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Abstract

Background: Breast cancer is one of the common kinds of cancer among women, and
it ranks second among all cancers in terms of incidence, after lung cancer. Therefore, it is
of great necessity to study the detection methods of breast cancer. Recent research has
focused on using gene expression data to predict outcomes, and kernel methods have
received a lot of attention regarding the cancer outcome evaluation. However, selecting
the appropriate kernels and their parameters still needs further investigation.

Results: We utilized heterogeneous kernels from a specific kernel set including the
Hadamard, RBF and linear kernels. The mixed coefficients of the heterogeneous kernel
were computed by solving the standard convex quadratic programming problem of the
quadratic constraints. The algorithm is named the heterogeneous multiple kernel learning
(HMKL). Using the particle swarm optimization (PSO) in HMKL, we selected the kernel
parameters, then we employed HMKL to perform the breast cancer outcome evaluation.
By testing real-world microarray datasets, the HMKL method outperforms the methods of
the random forest, decision tree, GA with Rotation Forest, BFA + RF, SVM and MKL.

Conclusions: On one hand, HMKL is effective for the breast cancer evaluation and can be
utilized by physicians to better understand the patient’s condition. On the other hand,
HMKL can choose the function and parameters of the kernel. At the same time, this study
proves that the Hadamard kernel is effective in HMKL. We hope that HMKL could be
applied as a new method to more actual problems.
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Background
An estimated number of 246,660 patients will be diagnosed with breast cancer in the

United States each year, with > 40,000 estimated cancer-related deaths [1]. Early detec-

tion and identification of breast cancer are essential to reduce the consequences of the

disease. On the other hand, the prognosis of cancer can help to design the treatment

programs, which is also very important. Cancer prognosis can be explained as estimat-

ing the probability of survival among the patients over a period of time after surgery.

The DNA microarray technology for the breast cancer diagnosis has turned into a very

prevalent research topic, as it simultaneously measures the expression of a lot of genes
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and leads to a high-quality cancer identification. However, the number of genes ranges

from 1000 to 10,000, while the number of samples is often less than 200.

A lot of effort has been made on the analysis based on gene expression profiling [2–

7] to predict the prognosis of breast cancer patients. Broët et al. [8] tried to identify the

gene expression features in a microarray dataset, Jagga et al. [9] exploited correlation-

based algorithms, and Bhalla et al. [10] exploited threshold-based algorithms to predict

the prognosis of breast cancer patients.

Multiple kernel learning (MKL) algorithms have been proved to be effective tools to

solve learning problems such as classification or regression. Jérôme Mariette et al. [11] ap-

plied MKL on breast cancer heterogeneous data and achieved a good performance

through the experiments. Arezou et al. [12] proposed an MKL method, which employs

the gene expression profiles to predict cancer and achieves a satisfactory predictive per-

formance. Their MKL gene set algorithm was compared with the two standard algorithms

of random forest and SVM for the cancer genome Atlas queues. On average, MKL can

achieve a higher evaluation performance than other methods. Therefore, in this work we

consider using MKL as the control group of our algorithm (HMKL). In MKL, it is essen-

tial to select the set of kernel functions and optimize the mixed coefficients. Rakotoma-

monjy et al. [13] proposed an efficient algorithm called SimpleMKL, which utilizes the

gradient descent of the SVM target value, to be applied to the MKL problem. Using the

reduced gradient descent, the mixed coefficient of the kernels in the standard SVM solver

was iteratively determined. They employed the applied alternative optimization algorithm

to optimize the parameters, and this could be applied to the Multiple Kernel Learning Pri-

mal Problem using the reduced gradient algorithm. It also shows that the generalization

performance of this method is similar to or better than that obtained by cross-validation

when the parameters of the heterogeneous kernel are selected.

In the current view, the effectiveness of the kernel methods depends on the choice of

the kernel. Jiang et al. [14] proposed the Hadamard Kernel SVM to predict the progno-

sis of breast cancer patients based on the gene expression profiles. The Hadamard Ker-

nel is better than the classical kernels considering the ROC curve (AUC), but

determining the optimal parameters of the kernels needs further discussions. Be-

sides, it is usually accepted that single kernels describe only one side information

of the data. When the kernels are integrated, the performance may be improved by

providing a better description of the nonlinear and complex data relationships.

Kennedy et al. [15] discovered the particle swarm optimization (PSO) through the

simulation of a simplified social model. Lin et al. [16] utilized PSO to increase the

classification accuracy rate in SVM, in a method called PSO + SVM. The developed

PSO + SVM can adjust the kernel function parameters; thus, PSO can be applied to

select the kernel parameters.

