSS), which causes symptoms such as a coarse face, broad
forehead, broad nasal bridge, hypertelorism, megalo-cornea, glaucoma, osteopenia, kyphoscoliosis,
and mitral valve prolapse [186]. Despite having an intact TKS4 gene, individuals presenting typical
FTHS clinical symptoms are thought to have mis-regulated TKS4 expression at the protein level [164].
The exact mechanism by which mutant TKS4 proteins cause the FTHS symptoms is not known.
One suspected mechanism for FTHS development is based on observations of Bögel et al. [11]. In their
study, an R43W substitution (c.129C>T) was introduced into the wild type TKS4 protein. This mutation
is present in one of the affected FTHS families, and it is located in the conserved region within
the PX domain (which is involved in lipid-binding) of the p47 organizer family members [6,187].
The R43W-mutant TKS4 failed to localize to the plasma membrane and was presumably misfolded [11].
Ádám et al. demonstrated that the accumulation of the R43W-mutant TKS4 in aggresomes (at the
juxtanuclear region of cells via the microtubule network) is associated with loss of function [5].
These results suggest that the R43W-mutant TKS4 protein might also show similar functional defects
in FTHS patients.
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and mouse TKS4 gene of TKS4 KO strains. (a) Mutations along the hTKS4 protein in Frank-ter Haar
syndrome (FTHS) and in FTHS-like Borrone dermato-cardio-skeletal syndrome (BDCSS) individuals.
The exact sequence location of the mutations in hTKS4 is numbered and the nucleotide deletions,
substitutions, or insertions are depicted in black boxes. Iqbal et al. and Bendon et al. published the five
mutations connected to FTHS [164,165]. The two BDCSS-associated mutations are described by Wilson
et al. [186]. (b) Mutations along the mTKS4 protein in the three existing TKS4 KO mouse strains are
depicted in black boxes [34,164,166]. PX–Phox homology domain, SH3–SRC homology 3 domain.

Another pathological condition that might be related to a TKS4-dependent process is
glaucoma [188]. Although glaucoma is not considered a major diagnostic criteria for FTHS, several
FTHS patients suffer from it [163]. This observation led to the hypothesis that TKS4 also has a role in eye
development. Analysis of 178 patients with three different forms of glaucoma revealed that the TKS4
gene might harbor rare variants that could affect the pathophysiology of glaucoma. Moreover, TKS4
was present in several ocular cell types important in disease development, reinforcing the possible
pathogenic role of the TKS4 variants [189].

In addition to the well-defined function of TKS5 in tumor progression, TKS5 has also been
implicated in Alzheimer’s disease-related amyloid-β (Aβ) peptide-mediated neurotoxicity [190].
Malinin et al. demonstrated that ADAM12, a TKS5 binding partner, shows reduced expression in
diseased brain samples. Furthermore, they provided evidence that TKS5 is phosphorylated in cultured
human neuronal cells exposed to the toxic Aβ protein, resulting in a TKS5-ADAM12 interaction and,
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ultimately, ADAM12 self-cleavage [191]. Another recent study described a potential role for TKS5
in another pathological condition known as pre-eclampsia [192]. Analysis of affected and healthy
placentas led to the identification of two upregulated factors, i.e., leptin and TKS5. Although the
methylation pattern of the TKS5 promoter region was not significantly altered, one CpG island in the
gene body showed higher methylation. The authors propose that TKS5, which is a major organizer of
podosome formation, might be involved in trophoblast cell migration in the placenta. As a consequence,
impaired TKS5-dependent pathways in trophoblast cells might lead to pre-eclampsia [193].

4.2. Knockout Mouse Models

The first TKS4 KO mouse line arose spontaneously in the 51st generation of a
B10.A-H2h4/(4R)SgDvEg mouse strain [34]. The mutant mice were called “nee mice” based on
a distinct phenotype, i.e., “nose-ear-eye” deformities. A genome analysis showed that the nee mice
carry a 1-bp deletion (which introduces a frameshift mutation) in exon 13 of the Sh3pxd2b gene
(Figure 4b) [34]. Iqbal et al. has generated another mouse line with a mixed genetic background
carrying an insertion between exons 3 and 4 of the Sh3pxd2b gene on chromosome 11 [164] (Figure 4b).
Recently, an FTHS mouse model has been reported in a C57Bl/6 background by Dülk et al. In these
TKS4−/− mice, TKS4 was knocked out by introducing an insertion between exons 5 and 6 of the
Sh3pxd2b gene (Figure 4b) [166]. All of these TKS4-mutant strains show very similar phenotypes that
are reminiscent of the clinical symptoms of FTHS. These phenotypes include a shorter nasal bone,
an overall decreased size, and a tendency to develop early onset glaucoma in their enlarged/prominent
eyes [34,164,166,179]. Moreover, cardiac examination of the artificially generated TKS4 KO mice
revealed variable deficiencies, including septal and mitral valve defects remarkably similar to those
of FTHS patients [164]. Skeletal abnormalities, e.g., kyphosis [34,164,166], and reduced bone mineral
density [34,179], which are both reminiscent of FTHS features, have also been described in the
TKS4-mutant mice. Lipodystrophy is a general feature characterized by highly reduced visceral WAT
mass in the case of TKS4 null mice [34,173], even though a low amount of subcutaneous fat tissue has
only been reported in one diseased patient [164].

