
Localization of the Lys, Asp, Glu, Leu Tetrapeptide 
Receptor to the Golgi Complex and the Intermediate 
Compartment in Mammalian Cells 
Gare th  Grit i i ths,  * Mar ia  Ericsson, * Jacomine  Krijnse-Locker, * Tommy Nilsson,* Bruno Goud ,  § 
Hans-Dieter SSling, ll Bor Luen Tang,~ Siew Heng Wong,~ and Wanjin Hongl  

• European Molecular Biology Laboratory, 69012 Heidelberg, Germany; ¢ Imperial Cancer Research Fund, Lincoln's 
Inn Fields, London WC2A 3PX, United Kingdom; § Unit6 G6n6tique Somatique, URA CNRS 361, Institut Pasteur, Rue de Dr 
Roux, F-75724 Paris C6dex 15, France; II Department of Clinical Biochemistry, Medical Centre, University of G6ttingen, 3400 
Gfttingen, Germany; and I Membrane Biology Laboratory, Institute of Molecular and Cell Biology, National University of 
Singapore, Singapore 0511, Singapore 

Abstract. The carboxyl-terminal Lys-Asp-Glu-Leu 
(KDEL), or a closely-related sequence, is important 
for ER localization of both lumenal as well as type II 
membrane proteins. This sequence functions as a re- 
trieval signal at post-ER compartment(s), but the exact 
compartment(s) where the retrieval occurs remains un- 
resolved. With an affinity-purified antibody against the 
carboxyl-terminal sequence of the mammalian KDEL 
receptor, we have investigated its subcellular localiza- 
tion using immunogold labeling on thawed cryosec- 
tions of different tissues, such as mouse spermatids 
and rat pancreas, as well as HeLa, Vero, NRK, and 
mouse L cells. We show that rabl is an excellent 
marker of the intermediate compartment, and we use 
this marker, as well as budding profiles of the mouse 
hepatitis virus (MHV) in cells infected with this virus, 
to identify this compartment. Our results demonstrate 
that the KDEL receptor is concentrated in the inter- 
mediate compartment, as well as in the Golgi stack. 
Lower but significant labeling was detected in the 
rough ER. In general, only small amounts of the 

receptor were detected on the trans side of the Golgi 
stack, including the trans-Golgi network (TGN) of 
normal cells and tissues. However, some stress condi- 
tions, such as infection with vaccinia virus or vesicu- 
lar stomatitis virus, as well as 20°C or 43°C treat- 
ment, resulted in a significant shift of the distribution 
towards the trans-TGN side of the Golgi stack. This 
shift could be quantified in HeLa cells stably express- 
ing a TGN marker. No significant labeling was de- 
tected in structures distal to the TGN under all condi- 
tions tested. After GTP3,S treatment of permeabilized 
cells, the receptor was detected in the/3-COP-contain- 
ing buds/vesicles that accumulate after this treatment, 
suggesting that these vesicles may transport the recep- 
tor between compartments. We propose that retrieval 
of KDEL-containing proteins occurs at multiple post- 
ER compartments up to the TGN along the exocytotic 
pathway, and that within this pathway, the amounts of 
the receptor in different compartments varies accord- 
ing to physiological conditions. 

p ROTEIN sorting/targeting along the exocytotic pathway 
is mediated by various types of targeting/sorting sig- 
nals (Pelham, 1989; Hong and Tang, 1993). The 

carboxyl-terminal Lys, Arp, Glu, Leu tetrapeptide (KDEL) ~ 
(HDEL in yeast) and related sequences have been shown to 
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mediate ER localization of lumenal and membrane proteins 
that have their COOH terminus within the lumenal side of 
the membrane (Hardwick et al., 1992; Pelham, 1990; Sweet 
and Pelham, 1992; Tang et al., 1992a). Recent studies argue 
strongly that KDEL or HDEL sequence functions as a re- 
trieval signal at some post-ER compartment(s) (Dean and 
Pelham, 1990; Pelham, 1988, 1991; Jackson et al., 1993). 

