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This series of 25 articles (22 original articles, 3 reviews) is presented by international leaders
in bioinformatics and biostatistics. This original series of articles details emerging approaches that
leverage artificial intelligence and machine learning algorithms to improve the utility of bioinformatics
applications in cancer biology. Importantly, the issue also addresses the limitations of current
approaches to analyzing high throughput datasets by providing support for novel methods that
can be used to improve complex multi-variable analysis. For example, in order to help identify
clinically meaningful genes, Shen et al. demonstrate how the implementation of a knockoff procedure
can control false discovery rates in next-generation datasets with relatively small sample sizes [1].
Additionally, tools were developed and validated to address complex problems ranging from tumor
heterogeneity to mutation signature analysis. For example, intertumor heterogeneity scores were
characterized from >2800 tumors and used to identify genes associated with high heterogeneity
including histone methyltransferase SETD2 and DNA methyltransferase DNMT3A, which were
then validated by CRISPR/CAS9 in experimental systems [2]. Likewise, a tool was derived to infer
tumor RNA expression signatures of genes with copy loss to support gene-loss driven biomarker
analysis [3], and, a weight-matrix based approach was used to highlight the distribution of APOBEC
and AID-related gene signatures in multiple cancers that drive subsets of the somatic mutation
spectra [4]. Together these manuscripts demonstrate how novel tools and statistical approaches are
being used to refine analysis of large next generation sequencing datasets. Extending these concepts,
Veronesi et al. also develop an R-script based tool box for efficient analysis of gene signatures with
diagnostic and prognostic variable that highlights how tools are being rapidly adapted into easy-to-use
application packages [5].

Several papers in this series also demonstrate the potential to integrate large and diverse
datasets and use machine learning approaches to develop significantly improved multi-variable
predictors of clinical outcome. For example, deep learning artificial intelligence-based approaches
were shown to be highly effective at integrating genomic data from multiple sources using de-noising
auto-encoders to curate deep features associated with breast cancer clinical characteristics and
outcomes [6]. Moreover, artificial intelligence-driven classification techniques were also used on
multiple independent colorectal cancer datasets to identify and verify biomarkers of diagnosis and
prognosis that may have important implications for the disease [7]. As another example, the Taiwan
Cancer Registry database was analyzed to evaluate the value of the Wu co-morbidity score for accuracy
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in assessing curative-surgery-related 90-day mortality risk and overall survival in patients with
locoregionally advanced head and neck cancer [8]; and, in an alternative approach, Ferroni et al.
demonstrate the utility of using machine learning-driven decision support systems to extract data
from electronic health records and refine prognostic variables [9]. As an alternative approach, and to
understand how gene sets may correlate with outcome, Locati et al. utilized self-organizing map
approaches to curate publicly available HPV+ cancer data and inferred gene signatures associated with
three biological subtypes of the disease [10]. Novel datasets comparing the molecular composition
of primary colorectal cancer and brain metastases were also generated [11]. In an interesting
informatics approach, analysis of steroid hormone-related gene sets in publicly available data identified
steroidogenic acute regulatory protein as a potential prognostic biomarker in breast cancer [12].
Likewise, a meta-analysis of GEO and TCGA miRNA datasets led to the prioritization of candidate
biomarkers of prognosis and overall survival in oral cancer [13]. Machine learning approaches were
similarly used to prioritize relevant miRNAs and validate the high performance of highly ranked
miRNAs in classification models, suggesting that prioritization of targets from expression data is a
highly effective strategy [14]. Analysis of miRNA data using an observed survival interval was reported
to overcome issues with clinical outcome associations [15]. Collectively suggesting the potential of
these approaches in this new era of machine learning approaches. Finally, additional analysis of similar
datasets also highlighted the role of detailed characterization of clinical characteristics in avoiding
biological and the clinical outcome analysis bias in large dataset analysis was well demonstrated in the
analysis of pancreatic cancer TCGA data by Nicolle et al. [16].

More broadly, machine learning-driven informatics approaches, which were demonstrated to have
utility in improving statistical analysis of integrated histopathologic datasets, were implemented to
analyze the TCGA lung adenocarcinoma dataset as an alternative approach to modeling outcomes [17].
Furthermore, using both the lung adenocarcinoma and hepatocellular carcinoma datasets to analyze the
utility of integrated gene and imaging data, multiple individual genes, conditional on imaging features,
were shown to drive significant improvement in prognosis modeling [18]. These improvements in
integrated multi-feature image analysis and molecular analysis for outcome modeling suggest that
complex models incorporating diverse variables may be key to making substantial improvements to
clinical outcome models in the future.

Interestingly, several of the articles also highlight the ability to use emerging bioinformatic
techniques, high throughput small molecule screening data, and/or outcomes data to make improved
predictive models. Lu et al. leveraged a support vector machine learning algorithm to analyze datasets
from the Cancer Cell Line Encyclopedia and identify a 10-gene predictive model of recurrence-free
survival and overall survival in epithelial ovarian cancer, validated on two independent datasets [19].
Diverse bioinformatics approaches were used to demonstrate how Bufadienolide-like chemicals may
contribute to cardiotoxicity and function as anti-neoplastic agents providing a roadmap for prioritizing
the mechanisms of action of small molecules with recent informatics techniques [20]. Further, a novel
pipeline was developed to predict acquired resistance to EGFR inhibition, in which the team built
a meta-analysis-based, multivariate model that leveraged eight independent studies and had high
predictive performance [21]. Network pharmacologic analysis was used as an approach to nominate
herb-derived compounds for their potential efficacy in tumor immune microenvironment regulation
and tumor prevention [22], showing the utility of informatics approaches for deconvolution of drug
screening data.

The collection also includes insightful reviews discussing major bioinformatics approaches involved
in the analysis of cell-free DNA sequencing data for detecting genetic mutation, copy number alteration,
methylation change, and nucleosome positioning variation [23]; how bioinformatics approaches can
be used to understand the functional effects of TERT regulation by alternative splicing [24]; and how
automatic computer-assisted methods and artificial intelligence-based approaches may be leveraged for
brain cancer characterization in a machine and deep learning paradigm [25].
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The diversity of approaches and datasets highlighted in this collection of articles underscore
the broad range of bioinformatics techniques that are being developed to answer complex questions
ranging from how to better predict clinical outcomes to prioritizing lead compounds capable of
disrupting the tumor-immune microenvironment. The articles collectively demonstrating the machine
learning approaches can be used to make significant advances in cancer biology. Indeed, as we develop
a better understanding of how different machine learning approaches are best suited to pursue critical
questions as outlined in the articles of this series, we can ultimately hope to improve research efficiency
and make substantial improvements to the overall health of patients.
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