Emina et al. [17] used the GA feature selection and Rotation Forest to diagnose

breast cancer. They have proposed several data mining methods with and without

GA-based feature selection to correctly classify the medical data (the data was

taken from the Wisconsin Diagnostic Breast Cancer database). The random forest

and GA feature selection gave the highest accuracy. Sawhney et al. [18] explored

the inclusion of a penalty function to the existing fitness function promoting the

Binary Firefly Algorithm to drastically reduce the feature set to an optimal subset,

and their results showed an increase in both classification accuracy and feature
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reduction using a random forest classifier for the diagnosis of breast, cervical and

hepatocellular carcinoma.

In this paper, we build a new model named HMKL, which employs three hetero-

geneous kernels including the Hadamard Kernel, RBF and linear kernels to improve

the AUC of the evaluation. Additionally, we employ PSO to solve the problem of

selecting the kernel parameters. The remainder of the paper is organized as fol-

lows. In the “Methods” section, we explain the mathematical model and the calcu-

lation process of HMKL. In the “Results” section, we demonstrate the performance

of the evaluation through common datasets.

Methods
In this section, we introduce a new algorithm for integrating multiple kernels,

which we call HMKL. This method combines three kernels that are the Hadamard,

RBF and linear kernels, and it is capable of learning the best kernel by optimizing

the kernel parameters and weight parameters embedded in the kernel set, provid-

ing a better description of the nonlinear relationship among the gene expression

data. Figure 1 shows the general schema of our algorithm HKML.

We utilize an optimization algorithm to calculate the HMKL framework in two steps

and obtain the best parameters of the kernels. In order to determine the parameters of

the kernel function, we employ the PSO algorithm in HMKL.

The kernel matrix is constructed based on the measure of pairwise relationship. Dif-

ferent types of kernels reflect different kinds of data relationships. The linear kernel

measures the linear correlation in the data, and when the dataset is not linearly separ-

able, the non-linear mapping of the input vectors can be constructed into a feature

space of a higher dimensionality.

The kernels utilized in HMKL include:

Hadamard kernel:

K1 xi; x j
� � ¼ Kβ xi; x j

� � ¼Xp
k¼1

xikj β
�� xikj β

��
2 xikj βj þ xj ik

βj� � ; i; j ¼ 1; 2;⋯;N

RBF kernel:

Fig. 1 The general schema of HMKL. The HMKL framework consists of two parts. The first part is to select
the optimal kernel function parameters by PSO and the second part is an HMKL framework composed of
three heterogeneous kernels (Hadamard, RBF and linear kernels)
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K2 xi; x j
� � ¼ Kσ xi; x j

� � ¼ exp
xi−x j

�� ��
2σ2

� �

Linear kernel:

K3 xi; x j
� � ¼ K 0 xi; x j

� � ¼ xi
Τx j

We employ the above-mentioned three kernel functions in the HMKL to obtain

the combined kernel which can describe both the linear and nonlinear relationships

in the data. The two kernel parameters (β, σ) in the kernel set need to be prede-

fined before MKL, and we employ PSO to select them.

In the PSO algorithm, each particle is represented by its coordinates in a 2-

dimensional space. The status of each particle is characterized in accordance with

its position and velocity. t represents the current genetic algebra, and we set the

maximum number of genetic algebras to MAXGEN. i represents the number of

particles. The parameter βti represents the value of the Hadamard kernel parameter

β for the particle i at iteration t. σ ti represents the value of the RBF kernel param-

eter σ for the particle i at iteration t. Zt
i ¼ fβti ; σ tig represents the space position

for the particle i at iteration t. vti ¼ fvtiβ; vtiσg represents the velocity for the particle

i at iteration t. vtiβ is the optimum value of the Hadamard kernel parameter β

changes for the particle i at iteration t. vtiσ is the value of the RBF kernel param-

eter σ changes for the particle i at iteration t. Pt
i ¼ fPt

iβ; P
t
iσg represents the best

solution for the particle i at iteration t. Pt
iβ represents the value of the Hadamard

kernel parameter β changes for the particle i at iteration t. Pt
iσ represents the value

of the RBF kernel parameter σ changes for the particle i at iteration t. Pt
g ¼ fPt

gβ;

Pt
gσg represents the best solution obtained in the population for the particle i at it-

eration t. Pt
gβ represents the optimum value of the Hadamard kernel parameter β

for all the particles at iteration t of the population. Pt
gσ represents the optimum

value of the RBF kernel parameter σ for all the particles at iteration t of the popu-

lation. The velocity of each particle evolves based on the following equations:

where c1 represents the cognition learning factor, c2 represents the social

learning factor, ω is the inertia weight and ψ1 and ψ2 represent random numbers.

