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Converting genotype sequences into images offers advantages, such as genotype data
visualization, classification, and comparison of genotype sequences. This study converted
genotype sequences into images, applied two-dimensional convolutional neural networks
for case/control classification, and compared the results with the one-dimensional
convolutional neural network. Surprisingly, the average accuracy of multiple runs of
2DCNN was 0.86, and that of 1DCNN was 0.89, yielding a difference of 0.03, which
suggests that even the 2DCNN algorithm works on genotype sequences. Moreover, the
results generated by the 2DCNN exhibited less variation than those generated by the
1DCNN, thereby offering greater stability. The purpose of this study is to draw the research
community’s attention to explore encoding schemes for genotype data and machine
learning algorithms that can be used on genotype data by changing the representation of
the genotype data for case/control classification.
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1 INTRODUCTION

The genotype sequence Nielsen et al. (2011) is a linear sequence of bases (A, C, G, and T) in a
DNA molecule, interpreted as homozygous or heterozygous and represented as 0,1,2 (encoding)
for numerical analysis. These sequences can also be expressed in other forms depending on the
problem statement, such as genotype-phenotype classification, genotype sequence similarity,
and dimensionality reduction. Similarly, there are various algorithms for each problem, like PRS
(polygenic risk scores) for disease prediction, BLAST Madden et al. (2018) for sequence
similarity, and principal component analysis (PCA) Salem and Hussein (2019) for
dimensionality reduction. We can also use algorithms developed for similar problem
statements, such as genotype sequences can be treated as documents, and document
classification can be used for genotype-phenotype classification. In this study, we
investigated the question, ‘Can we convert genotype sequences in the form of images for
cases/control classification?’

Following is the list of acronyms used in the remaining sections of this study.

• CNN: Convolutional Neural Network
• ANN: Artificial Neural Network (fully connected)
• 1DCNN: One-dimensional Convolutional Neural Network
• 2DCNN: Two-dimensional Convolutional Neural Network
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• CEU: Utah Residents (CEPH) with Northern and Western
European ancestry (European population)

There are several reasons for doing this, which we will explore
in this section. First, for image classification, a vast amount of

work has been done by researchers (image classification, image
segmentation, and finding similar images Appalaraju and Chaoji
(2017)), and several image classification algorithms (CNN) can
outperform ANN for a few tasks such as image recognition. We
investigated, ‘Can we use CNN for genotype sequences?’ Well,

FIGURE 1 | This diagram shows the overall process of generating data, splitting data into training and test sets, calculating the p-value for each SNP, and
generating sub-datasets based on p-value thresholding. Module 1: Pass 1000 Genome and hapmap3 datasets (Chromosome 21) to hapgen2 and generate 10,000
controls (gen and controls.sample files). Module 2: Pass previously generated data to PhenotypeSimulator, which produces each person’s phenotype. Convert
continuous phenotype to binary phenotype (cases/controls) by thresholding at 0. Module 3: Merge all cases/controls and convert the data in. vcf.gz file format. Split
the data into training (80%) and test data (20%) such that the ratio of cases/controls in each set is the same. Using plink convert train.vcf.gz and test. vcf.gz to plink file
format (.bed,.bim,.fam). Module 4: Using plink, generate a GWAS summary statistic file that contains the p-value for each SNP. Extract SNPs based on p-value threshold
from training and test set and recode the genetic information (aa = 0, aA//Aa = 1, AA = 2). We have the training and test data ready to be converted into images at
this step.
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yes, and researchers have used 1DCNN for genotype sequence
classification Muneeb and Henschel (2021), but what about the
2DCNN algorithm, which requires genotype data in the form of
images. Suppose the 2DCNN algorithm is successful in case/
control classification. In this case, we can use all (visualize filters
and feature maps) other image analysis algorithms for genotype
sequences. For instance, we can identify the regions in images that
make a particular person’s case and control. The above
statements may not be biologically plausible because when we
use the 2DCNN algorithm, SNPs that are not near can be part of
one CNN kernel.