Our understanding of the molecular role of the KDEL se- 
quence has been enhanced significantly by the identification 
of the yeast ERD2 gene that encodes the HDEL receptor 
(Lewis et al., 1990; Semenza et al., 1990). Furthermore, the 
ERD2 gene product is also essential for proper functioning 
of the Golgi apparatus and the secretory pathway in general 
(Semenza et al., 1990). Two closely related mammalian 
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homologues have been cloned (Lewis and Pelham, 1990; 
Hsu et al., 1992; Tang et al., 1993). The deduced amino acid 
sequence predicts that the KDEL receptor is an integral 
membrane protein having seven hydrophobic regions and a 
molecular mass of ,'~ 23 kD, which has been confirmed by 
immunoblotting analysis using a specific antibody (Tang et 
al., 1993). We have recently proposed that the KDEL recep- 
tor (KDEL-R) is an integral membrane protein containing 
six transmembrane domains with both NH2 and COOH ter- 
mini on the cytoplasmic side of the membrane (Singh et al., 
1993), although a topology with seven transmembrane do- 
mains has also been suggested (Townsley et al., 1993). The 
fact that this molecule indeed functions as the KDEL recep- 
tor has now been established by evidence from genetic 
(Lewis et al., 1990; Semenza et al., 1990), biochemical 
(Dean and Pelham, 1990; Wilson et al., 1993), and cell bio- 
logical (Lewis and Pelham, 1992) approaches. An important 
question that remains unresolved concerns the ultrastruc- 
tural localization of the receptor, a question that is the main 
focus of this paper. 

An analysis of the localization of the KDEL receptor is 
complicated by the difficulty of defining the precise bound- 
ary between the rough ER and the beginning of the Golgi 
complex, which we operationally define as the compartment 
where the Golgi mannosidase I (Man I) functions. One use- 
ful way of defining this boundary in a functional sense is the 
15°C block (Saraste and Kuismanen, 1984) that inhibits the 
entry of newly synthesized membrane proteins from the ER 
into the Man I compartment (Balch et al., 1986). Within this 
framework one can now identify two distinct compartments 
through which proteins must pass before entry into the Golgi 
complex. The first is the rough ER itself, the site of synthe- 
sis, and the second is the organelle that is now generally re- 
ferred to as the intermediate compartment (IC) (Hauri and 
Schweizer, 1992; Lippincott-Schwartz, 1993). 

The IC has been identified by the use of a number of mark- 
ers that specifically localize to structures that are distal to 
the rough ER but proximal to the Man I-Golgi compart- 
ment. These markers include p53 (Schweizer et al., 1988, 
1991), p58 (Saraste et al., 1987), rab 2 (Chavrier et al., 
1990), and rab 1A (Tisdale et al., 1992). We recently de- 
scribed a novel protein, p28, that is also predominantly en- 
riched in the IC (Subramaniam, V. N., G. Griffiths, A. R. 
B. M. Yussoff, M. Ericsson, and W. Hong, manuscript sub- 
mitted for publication). The IC has also been shown to be 
the compartment where coronaviruses bud (Tooze et al., 
1988; Griffiths and Rottier, 1992; Krijnse-Locker et al., 
1994), as well as the organelle that provides the first mem- 
branes during the assembly of vaccinia virus (Sodeik et al., 
1993). 

There is now a general consensus that the IC is indeed dis- 
tal to the rough ER but distinct from the Man I compartment, 
and that the anterograde traffic into the Golgi complex is 
mediated by vesicles (Balch, 1990; Hauri and Schweizer, 
1992; Schekman, 1992). Nevertheless, considerable con- 
troversy remains about the nature of the connections between 
the rough ER and the IC. One model proposes that the IC 
is physically distinct from the rough ER, with a different lu- 
menal environment, and that traffic between the two or- 
ganelles would be mediated by vesicular traffic (i.e., two 
vesicular steps from rough ER to Golgi) (Warren, 1987; Pel- 
ham, 1989; Lippincott-Schwartz et al., 1990; Balch, 1990). 

The alternate view is that the IC is directly continuous with 
the rough ER, and that only one vesicular transport step 
would be required from the ER to the Golgi (Hauri and 
Schweizer, 1992; Griffiths and Rottier, 1992). The latter 
model would be consistent with the current view in yeast (for 
a review see Schekman, 1992). 