Each particle then moves to a new potential solution based on the following

equations:

βtþ1
i ¼ βti þ νtþ1

iβ

σ tþ1
i ¼ σ ti þ νtþ1

iσ

(

HMKL framework

Let X∈ℝK . ℝK is the Hilbert space that decomposes into three blocks: ℝK ¼ ℝK1

�ℝK2 � ℝK3 . x = (x1·, x2·,…, xN·) . xi· = (x1i, x2i, x3i) such that each xmi, m = 1, 2, 3 is a
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vector. We want to find a linear classifier of the form y = sign(w⊺x + b) where w ¼ ðw1;

w2;w3Þ∈ℝK1þK2þK3 . Let Kβti
¼ K 1;Kσ ti

¼ K2;K
0 ¼ K 3 , Kβti

;K σ ti
and K′ are 3 positive

definite kernels.

The data points xi are embeddings in a Euclidean space via a mapping ϕ : X→ℝK ,

we assume that ϕðxÞ ¼ ðd1=2
1 ϕ1ðxÞ; d1=2

2 ϕ2ðxÞ; d1=2
3 ϕ3ðxÞÞ. The following is the decom-

position process of the kernel function:

K xi; x j
� � ¼X3

m¼1

dmϕm xið ÞTϕm xj
� � ¼X3

m¼1

dmKm xi; x j
� � ¼ d1Kβti

xi; x j
� �þ d2K σ ti

xi; x j
� �þ d3K

0 xi; x j
� �Þ

The mixed coefficient dm ≥ 0,
P3
m¼1

dm ¼ 1. Inspired by the framework of Wahba et al.

[19] and Rakotomamonjy et al. [13], we propose to solve the following convex problem

to address the HMKL problem:

min
b;ξ;d;w

X3
m¼1

1
2
dm wmk k2 þ c

XN
i¼1

ξ is:t: w∈ℝ
Kβt

i
þKσt

i
þK 0

; ξ∈ℝn
þ; b∈ℝyi

X3
m¼1

wT
mxmi þ b

 !

≥1−ξ i; ∀i∈ 1;⋯;Nf gdm≥0;
X3
m¼1

dm ¼ 1

ð1Þ

When dm = 0, ‖wm‖
2 has to be equal to zero. We hope that the vector d is a sparsity

constraint that will force some values of dm to be zero, thus encouraging sparse kernel

expansions and optimizing the choice of the kernel.

To derive the optimality conditions, we rearrange the problem to yield an equivalent

formulation:

min
b;ξ;d;w

1
2

X3
m¼1

dm wmk k
 !2

þ c
XN
i¼1

ξis:t: w∈ℝ
Kβt

i
þK σt

i
þK 0

; ξ∈ℝn
þ; b∈ℝyi

X3
m¼1

wT
mxmi þ b

 !

≥1−ξ i; ∀i∈ 1;⋯;Nf gÞdm≥0;
X3
m¼1

dm ¼ 1

ð2Þ

Theorem Formulation (2) is equivalent to formulation (1).

Proof:

By the Cauchy -Schwartz inequality, we know:

X3
m¼1

dm wmk k
 !2

¼
X3
m¼1

d1=2
m wmk k2d1=2

m

 !2

≤
X3
m¼1

dm wmk k2
 ! X3

m¼1

dm

 !
≤
X3
m¼1

dm wmk k2

d1=2
m is proportional to kwmkd1=2

m , that is:

dm ¼

X3
j¼1

wj

�� ��
wmk k

which leads to the following function:
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min
dm ≥ 0;

P3
m¼1

dm¼1

X3
m¼1

dm wmk k2 ¼
X3
m¼1

dm wmk k
 !2

This completes the proof.

Formulation (2) shows that the mixed-norm penalization of
P3
m¼1

dmkwmk is a soft-

thresholding penalizer that leads to a sparse solution, for which the algorithm performs

the kernel selection. The formulations (1) and (2) are equivalent; thus, formulation (1)

also leads to a sparse solution. This problem can be solved more efficiently.

Formulation (1) is about a dual problem. The dual problem is a key point to derive

algorithms and study their convergence properties. Since our formulation (1) is equiva-

lent to the one in the work of Bach et al. [18], they lead to the same dual problem. The

Lagrangian of formulation (1) is as follows:

L ¼
X3
m¼1

dm wmk k2 þ c
XN
i¼1

ξ i þ
XN
i¼1

αi 1−ξi−yi
X3
m¼1

wT
mxmi−yib

 !
−
XN
i¼1

viξ i þ λ
X3
m¼1

dm−1

 !
−
X3
m¼1

ηmdm

the Lagrangian gives the following dual problem:

This dual problem is difficult to optimize due to the last constraint, which may be

moved to the objective function, but the latter then becomes non-differentiable causing

new difficulties [18].