Second, genotype sequences are usually very long and require
a dimensionality reduction algorithm (PCA) or statistical
method (p-value thresholding) to make it feasible to train the
machine learning model. When genotype sequences are
converted to images, various encoding schemes can reduce
the size of genotype data, as shown in this Section 3.5.
Consider an image with 1024 by 1024. The number of pixels

in the image is 1024 * 1024 = 1,048,576, which means 1,048,576
SNPs can be included in one image (image-size reduction
algorithms can also be used to reduce the size). In the
literature, many algorithms have been used to systematically
reduce data sizes, such as data compression algorithms or
encryption algorithms; however, researchers have not applied
these algorithms to genotype sequences, which can generate
exciting results.

We can also visualize how the homozygous and heterozygous
rates change across the DNA sequences. The most crucial factor is
that information from all SNPs is incorporated to classify cases/
controls rather than using a single SNP at a time. There are other
functions like sequence comparison, which can be performed on
images to determine the similarity between two images Hoang
et al. (2016).

The following text explains the rationale for using specific
tools in the methodology section (see Section 3). We used
Hapgen2 to generate genotype data because it allows the use
of 1000 Genome + plus Hapmap3 CEU data to generate data (see
7, Dataset 1). Although we considered chromosome 21, any
chromosome could be used for analysis. We used
PhenotypeSimulator to generate phenotypes for each person, a
rich tool that provides many options to produce variations in the
phenotype, such as the number of risk SNPs and genetic
variations.

2 RELATED WORK

Researchers have already used algorithms like ANN, 1DCNN,
and LSTM for genotype-phenotype prediction, but we did not
find anyone using 2DCNN for genotype data after converting it
into images.

Researchers employed variations of 1DCNN (one dimensional
convolutional neural networks) for genotype-phenotype
prediction Ma et al. (2018), Washburn et al. (2021), Jeong
et al. (2020), Jubair and Domaratzki (2019), Onimaru et al.
(2020), and Abdollahi-Arpanahi et al. (2020). This article Ma
et al. (2018) used 1DCNN to reduce the complexity of genotype
data and for phenotype prediction. We used 2DCNN for
phenotype prediction and p-values threshold to reduce the
number of SNPs passed to 2DCNN. The article claims that
1DCNN can be combined with the existing approaches for the
prediction. Similarity genotype data can be converted to images of

FIGURE 2 | Split the dataset into training and test sets, and in each
iteration, samples are randomly selected. After the p-value threshold, selected
SNPs are extracted from the training and test data.

TABLE 1 | Model 2 architecture for dataset 2.

CNN architecture for all datasets

Layers Parameters

Layer 1−Con2D 32 Filters * (kernel size = (3,3))
Layer 2−MaxPool2D (pool size = (2,2))
Layer 3−Con2D 64 Filters * (kernel size = (3,3))
Layer 4−MaxPool2D (pool size = (2,2))
Reshape —

Layer 5−FullyConnected (10 Neurons)
Activation Layer —

Layer 6−FullyConnected (2 Neurons)
Softmax —

TABLE 2 | Hyper-parameters for all models for all datasets are the same.

Model’s Hyper-parameters

Hyper-parameters Value

Batch size 100
Epochs 50
Validation size 0.3%
Optimizer Adam
Dropout 0.3
Activation Relu
Loss Binary_crossentropy
Metrics Accuracy
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various dimensions to train an ensemble model for the
prediction.

In this articleWashburn et al. (2021), researchers used genetic,
environmental, management, and historical information for
phenotype prediction. In contrast, we just used the genetic
information because we worked on the simulated data, and
there is no environmental (covariates: sex and gender)
information available. In this article Jeong et al. (2020),
researchers used the GWAS-based SNPs selection method and
used 1DCNN for optimal prediction. The report focused on
improved marker selection, and our work is related to marker
visualization by visualizing the convolutional layers of the trained
2DCNN model.

In this article Pérez-Enciso and Zingaretti (2019), researchers
performed 1DCNN hyperparameter optimization and a survey of
papers that compared machine learning with statistical tools. In
Waldmann et al. (2020), researchers used 1DCNN combined

with l1-norm regularization, Bayesian optimization, and
ensemble prediction. In Chen and Shi (2019), researchers used
1DCNN and sparse autoencoder for genotype-phenotype
prediction. This study Liu et al. (2019), uses the dual 1DCNN
stack for classification. This study Yin et al. (2018), is analogous to
ours and employs Hilbert curves to ensure that the pixels
representing two sequence components that are near within
the sequence are likewise close within the image. In Poplin
et al. (2018), researchers used CNN to call genetic variations
in aligned next-generation sequencing read data.