Our recent data argue strongly in favor of the one vesicular 
step model whereby the IC is a functional domain of the ER 
(Krijnse-Locker et al., 1994). In the latter study, we used 
cells infected with mouse hepatitis virus (MHV) as a model 
system, and we showed that this virus both buds and acquires 
the first O-linked sugar, N-acetyl-galactosamine, on its M 
membrane protein in the IC. Furthermore, conditions that 
blocked vesicular transport, such as 14°C in vivo or GTP3,S 
in vitro, had no effect on transport from the rough ER to the 
IC, although these conditions, as expected, prevented the M 
protein from acquiring Golgi sugar modifications. More- 
over, the compartment where MHV buds was enriched in 
p58, rab2, as well as in the KDEL protein PDI, which is of- 
ten considered to be exclusively found in the rough ER from 
immunofluorescence studies. The latter finding was subse- 
quently strengthened by the localization to the budding com- 
partment of a novel HDEL calcium-binding protein, ERC 
55, that was identified in HeLa cells (Weis et al., 1994). In 
all of our studies using markers of the IC, as well as using 
PDI and ERC 55, the labeling consistently extended to one 
cisterna on the cis side of the Golgi stack, although we em- 
phasize that because of the three-dimensional complexity of 
the Golgi stack, this cisterna is not apparent in all sections 
through the stack. We have proposed therefore that this cis- 
terna is part of the IC, and that the bona fide Golgi complex 
would start at the next, second cisterna (Krijnse-Locker et 
al., 1994; Griffiths and Rottier, 1992; see also Lindsey and 
Ellisman, 1985a, 1985b). 

Preliminary experiments using the immunoperoxidase ap- 
proach has revealed the presence of the KDEL-R in the ER 
and in Golgi cisternae (Tang et al., 1993). Because of the 
limitations of this technique, conclusive and quantitative 
results were not obtained. In this report, we describe our 
detailed immunogold labeling experiments using an affinity- 
purified antibody against the cytoplasmic COOH-terminal 
sequence of the KDEL-R in thawed cryosections of tissues 
and cultured cells, and particularly in the mouse L cell 
model system using MHV and in HeLa cells stably express- 
ing a trans-Golgi network (TGN) marker, a construct of the 
o~-2,6-sialyltransferase tagged on its lumenal domain with 10 
amino acids from the cytoplasmic domain of the G protein 
of vesicular stomatitis virus (VSV) (Rabouille, C., E Hunte, 
R. Kiekbusch, E. Berger, G. Warren, and T. Nilsson, manu- 
script submitted for publication). Our results demonstrate 
that the bulk of the KDEL-R is normally localized to both 
the Golgi stack and the intermediate compartment, and that 
increased concentrations reach the TGN when the cells are 
stressed either by virus infection or by extremes of temper- 
ature. 

Materials and Methods 

Cells and Viruses 
Sac(-) ceils were grown in Dulbecco's MEM supplemented with 5% fetal 
calf serum, while HeLa, NRK, and mouse L cells were grown in DME 
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medium with 10% serum. The MHV A59 was propagated in sac(-)  ceils 
and was used to infect L cells for the localization studies, with or without 
streptolysin O treatment, as described (Krijnse-Loeker et al., 1994). The 
conditions for infecting L cells with VSV-ts045 and for accumulating the 
G protein at 20"C were as desoribed earlier (Griffiths et al., 1985). For in- 
fecting cells with the WR strain of vaccinia virus see Sodeik et al: (1993). 
The use of the vaccinia recombinant expressing the M protein of  MHV is 
described earlier (Krijnse-Locker et al., 1992). The SA:48 cells are a HeLa 
cell line stably overexpressing the human a-2,6-sialyltransferase having a 
10--amino acid peptide tag (P5IM epitope) from the cytoplasmic domain of 
the vesicular stomatitis virus G protein at the lumenal (COOH) terminus 
(see Rabouille, C., E Hunte, R. Kieksbusch, E. Berger, G. Warren, and 
T. Nilsson, manuscript submitted for publication). The characterization of 
the PSD4 epitope was done according to Soldati and Perriard (1991). FOr 
the 20"C "blocks the ceils were incubated in "air medium" (Matlin and Si- 
mons, 1983) for 2 h at 20"C; for the heat shock treatment, they were put 
in the same medium for 4 h at 43°C. FOr the treatment of the SA:48 cells 
with bafilomycin AI (Bowman et al., 1984; obtained from the Kamiya Med- 
ical Co., Thousand Oaks, CA), the cells were allowed to internalize BSA- 
gold (16 run) for 3 h (pulse) followed by an 8-h chase in the absence of gold 
and in the presence of 500 nM bafilomycin A1. The cells were given BSA- 
gold (5 urn) for 10 rain before fixation to label early endosomes. To be sure 
that the bafilomycin treatment effectively neutralized low pH compartment 
parallel experiments were done at the light microscopy level using acridine 
orange (6 ttg/ml). 