Algorithm for solving the HMKL problem

Scaling is a usual preprocessing step with important outcomes in many classification

methods. Adaptive scaling consists of letting the parameters dm be adapted during the

estimation process with the explicit aim of achieving a better recognition rate. For the

HMKL algorithm, dm is a set of hyperparameters of the learning process. According to

the structural risk minimization principle, dm can be tuned in two ways:

min
d

f dð Þ such that dm≥0;
X3
m¼1

dm ¼ 1 ð3Þ

where

f dð Þ ¼

min
b;ξ;w

X3
m¼1

1
2
dm wmk k2 þ c

XN
i¼1

ξ i

s:t: w∈ℝ
Kβt

i
þKσt

i
þK 0

; ξ∈ℝn
þ; b∈ℝ

yi
X3
m¼1

wT
mxmi þ b≥1−ξ i

 !
; ∀i∈ 1;⋯;Nf g

8>>>>>>><
>>>>>>>:

ð4Þ

One feasible way to solve the problem (1) is to utilize the quadratic programming of

quadratic constraints instead of the optimization algorithm. The first step is to fix d
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and optimize b, ξ and w of problem (1), which can be selected by the SVM parameter

optimization algorithms, while the second step is to fix b, ξ and w and optimize

d = (d1, d2, d3) to minimize the value of the objective function (4). In the following, we

mainly focus on the second step.

In the second step, we note that the Lagrangian of problem (4) is as follows:

L ¼
X3
m¼1

dm wmk k2 þ c
XN
i¼1

ξ i þ
XN
i¼1

αi 1−ξ i−yi
X3
m¼1

wT
mxmi−yib

 !

The associated dual problem can then be derived as follows:

Due to strong duality, f(d) is the objective value of the dual problem:

where α⋆i maximizes (5), and its derivatives:

The optimization problem that we have to deal with in (5) is a non-linear objective

function with constraints over the simplex. With our positivity assumption on the ker-

nel matrices, f(d) is convex and differentiable with Lipschitz gradient. The approach we

use to solve this problem is a reduced gradient method, which converges for such func-

tions. We employ the method of Bach et al. [20] to update the gradient using the gradi-

ent descent algorithm. dμ represents a non-zero entry of d, which is the reduction

gradient of f(d). The components of ∇redf are as follows:

∇red f½ �m ¼ ∂ f
∂dm

−
∂ f
∂dμ

m≠μ

and

∇red f½ �μ ¼
∂ f
∂dμ

−
∂ f
∂dm

−∇redJ is a descent orientation. The descent orientation for updating d is as follows:

Yu et al. BMC Bioinformatics          (2020) 21:155 Page 7 of 20



Dm ¼

0 if dm ¼ 0 and
∂ f
∂dm

−
∂ f
∂dμ

> 0

−
∂ f
∂dμ

þ ∂ f
∂dm

if dm > 0 and m≠μ

X
g≠μ;dμ>0

∂ f
∂dv

−
∂ f
∂dμ

� �
for m ¼ μ

8>>>>>>><
>>>>>>>:

The usual updating scheme is d d + γD, where γ is the step size. The algorithm is

terminated when a stopping criterion is met, which can be either based on the duality

gap or the KKT conditions.

Optimality conditions

The proper optimality conditions, such as the KKT conditions or the duality gap,

should be zero at the optimum. When deriving the optimality conditions, we rearrange

the problem to yield an equivalent formulation. Figure 2 shows the search concept of

the particle swarm optimization.

As we note that the Lagrangian of problem (3) is as follows:

L ¼
X3
m¼1

dm wmk k2 þ c
XN
i¼1

ξi þ
XN
i¼1

αi 1−ξ i−yi
X3
m¼1

wT
mxmi−yib

 !
−
XN
i¼1

viξ i þ λ
X3
m¼1

dm−1

 !
¼
X3
m¼1

ηmdm

The KKT (Karush-Kuhn-Tucker) optimality conditions are therefore as follows:

Fig. 2 The search concept of the particle swarm optimization. The figure shows how we employ PSO to
draw the actual particle selection process of the GSE32394 dataset. There are three particles in each group,
and the optimum particle in each group is found in each cycle (Particle Best Solution) and in all the
previous cycles of the optimal particle (Global Best Solution)
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að Þ dmwm ¼
XN
i¼1

αiyixmi

bð Þ
XN
i¼1

αiyi ¼ 0

cð Þ C−αi−vi ¼ 0

dð Þ 1
2

wmk k2 þ λ−ηm ¼ 0

8>>>>>>>>><
>>>>>>>>>:

Known by (a)

Αð Þ d1w1 ¼
XN
i¼1

αiyiKβti
xi; �ð Þ

Βð Þ d2w2 ¼
XN
i¼1

αiyiK σ ti
xi; �ð Þ

Cð Þ d3w3 ¼
XN
i¼1

αiyiK
0 xi; �ð Þ

8>>>>>>>>><
>>>>>>>>>:

Whose dual problem is as follows:

Apart from that, we derive the duality gap in (6) and (7) as follows:

DualGap ¼ f d�ð Þ−
XN
i¼1

α�i þ
1
2

max
m

XN
i; j¼1

α�i α
�
j yiy jKm xi; x j

� �

When the KKT condition and duality gap are satisfied, the optimal solution d = (d1,

d2, d3) is obtained.