3 METHODOLOGY

This section explores the dataset, methodology, intermediate
steps, and machine learning algorithm used for the analysis.
Figure 1 shows the overall methodology.

FIGURE 3 | Genotype data is presented in the form of a sequence from 1 to N (N = Total number of SNPs). X, Y, and Z represent the filter size for the first layer,
second layer, and third layer, respectively. A and B represent the number of filters in the first layer and second layer. At the end output of the last 1DCNN layer, after global
averaging, is connected to the fully connected network.

FIGURE 4 |Genotype data is presented in the form of a sequence image having dimension N by N (N*N = Total number of SNPs). M and X represent the filter size
for the first and second convolutional layers, respectively. B represents the number of filters in the second layer. At the end output of the last 2DCNN layer, after global
averaging, is connected to the fully connected network.
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FIGURE 5 | This diagram shows the first approach of converting the genetic sequence of SNPs into an image.

FIGURE 6 | This diagram shows the second approach of converting the genetic sequence of SNPs into an image.
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3.1 Dataset
Using hapgen, which takes 1000 Genome and HapMap3 data
(Resource O, 2021) as input resource, we generated 10,000 (D1)
controls for chromosome 21 and passed that to
phenotypesimulator (PS) to generate cases/controls. The
phenotype generated by PS for each person is continuous,
which we converted to binary phenotype by thresholding on 0.

The sequence reads and library size does not impact the
genotype data generation process. We used the 1000 Genome

+ HapMap3 dataset for the sequence generation. After that, we
used Hapgen2 to generate the genotype data. This generates the
data for all the SNPs in the original data. Hapgen2 inherits all the
properties of the original data. Where the genotype data is
missing, it imputes the missing information for all the people
such that the linkage disequilibrium pattern is intact.
PhenotypeSimulator does not modify the genotype data but
only generates the phenotype for a particular person.

3.2 Dataset Split
The training data was 80 percent, and the test data was 20 percent
of the original datasets containing almost the same number of
cases and controls. Figure 2 shows the directory structure in
which files to train the machine learning model are produced.

3.3 Generate GWAS Summary Statistic File
We used training data to calculate the GWAS summary statistic
file, which contains the p-value required for the SNPs preselection
process. The association test can be performed using the
following command, where file train contains the training
genotype data.

./plink –bfile ./train –allow-no-sex –fisher –out GWAS

3.4 SNPS Preselection
To reduce the number of SNPs, we used a p-value threshold. We
considered four p-value thresholds for D1. We repeated the
classification process five times, so the actual number of SNPs
after p-value thresholding varies in each run and is shown in the
result section.

3.5 Model and Implementation
We used 2DCNN (Architecture shown in Table 1) for training,
but before that, genotype data should be converted to images.

FIGURE 7 | Classification region for a sample case. FIGURE 9 | Classification region for a sample control.

FIGURE 8 | Sample case generated through encoding 2 and p-value =
5e-30.
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Figures 5, 6 show the encoding process. The machine learning
model has many parameters, so to find the best parameters, we
considered parameters for the first iteration and the best
parameters (see Table 2) were used for the remaining
iterations.

3.5.1 Deep Learning Model
This section explains 2DCNN and 1DCNN algorithms for this
study. Figures 3, 4 show the architecture of the 1DCNN and
2DCNN models, respectively. The genotype data after p-value

thresholding is converted to a linear sequence for the 1DCNN
model. 1DCNNmodel uses a set of one-dimensional filters which
extract useful information from the genotype data. 2DCNN
model uses a set of two-dimensional filters to extract the
information, so genotype data is converted into the form of
images. 2DCNN algorithms can be trained on images of any
dimension, and if the image dimension is X by Y where X = 1 and
Y = N or X = N and Y = 1, the 2DCNN algorithm becomes the
same as the 1DCNN algorithm. 2DCNN model can process
images of any dimension, but we considered square images for
simplicity, and the remaining SNPs were discarded.