Antibodies 
Antibodies against the mammalian KDEL receptor (p23) were raised in 
rabbits by injecting synthetic peptide (conjugated to keyhole limpet 
hemocyanin) corresponding to the 2 I-residue sequence of the COOH termi- 
nus (CDFFYLYITK'VLKGKKLSLPAcOOH) of p23 (Tang et al., 1993). 
Specific antibody was affinity-purified from positive antisera with the same 
peptide conjugated to a solid support. Since this COOH terminal sequence 
is identical between the two closely related mammalian KDEL receptors 
(Hsu et al., 1992), this antibody will detect both forms of the receptor, and 
our localization studies here represent a survey of total KDEL receptors. 
The peptide serum against the COOH-terminal epitope of M protein of 
MI-IV, as well as the monoclonal antibody against the NH2 terminus have 
been described before (Krijnse-Locker et al., 1994). Monocloual and poly- 
clonal antibodies against the tail (P5D4 epitope) of the VSV-G protein were 
kindly provided by Thomas Kreis (Department of Biological Sciences, 
University of Geneva, Geneva, Switzerland) (Kreis, 1986). In a few experi- 
ments using the HeLa cells, a three-step labeling protocol was used whereby 
the primary antibody was amplified by a pig anti-rabbit antibody that was 
then detected by protein A gold (see Fig. 4 A). The antibody against rabl 
was made against the purified rablA protein, a s  described by Saraste, J., 
and B. Goud (manuscript submitted for publication). This antibody also 
crossreacts with rablB (Goud, B. and J. Saraste, manuscript submitted for 
publication). Antibodies against calreticulin (CaBP3), CaBP1, and CaBP2 
purified from rat were raised in rabbits. The antigens were purified as de- 
scribed by Nguyen Van et al. (1989, 1993) and Rupp et al. (1994). Antibod- 
ies against the KDEL-COOH terminus peptide were raised as described by 
Vanx et al. (1990). A peptide was synthesized as follows, -K-X-X-X-X-X-K- 
D-E-L, where X is an equimolar mixture of A, D, H, Q, L, Y, and K. The 
peptide was coupled with the carbodimide EDC to keyhole limpet hemocya- 
nin and used for immunization of rabbits. 

Immunogold Labeling of Thawed Cryosections 
Mouse seminiferous tubules, kidney, and liver were fixed with 0.1% 
glutaraldehyde and 4% formaldehyde in 200 mM Hepes buffer, pH 7.4, for 
the first 30 rain, followed by a subsequent overnight incubation in 4% form- 
aldehyde alone. Pieces of fixed rat liver, pancreas, and kidney that bad been 
fixed in the above mixture were kindly provided by Dr. J. W. Slot (Depart- 
ment of Cell Biology, University of Utrecht, Utrecht, The Netherlands). 
Mouse L cells were infected with MHV and permeabilized with streptolysin 
O (SLO) as described previously (Krijnse-Locker et al., 1994). The latter 
publication also describes the treatment of SLO-permeabilized cells with 
GTP3,S (50/~M). HeLa cells, as well as the SA:48-HeLa cell line (see 
above), were infected with the WR strain of vaccinia virus, as before (So- 
deik et al., 1993). Veto cells were infected with the ts 045 strain of VSV 
for the 20"C experiments, as described by Griffiths et al. (1985). The cells 
grown in 6-cm dishes were rinsed with PBS and removed from the 
monolayer with either proteinase K on ice (20 t~g/ml in PBS for 2-3 min) 
or, in the case of L cells infected with MHV (without SLO), simply by 

squirting with PBS. A 16% solution of paraformaldehyde was added (final 
concentration '~4%) to these cell suspensions before centrifugation for 3 
min at 1,000 g. The supernatant was removed and 4% para~rmaldehyde 
and 0.1% glutaraldehyde in 200 mM Hepes, pH 7.4, was carefully layered 
on the pellet. The cells were fixed for 4-24 h and centrifuged at 13,000 g 
for 5 rain. The SLO-trcated cells were fixed for 30 rain with 1% glutaralde- 
hyde in 200 raM Hepes, pH 7.4, and scraped with a piece of Teflon. Pieces 
of these pellets were infused with sucrose, cryo-sectioned, and labeled with 
immunogold as described by Griffiths (1993). Double labeling was done ac- 
cording to Slot et al. (1991) using a 1% glutaraldehyde step between the two 
sets of antibodies (see also Griffiths, 1993). 