Results
Materials

We retrieved a lot of microarray datasets from The Cancer Genome Atlas (TCGA) and

National Center for Biotechnology Information (NCBI) [21]. Table 1 illustrates that the

8 microarray datasets whose accession numbers are GSE32394, GSE1872, GSE59993,

GSE76260, GSE59246, BRCA1, BRCA2 and BRCA3 were utilized in the model evalua-

tions. The GSE datasets were obtained from NCBI. In order to test the HMKL algo-

rithm in the NGS datasets, the data were retrieved from TCGA, containing breast

cancer samples in various stages, such that each sample was represented by the
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methylation levels at different CpG sites. We divided the data that were downloaded

from TCGA into 3 different test datasets.

The first dataset GSE32394 is employed to differentiate between the estrogen-

receptor-positive (ER+) and estrogen-receptor-negative (ER-) primary breast carcinoma

tumors. We can compare two different types of breast cancer using the Custom Affy-

metrix Glyco v4 array. This dataset has 19 samples.

The second dataset GSE1872 is from an N-methyl-N-nitrosourea-induced breast can-

cer model, which is utilized to analyze the N-methyl-N-nitrosourea (NMU)- induced

primary breast cancer from Wistar-Furth rats females. The number of attributes is 15,

923, and there are 35 samples in this dataset.

The third dataset GSE59993 contains circulating miRNA microarray data from breast

cancer patients. Independent studies have reported that circulating miRNAs have the

potential to be biomarkers. This dataset includes 78 samples (26 hemolyzed and 52

non hemolyzed).

The fourth dataset GSE76260 contains miRNA expression profiling in cancer and

non-neoplastic tissues. Summary miRNA expression profiles were evaluated in a series

of 64 prostate clinical specimens, including 32 cancer and 32 non-neoplastic tissues.

The fifth dataset GSE59246 is used to differentiate between invasive and non-

invasive breast cancer, such that the access number is GSE59246. The mRNA,

miRNA and DNA copy number profiles are generated to measure the expression

of different samples. The arrays consist of 3 normal controls, 46 ductal carcinoma

in situ (CIS) lesions and 56 small invasive breast cancers. We discard the 3 normal

controls, so the total number of samples is 102. In this dataset, the number of at-

tributes is 62,976.

The Sixth dataset is BRCA1, which contains the comparison between normal samples

and samples at stage VI in terms of BRCA1. This dataset involves 107 samples in total

from TCGA, among which 11 are stage VI and 96 are normal samples. and the number

of genes is 17,204.

The Seventh dataset is BRCA2, in which we compared stage I and stage VI samples

regarding BRCA2. This dataset involves 138 samples in total from TCGA, among

which 127 are stage I and 11 are stage VI. The number of genes is 17,190.

The Eighth dataset is BRCA3, in which normal samples were compared with samples

at stage I in terms of BRCA3. It involves 223 samples in total from TCGA, among

which 127 samples are stage I and 96 are normal samples.

Table 1 Information about the gene expression datasets

name Number of genes Number of samples Number of classes

GSE32394 1259 19 2

GSE59993 1205 78 2

GSE1872 15,923 35 2

GSE76260 1145 64 2

GSE59246 62,976 102 2

BRCA1 17,204 107 2

BRCA2 17,190 138 2

BRCA3 17,193 223 2

Yu et al. BMC Bioinformatics          (2020) 21:155 Page 10 of 20



Performance evaluation

The area under the ROC curve (AUC) [22–24] is a statistical method that is employed

to assess the discrimination ability of the model. It can be interpreted as a tradeoff be-

tween specificity and sensitivity [25]. In this work, we utilize the averaged AUC mea-

sured by 5-fold cross-validation run 10 times to assess the performance.

Experimental results

We first find out the best performance methods in literature including random forest,

BP neural network, RBF SVM, linear SVM, Hadamard SVM and RBF MKL, and calcu-

late the optimal parameters and performance of these methods.

We propose and improve four schemes. First, Hadamard MKL is a combination of

the Hadamard kernel and MKL. Mixed kernels MKL uses the linear, RBF and Hada-

mard kernels in the MKL framework at the same time. In addition, the number of ker-

nels in the mixed kernels MKL increased to 21 (d = 21). PSO of MKL is used to

optimize the kernel function parameters of mixed kernels MKL. Figure 3 shows the

HMKL flow chart.

The overall performance of the Hadamard kernels in the experiment is better than

that of the linear and RBF kernels. In addition, the gene datasets contain a large num-

ber of different genes, which require mixed kernels. MKL has the ability to select an

optimal kernel and parameters from a larger set of kernels, reducing the bias due to the

kernel selection while allowing for more automated machine learning methods. There-

fore, Hadamard MKL uses the Hadamard kernel and achieves better performance than

traditional MKL, by using linear, RBF and Hadamard kernels. In order to observe the

effect of the increased kernels in MKL, mixed kernels MKL (d = 21) uses a linear ker-

nel, nine RBF kernels and nine Hadamard kernels. Since mixed kernels MKL needs to

set the kernel function parameters, HNKL uses PSO to select them.