Taken together, the abnormalities observed in TKS4 KO mouse lines support the hypothesis that
the presence of a mutant TKS4 gene has a role in FTHS. The exact detailed mechanism by which
mutations in TKS4 cause such a diverse range of phenotypes in patients is still unknown. A few
putative mechanisms are summarized in Figure 5. TKS4 has its highest expression levels in embryonic
tissues [2], suggesting that the most notable phenotype-determining effects of the molecule are exerted
during embryonic development. Podosome formation and migration of patterning immature cells are
tightly linked processes during healthy embryonic development in response to instructive signals [81].
Since TKS4 and TKS5 are key players in functional podosome formation [2,86], mis-regulated podosome
assembly early in development in FTHS patients might have a causative role in the manifestation of the
related symptoms. Defective endothelial cell motility in complex three-dimensional ECM environments
and diminished vessel sprout growth have also been reported in the absence of TKS4, possibly leading
to negative effects on tubular heart formation and cardiac development [194]. If the TKS4 scaffold
function is absent, EGF-induced cell migration might also be defective [11]. Therefore, TKS4 KO cells
might fail to migrate in response to growth factor signal stimulation in general. The involvement of
TKS4 in the EMT processes [153] may also affect embryonic development at several developmental
stages, including endocardium formation, which is a process involving three consecutive EMT/MET
events [161]. Disturbed EMT function could explain why patients and mouse models show defective
cardiac development and functionality, expanding the list of processes by which the absence of TKS4
could cause such characteristic gross phenotypes.
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Figure 5. Putative role of mutated TKS4 in Frank-ter Haar syndrome (FTHS). During embryogenesis,
differentiating cells must react properly to growth factor signals, migrate via podosome machinery to the
determined position in the embryo, degrade the ECM during their migration, send extracellular signaling
molecules to other cells, and occasionally undergo EMT. In each step, TKS4 has an experimentally
described role. However, there are insufficient evidence at the organismal, tissue, cellular, and even
biochemical levels to have a clear understanding of how TKS4 participates in disease manifestation.
ECM–extracellular matrix, EMT–epithelial-mesenchymal transition.

Homozygous loss of TKS5 is usually lethal in early neonatal life [125]. Cejudo-Martin et al. created
TKS5 KO mice by inserting a trapping vector VICTR 37 between exons 1 and 2 on chromosome 19
in a C57Bl/6Jx129/SvJ mixed background and in a C57Bl/6J pure background. TKS5 gene-trapped
(TKS5trap/trap) mutant mice of both genetic backgrounds are born at Mendelian ratios, but have a
reduced lifespan. In the C57Bl/6Jx129/SvJ background, 50% of the mutant mice have a complete cleft of
the secondary palate and die within 24 h after birth, and only 20% reach adulthood with no visible
phenotypic defects. Furthermore, 30% of the neonates die between day one after birth and weaning
despite having a normal palate. By contrast, in the C57Bl/6J pure background, neonatal mortality
and cleft palate incidence rises to 90%. The remaining 10% of animals show no cleft palate but die
shortly after birth of unknown causes. The authors concluded that strain purity is a determining
factor in the phenotypic manifestation of TKS5 loss. No TKS4−/− and TKS5trap/trap double null mice are
born from crosses of heterozygous TKS4 and TKS5 mutant parents, suggesting that the functions of
the two molecules can overlap or complement each other during development [125]. Neither TKS4
nor TKS5 mutant animals show gross phenotypic alterations when they are heterozygous for the
mutation [34,125,164].

5. Conclusions and Future Perspectives

Besides mediating the assembly of signaling components, the scaffold proteins TKS4 and TKS5
have an emerging role as regulated, active facilitators of the crosstalk between multiple signal
transduction pathways modulating diverse and complex molecular networks. Future research focusing
on the discovery of novel binding partners is expected to reveal not only the detailed molecular



Int. J. Mol. Sci. 2020, 21, 8117 18 of 28

level mechanisms resulting in TKS-related phenotypes in FTHS patients and TKS KO animal models,
but also, to shed light on yet unknown functions of these proteins. For example, while both TKS4 and 5
were found to be potential binding partners of the Fas ligand (FasL, CD178) (Table 1), which is a known
cell death inducer [39,40], possible functions for TKS4/5 in the regulation of cell death have not yet been
investigated. A detailed understanding of the TKS4/5 interactome, bolstered by an in-depth description
of the molecular modifications of the TKS4/5 proteins during signaling may facilitate the development
of new therapies to correct defects in signaling pathways underlying pathological conditions.
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ADAM a disintegrin and metalloproteinase
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GST glutathione S-transferase
H2O2 hydrogen peroxide
ITC isothermal titration calorimetry
KO knockout
MET mesenchymal-epithelial transition
miRNA microRNA
MMP matrix metalloproteases
mRNA messenger RNA
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PI(4,5)P2 phosphatidylinositol (4,5)-bisphosphate
PI(3,4,5)P3 phosphatidylinositol (3,4,5)-trisphosphate
PPARγ peroxisome proliferator-activated receptor gamma
PRR proline-rich region
PTPases phosphatases
PX domain Phox homology domain
ROS reactive oxygen species
RTK receptor tyrosine kinase
SH3 SRC homology 3 domain
TKS tyrosine kinase substrate
UCP1 uncoupling protein 1
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