In some experiments using SLO-permeabilized cells, we found a high 
background labeling using control (irrelevant) antibodies. This was reduced 
by both diluting antibodies two- to threefold more than normal and by in- 
cubating both control (as well as the p23) antibodies in the presence of 0.1% 
Tween 20 in 2x  PBS plus 1% fish skin gelatin (Sigma Immunochemicals, 
St. Louis, MO). 

Quantitation of lmmunogold Labeling 
For the MHV-infected L cells treated with SLO, the receptor was quantified 
over the nuclear envelope, rough ER, intermediate compartment (identified 
by the presence of budding viruses), and Golgi stack. For this, 24 micro- 
graphs were taken at a primary magnification of 22,000 of systematically 
sampled regions of the cell (predominantly the perinuclear regions) that in- 
cluded any of these organelles. The denoting of label per linear trace of 
membrane was determined using intersections with a series of test lines, as 
described by Griffiths (1993). 

For quantifying the amount the KDEL-R in the cis versus the trans side 
of the Golgi stack, we used the HeLa-SA:48 cells, either uninfected or after 
infection for 9 h with the WR strain of vaccinia virus. In both cases, the 
cells were treated with SLO before fixation (as above), cryosectioned, and 
double labeled with anti-KDEL-R and a rabbit antibody against the P4D5 
cytoplasmic domain epitope of the VSV-G protein. Golgi stacks cut perpen- 
dicularly to the cisternal membranes were systematically sampled and pho- 
tographed at a primary magnification of 28,000. The labeling for the G pro- 
tein (indicative of the sialyltransferase, a TGN marker) was used to 
distinguish the trans side of the stack from the cis. An arbitrary line was 
then drawn through the stack to split the stack into cis and trans sides. 
The amount of KDEL-R labeling associated with the two sides was then 
evaluated. 

Results 

Localization of the KDEL-R in 7Issues 
We first determined the localization of the KDEL-R in early 
spermatids of the mouse since the polarity of the Golgi com- 
plex, which is involved in secreting material for the develop- 
ing acrosome, is very clearly defined in this cell (Fawcett, 
1986). Moreover, the TGN side of the stack, which is 
directly adjacent to the developing acrosome, has an ex- 
tremely high concentration of clathrin (Grifliths et al., 
1981). We therefore prepared cryosections of pieces of the 
seminiferous tubules of the mouse and labeled these with 
anti-KDEL-R. In these sections, we searched for the early 
spermatid stages in which the acrosome is beginning to form 
around the tip of the nucleus of the developing sperm. Dur- 
ing these stages, the Golgi complex is extremely pronounced 
and clearly polarized. The labeling of the Golgi stacks was 
extensive but essentially all the label was found on mem- 
branes at the cis side of the stack (Fig. 1). The TGN had ex- 
tremely low levels of labeling. However, in evaluating many 
Golgi stacks, it was clear that this low level of TGN labeling 
was much higher than that seen over the matrix of the nu- 
cleus, by definition, background. 

We next determined the localization of the KDEL-R in rat 
exocrine pancreatic acinar cells (PAC), since the morpholog- 
ical aspects of the secretory pathway are well established in 
these cells (Farquhar and Palade, 1981; Orci et al., 1991; 
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Figure 1. A thawed cryosection of a mouse early spermatid labeled with the anti-KDEL-R. Note the abundance of labeling associated 
with the cisternae on the cis (C) side of the Golgi stack. The trans/TGN (T) elements, which have extensive regions coated with clathrin 
in these cells (see Grifliths, 1981), have only very low levels of label (arrowheads). The elements can also be identified by being directly 
adjacent to the developing acrosome (A), which overlays the nucleus (N). Bar, 200 nm. 