We show the performance of HMKL, MKL and SVM for the breast cancer evaluation

by employing the averaged AUC measured by 5-fold cross-validation run 10 times to

assess its performance. Before training the SVM model, we must first specify the kernel

function parameters including σ of the RBF kernel and β of the Hadamard kernel. In

general, the choice of the kernel function parameters of the SVM has an impact on the

evaluation performance. Firstly, we determine whether the SVM performance is sensi-

tive to the kernel function parameters, and then find the optimal kernel function pa-

rameters for the kernel and SVM. Regarding the RBF kernel, we primarily specify the

parameter σ ∈ {0.01, 0.1, 1, 10, 100, 1000} and conduct 10 times 5-fold cross-validation

on the SVM. The results are shown in Table 2, such that the average AUC value is on

the left side of the cells, and the corresponding standard deviation is after it. For in-

stance, in the GSE32394 dataset, the SVM performance is extremely sensitive to differ-

ent values of the parameter σ, while this is not the case in GSE1872.

Table 2 illustrates the averaged AUC values of the RBF SVM. We find the best per-

formance RBF kernel function parameter σ value for SVM in Table 2. For example, the

best σ value of the RBF kernel for GSE32394 and GSE1872 is 1000, whereas the best σ

value for GSE76260 is 100, and the best σ value for GSE59993 is 10.

Table 3 illustrates the performance of Hadamard SVM. For example, the best value β

of the Hadamard kernel for GSE32394 and GSE59246 is − 1, whereas it is 1 for
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GSE59993 and GSE59246. In the Hadamard kernel, we primarily specify the parameter

β ∈ {−1, −0.1, −0.01, 0.01, 0.1, 1} and conduct 10 times 5-fold cross-validation on SVM.

The results are shown in Table 3, such that the average AUC value is on the left side of

the cells, and the corresponding standard deviation is on the right side of the cells. For

instance, in the GSE59993 dataset, the performance of SVM is sensitive to different

values of the parameter β, while the performance of SVM in GSE1872 is not sensitive

to different values of the parameter β from − 1 to 1.

The averaged AUC values of linear SVM are calculated, and the results are reported

in Table 4.

Fig. 3 The HMKL flow chart
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The averaged AUC values of the random forest approach are calculated, and the re-

sults are reported in Table 5.

The averaged AUC values of the decision tree approach are calculated, and the re-

sults are reported in Table 6.

Table 7 illustrates the averaged AUC values of GA with Rotation Forest.

The averaged AUC values of BFA + RF are calculated, and the results are reported in

Table 8.

Table 9 shows the averaged AUC values for all the different methods. For instance, in

the GSE32394 breast cancer outcome evaluation, the linear and Hadamard kernels per-

form better than the RBF kernel in SVM. The Hadamard kernel’s averaged AUC value

outperforms that of the RBF kernel, but the Hadamard kernel’s corresponding standard

deviation is larger than that of the RBF kernel. The Hadamard kernel MKL outper-

forms the linear kernel SVM, RBF kernel SVM and Hadamard kernel SVM. Moreover,

the mixed kernels MKL outperforms the Hadamard kernel MKL. HMKL outperforms

the mixed kernels MKL.

We show the performance of HMKL, MKL and SVM for the breast cancer evalu-

ation, such that the parameter values of the developed PSO are set as follows. The cog-

nitive learning factor c1 is set to 1.5, the social learning factor c2 is set to 1.7, the

number of particles is 3 and the number of generations is 20. For SVM, we select the

optimal parameters and performance of the mixed kernels. In KML, the first part is to

utilize only a single type of kernels, which is named single kernel MKL, such as the

RBF kernel MKL and Hadamard kernel MKL. The second part is to employ three dif-

ferent types of kernels together, which is named the mixed kernels MKL. d represents

the number of kernels in the MKL. When d = 3, the mixed kernels include an RBF

Table 4 Averaged AUC values of linear SVM

Datasets

GSE32394 0.9644 ± 0.0422

GSE59993 0.8371 ± 0.0331

GSE1872 0.3977 ± 0.2008

GSE76260 0.7857 ± 0.0629

GSE59246 0.8896 ± 0.0375

BRCA1 0.9598 ± 0.0317

BRCA2 1.0000 ± 0.0000

BRCA3 0.9997 ± 0.0026

Table 5 Averaged AUC values of random forest

Datasets

GSE32394 0.9644 ± 0.0422

GSE59993 0.8371 ± 0.0331

GSE1872 0.3977 ± 0.2008

GSE76260 0.7857 ± 0.0629

GSE59246 0.8896 ± 0.0375

BRCA1 0.9598 ± 0.0317

BRCA2 1.0000 ± 0.0000

BRCA3 0.9997 ± 0.0026
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kernel, a Hadamard kernel and a linear kernel. When d = 21, the mixed kernels include

ten RBF kernels, ten Hadamard kernels and a linear kernel. In HKML, a Hadamard ker-

nel and a linear kernel are utilized.