3.5.2 Image Encoding Schemes
This section explains the procedure to convert genotype data into
images and possible encoding schemes before genotype data is
passed to the 2DCNN algorithm.

In general, when we process DNA, there are four steps. 1. DNA
sequencing (Read sequences) − > 2. Sequence alignment − > 3.
DNA encoding for a particular application − > 4. Application.

In our case, this flow is transformed into the following
sequence. 1. DNA sequencing (Read sequences) − > 2.
Sequence alignment − > 3. AA = 0, AG/GA=1, GG =2 − > 4.
Cases/controls classification.

A particular encoding scheme is beneficial for a particular
application; for instance, phylogenetic trees are good for finding
the evolutionary relationship among genes or species. The
phylogenetic tree is the output of some analysis, and using it
for the cases/controls classification is not possible. If we pass this
tree as an input to 2DCNN, we have to construct it for each DNA
sequence in the test set, which is impossible. Second, such trees
can be used for classification (not cases/controls classification),
but rather than using CNN; graph neural networks would work in
such a situation because they are good at finding the relation
between features.

TABLE 3 | 2DCNN: Average accuracies of all iteration.

p-values E1–Training
Accuracy

E1–Validation
Accuracy

E1–Test
Accuracy

E2–Training
Accuracy

E2–Validation
Accuracy

E2–Test
Accuracy

Number of
SNPs

pv_1.0 0.502 0.5 0.506 0.502 0.5 0.504 12,631
pv_5.05915e-
10

0.57 0.566 0.564 0.504 0.502 0.504 3351.4

pv_5.05915e-
30

0.86 0.818 0.824 0.654 0.63 0.64 603

pv_5.05915e-
50

0.844 0.816 0.824 0.756 0.736 0.74 148.8

Bold text represents the best results for a particular p-value threshold.

TABLE 4 | 1DCNN: Average accuracies of all iteration.

p-values Training Accuracy Validation Accuracy Test Accuracy

pv_1.0 0.506 0.49 0.502
pv_5.05915e-10 0.67116 0.65144 0.648
pv_5.05915e-30 0.83164 0.798 0.79
pv_5.05915e-50 0.89316 0.848 0.854

Bold text represents the best results for a particular p-value threshold.

FIGURE 10 | Sample control generated through encoding 2 and p-value
= 5e-30.
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The first step is to convert genotype data into a square image.
Genotype data is represented as [1/N], N is the size of genotype
data, image dimension is represented as � ��

N2
√ �� M, extract

[1/M2] SNPs from genotype data, and present it in the form
of the square 2D image. Each pixel represents data for a specific
SNP, which can be represented in various ways. The first is the
binary encoding scheme in which genotype is respensted in this
way (aa = 0, aA//Aa = 1, AA = 0) (See Figure 5). In second
encoding scheme genotype data is respensted in this way (aa = 0,
aA//Aa = 1, AA = 2) (See Figure 6). In the third encoding scheme,
genotype data is represented in the form of an image having a
pixel range from 0 to 255. First the genotype data is converted to
binary encoding (aa = 0, aA//Aa = 1, AA = 0), after that set of 8
SNPs are combined to form a pixel having range 0–255. This
encoding scheme can incorporate a lot of genotype information,
but it did not work, so we removed this one.

3.5.3 Finding Image Similarity
Even if we see CNN, it tries to find similar images that fall in a
particular category using a specific pattern found in an image.
When it comes to discovering how similar two images are, then
there are many things we have to consider. For instance, the
window size of the sequence we want a comparison. The second is
the evaluation metrics. In the case of genotype images, the
similarity is measured pixel by pixel or SNP by SNP. This will
shift the problem from image classification to image similarity
calculation. Evaluation metrics like Mean Squared Error, Root
Mean Squared Error, and Spatial Correlation Coefficient can be
used to find the similarity between two images. We can also
visualize the longest common sequence between two genotype
files. In one dimension, it would not be easy to visualize, but when
genotype data is in the form of images, we can easily visualize the
longest common sequence between images, which is also a type of
analysis in genomics.