Oprins et al., 1993). Consistent with the results in sper- 
matids, the bulk of the label for the receptor in the PAC was 
associated with one side of the Golgi stack, both on cister- 
nal, as well as tubulovesicular structures (not shown). The 
rough ER was very poorly labeled. Since the condensing 
vacuoles serve as a trans marker in these cells, we could con- 
clude that the bulk of the KDEL-R was associated with the 
cis side of the Golgi stack of PAC. We also examined the 
labeling with anti KDEL-R on sections of liver and kidney 
from both rat and mouse. In both tissues, the bulk of the label 
was on or close to theiGolgi stack and, as in the pancreas 
and spermatids, preferentially concentrated on one side of 
the stack (results not shown). 

Localization of  the KDEL-R in Uninfected Cells 

We next investigated the localization of the KDEL-R in two 
commonly used lines, HeLa (Fig. 2) and NRK (not shown). 
In both cell types a strong labeling was seen on and around 
the Golgi stack. In the majority of cells, the labeling was as- 
sociated with one cisterna on one side of the Golgi stack, as 
well as more peripheral membrane elements, which we as- 
sume to be the IC (Fig. 2 A). However, we also saw many 
examples where the Golgi stack was essentially free of label- 
ing, while the peripheral elements labeled significantly (Fig. 
2 B). Conversely, a few Golgi complexes were seen which 
had labeling throughout the stack (not shown). 

In some experiments, HeLa cells were additionally labeled 
with BSA gold before fixation to mark the late endocytic 
structures (16 nm gold) or early endosomes (5 nm gold). As 
is evident in Fig. 2, A and B, these organelles were invariably 
devoid of any label for the KDEL-R. 

Localization in L Cells Infected with M H V  

We have recently demonstrated that the COOH-terminal 21- 

residue sequence of the KDEL-R (the peptide epitope) is on 
the cytoplasmic side of the membrane (Singh et al., 1993) 
and that some cytosolic factor(s) may specifically mask the 
epitope (Tang et al., 1994). These observations suggest that 
some KDEL-R epitopes might not be accessible to the anti- 
body because of masking by either cytosolic factor(s) or, in 
some structures, because of the high packing of membrane 
(e.g., the rough ER system in the PAC). To overcome these 
potential problems, we used an alternative approach, de- 
scribed recently (Krijnse-Locker et al., 1994), to investigate 
the subcellular localization of the KDEL-R. Mouse L cells, 
both uninfected as well as after infection with MHV for 6 h, 
were permeabilized with SLO to remove the bulk of the 
cytosol and the putative soluble masking factor(s). The ceils 
were then fixed and thawed cryosections were processed for 
immunogold labeling. This approach not only facilitates the 
visualization of detailed membrane structures (Krijnse- 
Locker et al., 1994), but it also allows us to identify the in- 
termediate compartment, marked by the budding profiles of 
MHV. There was variable labeling throughout the Golgi 
stack (Fig. 3, D and E). In most cases, essentially the entire 
Golgi stack was heavily labeled with gold particles (Fig. 3 
E). There was also a strong labeling of the IC/MHV budding 
compartment (Fig. 3, A-C). A significant amount of gold 
particles were also detected in the rough ER (Fig. 3, A and 
D) and the nuclear envelope (Fig. 3 E), although the extent 
of the labeling was clearly less than that seen over the IC and 
Golgi stack. 

To document the localization of the KDEL-R more clearly, 
the immunogold labeling of the KDEL-R in MHV-infected 
mouse L ceils was quantitated as described in the Materials 
and Methods (Table I). The specific density of the label (gold 
per micrometer of membrane) was highest in the IC/MHV 
budding compartment. The Golgi stack had slightly less but 
comparable amounts of gold particles. The gold density of 
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Figure 2. Labeling of HeLa cells for the KDEL-R. These cells were allowed to internalize two different sizes of BSA-gold particles before 
fixation. First, a 16-rtm particle was chased overnight into late endosomes and lysosomes (L), and second, a 4-nm particle (arrows) was 
internalized for 5 min into early endosornes (E). The membranes of the endocytic compartments are invariably devoid of label for the 
KDEL-R. (A and B) Two typical but different labeling patterns. In A, the label is predominantly associated with cisternae on one side 
of the Golgi stack (G), whereas in B, the stack is essentially free of label, while the peripheral elements label (arrowheads). In A, the 
clustering of the label is caused by the use of an intermediate pig anti-rabbit antibody step that amplifies the signal from the bound antibody. 
M, mitochondrium; N, nucleus. Bars, 100 nm. 

the IC and the Golgi stack is severalfold higher than the aver- 
age of the rough ER system (rough ER and nuclear enve- 
lope). No label was detected on the plasma membrane in this 
sampling analysis. These quantitative results further illus- 
trate that the receptor is highly enriched in both the IC and 
the Golgi stack with significant amounts in the rough ER 
system. 