In the GSE59993 dataset, the Hadamard kernel performs better than the random for-

est, decision tree, GA with Rotation Forest, BFA + RF, linear kernel SVM and RBF ker-

nel SVM. The Hadamard kernel MKL outperforms the Hadamard kernel SVM.

However, the RBF kernel MKL performs worse than the RBF kernel SVM. In addition,

the mixed kernels MKL outperforms the single kernel MKL. HMKL outperforms all

the other classifiers. In the GSE1872 dataset, the performance of the decision tree,

BFA + RF, Hadamard SVM, MKL and HMKL are the best with an AUC of 1. In the

GSE76260 dataset, the Hadamard kernel performs better than the random forest, deci-

sion tree, GA with Rotation Forest, BFA + RF, RBF and linear kernel in SVM. The

Hadamard kernel MKL and RBF kernel MKL outperform the Hadamard kernel SVM

and RBF kernel SVM, respectively. In addition, the mixed kernels MKL outperforms

the single kernel MKL. HMKL outperforms all the other classifiers. In the GSE59246

dataset, the Hadamard kernel outperforms the GA with Rotation Forest, BFA + RF, de-

cision tree, RBF kernel SVM and linear kernel SVM. The Hadamard kernel MKL out-

performs the Hadamard kernel SVM. However, the RBF kernel MKL has a worse

performs than the RBF kernel SVM. In addition, the mixed kernels MKL outperforms

the single kernel MKL, and HMKL outperforms the mixed kernels MKL. In BRCA1,

the Hadamard kernel SVM performs better than the random forest, decision tree, GA

with Rotation Forest, BFA + RF, RBF kernel SVM and linear kernel SVM. The Hada-

mard kernel MKL outperforms the Hadamard kernel SVM. However, the RBF kernel

MKL performs worse than the RBF kernel SVM. In addition, the mixed kernels MKL

Table 6 Averaged AUC values of decision tree

Datasets

GSE32394 0.7589 ± 0.2256

GSE59993 0.8099 ± 0.0740

GSE1872 1.0000 ± 0.0000

GSE76260 0.8313 ± 0.0813

GSE59246 0.8372 ± 0.0497

BRCA1 0.9925 ± 0.0115

BRCA2 0.9997 ± 0.0026

BRCA3 1.0000 ± 0.0000

Table 7 Averaged AUC values of GA with Rotation Forest

Datasets

GSE32394 0.7589 ± 0.2256

GSE59993 0.8099 ± 0.0740

GSE1872 1.0000 ± 0.0000

GSE76260 0.8313 ± 0.0813

GSE59246 0.8372 ± 0.0497

BRCA1 0.9925 ± 0.0115

BRCA2 0.9997 ± 0.0026

BRCA3 1.0000 ± 0.0000
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Table 8 Averaged AUC values of BFA + RF

Datasets

GSE32394 0.8000 ± 0.2449

GSE59993 0.8474 ± 0.1381

GSE1872 1.0000 ± 0.0000

GSE76260 0.8167 ± 0.1856

GSE59246 0.7646 ± 0.1304

BRCA1 0.9909 ± 0.2727

BRCA2 1.0000 ± 0.0000

BRCA3 1.0000 ± 0.0000

Table 9 Averaged AUC values for different methods

Classifier Decision Tree Random
Forest

GA with Rotation
Forest

BFA + RF SVM SVM

Kernel Linear kernel RBF kernel

GSE32394 0.7589 ±
0.2256

0.8000 ±
0.2449

0.7000 ± 0.3317 0.8000 ±
0.2449

0.9644 ±
0.0422

0.9344 ±
0.0456

GSE59993 0.8099 ±
0.0740

0.7484 ±
0.1438

0.8663 ± 0.0983 0.8474 ±
0.1381

0.8371 ±
0.0331

0.8287 ±
0.0247

GSE1872 1.0000 ±
0.0000

0.9951 ±
0.0178

0.9667 ± 0.1000 1.0000 ±
0.0000

0.3977 ±
0.2008

0.2042 ±
0.0686

GSE76260 0.8313 ±
0.0813

0.7889 ±
0.0441

0.8583 ± 0.0500 0.8167 ±
0.1856

0.7857 ±
0.0629

0.8357 ±
0.0213

GSE59246 0.6455 ±
0.0795

0.8486 ±
0.0349

0.8474 ± 0.1026 0.7646 ±
0.1304

0.8896 ±
0.0375

0.7629 ±
0.0094

BRCA1 0.9925 ±
0.0115

0.9727 ±
0.4166

0.9818 ± 0.3636 0.9909 ±
0.2727

0.9598 ±
0.0317

0.9918 ±
0.0060

BRCA2 0.9997 ±
0.0026

1.0000 ±
0.0000

1.0000 ± 0.0000 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ±
0.0000

BRCA3 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ± 0.0000 1.0000 ±
0.0000