3.5.4 2DCNN Model Visualization
This section elaborates on the reasons for using the 2DCNN
algorithm. 2DCNN algorithm uses two-dimensional images, and
it can help us to visualize what the deep learning model is learning,
known as filter visualization. Secondly, it helps to identify the regions
which cause a particular person to fall in the case or control category,
known as classification region visualization (See Figures 7–10).

Identifying the classification region is one of the applications
of the proposed method but is related to image segmentation
rather than image classification. In an object classification
problem (apples vs orange), image segmentation can find the
area in an image where a particular object exists, but in the case of
genetic images, that will not work. So, rather than image
segmentation, filter visualization can help find the area that
makes a particular person a case or control. The highlighted
area contains SNPs (which can have a linear or non-linear
relationship) whose values make a particular person a case or
control in terms of biological interpretation. This is what the
machine learning model tries to learn. This is also done in
1DCNN, but we cannot visualize the classification region in
1DCNN. Using 2DCNN gives us this advantage.

4 RESULTS

This section elaborates on the result of using 2DCNN on genotype
data. Tables 3, 4 show the average of all iterations of the 2DCNN and
1DCNN, respectively. The best test accuracywas 0.82 (p-value = 5.05e-
30) for 2DCNNand0.85 (p-value = 5.05e-50) for 1DCNNrespectively.
Even a two-dimensional convolution neural network worked fine on
genotype sequence, yielding accuracy comparable to 1DCNN.

Results for 2DCNN are represented in this format: The first
column shows the p-value threshold. The 2nd, 3rd, and 4th
columns show training, validation, and test accuracies for

FIGURE 11 | This figure shows the cosine similarity between the second last layer of the 1DCNN and 2DCNN model. 1DCNN model is trained and saved. The
2DCNNmodel is trained, and the similarity between the weights of the 2DCNNmodel and the 1DCNNmodel is calculated at each epoch. As we increase the number of
epochs, the similarity between weights increases.
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encoding scheme 1. The 5th, 6th, and 7th columns show the
training, validation, and test accuracy for encoding scheme 2. We
restricted the results to only the first two encodings. The last
column shows the number of SNPs included in each p-value
threshold. E1means encoding scheme 1 (aa = 0, aA//Aa = 1, AA =
2), and E2 (Figure 6) means encoding scheme 2 (aa = 0, aA//Aa =
1, AA = 0). Results for 1DCNN are represented in this format:
The first column shows the p-value threshold. The 2nd, 3rd, and
4th columns show training, validation, and test accuracies.

1DCNN (p-value = 5.0 e-50) yields an accuracy of 0.84 and
2DCNN (p-value = 5.0 e-30) yields an accuracy of 0.82.
Interestingly, different algorithms give almost the same result,
and there can be multiple explanations for that. Though both
algorithms yield the same results, 2DCNN helps visualize patterns
in the images. To investigate the similarity between the algorithms,
we calculated the similarity between the second last layer of
1DCNN and 2DCNN models as shown in Figure 11. It is not
possible to compare the convolutional layer because both models
have a different number of parameters, but the second last, fully
connected layer contains ten neurons in both models.

5 CONCLUSION

The manuscript illustrated the use of 2DCNN for case/control
classification on genotype data by converting genotype data into
images. We compared the results of 2DCNN with those of
1DCNN and noticed that there was not much difference
between the final accuracies of the two algorithms. Second, we
noticed that the training/test accuracies for the five iterations
generated using 2DCNN had less variation than 1DCNN,
suggesting that 2DCNN was more stable than 1DCNN.

Suppose 2DCNN algorithms, originally designed for image
classification, can work for genotype data. In that case, algorithms
from other research paradigms, such as transformers (for
document classification), can also be used for genotype-
phenotype classification. However, this may raise the question
of biological interpretation of the results generated using such
cross-field algorithms. This article aims to derive the research

community’s attention to explore the encoding schemes for
genotype data and machine learning algorithms that can be
used on genotype data by changing the representation of the
genotype data.

There are a few limitations associated with the proposed
approach. First, we worked on the genotype data, and the
inclusion of environment-related variables like covariates
requires changes in the model’s architecture. So 2DCNN
should be combined with the regular ANN model for the
prediction. Second, the proposed approach may not work for
images of any dimension, as shown in the results (See
Supplementary Material).
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