0.9997 ±
0.0026

1.0000 ±
0.0000

Classifier SVM MKL(d = 3) MKL(d = 3) MKL(d = 3) MKL(d = 21) HMKL

Kernel Hadamard
kernel

RBF kernel Hadamard kernel Mixed
kernels

Mixed
kernels

GSE32394 0.9778 ±
0.0222

0.9422 ±
0.0422

0.9844 ± 0.0511 0.9867 ±
0.6333

0.9899 ±
0.0333

0.9933 ±
0.0378

GSE59993 0.8661 ±
0.0510

0.7073 ±
0.0532

0.8973 ± 0.0445 0.8990 ±
0.0336

0.9018 ±
0.0175

0.9069 ±
0.0178

GSE1872 1.0000 ±
0.0000

0.2667 ±
0.0894

1.0000 ± 0.0000 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ±
0.0000

GSE76260 0.8595 ±
0.0126

0.8302 ±
0.0419

0.8467 ± 0.0313 0.8604 ±
0.0416

0.8633 ±
0.0313

0.8735 ±
0.0190

GSE59246 0.8996 ±
0.0250

0.8939 ±
0.0317

0.8991 ± 0.0179 0.9006 ±
0.0292

0.9008 ±
0.0282

0.9048 ±
0.0047

BRCA1 0.9953 ±
0.0047

0.9921 ±
0.0061

0.9953 ± 0.0045 0.9957 ±
0.0032

0.9960 ±
0.0026

0.9967 ±
0.0027

BRCA2 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ± 0.0000 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ±
0.0000

BRCA3 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ± 0.0000 1.0000 ±
0.0000

1.0000 ±
0.0000

1.0000 ±
0.0000
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outperforms the single kernel MKL. HMKL outperforms the mixed kernels MKL. In

BRCA2 and BRCA3, the performance of the averaged AUC values for different

methods is almost the same.

Analysis and discussion

Based on the previous analysis, we can get the following conclusions:

1. The Hadamard kernel outperforms the RBF and linear kernels for SVM. In the sin-

gle kernel MKL, the Hadamard kernel outperforms the RBF kernel. In [14], JH calcu-

lated the results only when the value of β is positive. On this basis, we find that a

negative value of β performs better than a positive one in the Hadamard kernel SVM in

GSE32394, GSE59246 (β = − 1) and GSE76260, BRCA1 (β).

2. In the single kernel MKL and SVM, the Hadamard kernel MKL outperforms the

Hadamard kernel SVM in all the microarray datasets. It represents that multiple Hada-

mard kernels outperform a single Hadamard kernel; thus, multiple Hadamard kernels

are effective for MKL in the breast cancer microarray datasets.

3. In MKL, the mixed kernels MKL outperforms the single kernel MKL in all the

datasets. It represents that multiple heterogeneous kernels are more efficient than mul-

tiple single kernels for the breast cancer outcome evaluation. In addition, in heteroge-

neous kernels MKL, 21 kernels MKL outperforms 3 kernels MKL; thus, more kernels

can improve the performance of MKL.

4. The best performance is achieved by HMKL, which surpasses the other methods in

terms of performance. It represents that the PSO’s parameter selection is effective for

HMKL and can be used to obtain the optimal parameters (σ, β).

5. Due to the ability of HMKL to optimize the mixed kernel set and its parame-

ters, reducing the bias due to the kernel selection while allowing for more auto-

mated machine learning methods, the HMKL performance is better than traditional

methods in gene datasets with complex high-dimensional distribution structure.

The combination space of mixed kernels (linear, RBF and Hadamard kernels) map-

pings in HMKL has the ability of feature mapping in each subspace, which ultim-

ately enables the data to be more accurately and reasonably expressed in the new

combination space, thus improving the classification performance of HMKL. For

different datasets, PSO selects the kernel function in HMKL to improve the classi-

fication performance of HMKL.

Conclusion
In this article, we investigate the effect of the normalization strategy on our pro-

posed HMKL method. It is a valid and effective method for dealing with high di-

mensional gene expression data when they have positive values. By testing on real-

world microarray datasets, HMKL outperforms classical SVM and MKL. In

addition, we show that the PSO’s parameter selection is effective for HMKL and

can be used to obtain the optimal kernel parameters (σ, β). For MKL, we show that

multiple heterogeneous kernels are more efficient than multiple single kernels. We

hope that HMKL can contribute to the wider biological problems as a novel class

of methods.
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