We also labeled sections of SLO-treated, uninfected L 
cells. The labeling pattern was qualitatively similar to that 
seen after infection (see below, Fig. 7). When L cells either 
with or without infection were not treated with SLO, the 
labeling pattern was similar but there was significantly less 
labeling than seen in the presence of SLO (not shown). We 

assume that this is caused by a decrease in accessibility of 
the antibody to the antigen in the fixed cells that are not 
treated with SLO. 

Establishment o f  rabl as an Intermediate 
Compartment  Marker 

In MHV-infected L cells, there is considerable amounts of 
the KDEL-R in the IC, defined as the membrane structures 
where the virus assembles. To document this point more 
clearly in uninfected cells, we used an affinity-purified anti- 
body against rabl since preliminary experiments showed that 
this antibody was an excellent marker of the IC. 
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Figure 3. Labeling of SLO-permeabilized, MHV-infected mouse L cells with anti-KDEL-R. Note the abundant labeling of the IC, identified 
by the presence of virions (V), many of which are in the process of budding (small arrowheads). The labeling of membranes of the compart- 
ment around the virions is especially clear in B and C In most (E), but not all cases (D), the Golgi stack (G) is also strongly labeled. 
There is also detectable labeling of the RER (R) in A and D, as well as the nuclear envelope in E. N, nucleus. In D, the large arrowhead 
points to a possible continuity between the IC and the RER. In E, the large arrowheads denote labeling of a fenestrated cisterna on one 
(presumably the cis) side of the Golgi stack. Bars, 100 nm. 

Table L Quantitation of the KDEL Receptor Labeling of 
L Cells Infected with MHV and Treated with SLO 

Compartment Goid/~m membrane* 

Nuclear envelope 0.8 5:0.2 
Rough ER 1.6 5:0.2 
Intermediate compartment 
(budding MHV) 5.3 5:0.9 
Golgi stack 4.2 5:0.7 
Plasma membrane 0 

*These data represent the average of 24 micrographs for each structure. Num- 
bers give the mean and the standard error of the memas. 

A number of studies have established that the GTP-binding 
protein rabl or its yeast homologue, YPT-1, is involved in ER 
to Golgi transport (Schekman, 1992; Tisdale et al., 1992). 
In a recent paper, Pind et al. (1994) showed by immunoelec- 
tron microscopy that rabl is enriched in the tubular-vesicular 
structures where the G protein of VSV is enriched when ER 
to Golgi transport is blocked. By immunofluorescence mi- 
croscopy these structures colocalized with p58, the marker 
of  the IC. Whereas the well-established markers of  the IC 
such as p58/p53 or rab2 are often in relatively low levels for 
immunogold labeling, when we tested an affinity-purified an- 
tibody against rabl, we noticed that this marker appeared to 
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Figure 4. Cryosections of MHV-infected L cells treated with SLO. The sections were double labeled for rabl (small arrows, 5 nm gold) 
and p58 (small arrowheads, 10 nm gold). Note the extensive labeling for rabl on the membranes associated with the budding virions (large 
arrowheads). This labeling extends to parts of the nuclear envelope (B), as well as to one or two Golgi cisternae (C). p58 labels the same 
structures, albeit with less intensity. The rough ER (R) is relatively poorly labeled for both rabl and p58. A possible continuity between 
the RER and the IC is indicated in A (large arrow). The asterisk in C shows an electron-dense "vesicular domain" of the IC. Bars, 100 nm. 
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be much more abundant in the IC than the previously used 
markers. 

We first asked whether rabl colocalized with p58 and with 
the membranes where MHV bud in L cells infected with this 
virus and permeabilized with SLO. As shown in Fig. 4, there 
was extensive labeling for rabl in all the membrane struc- 
tures that we had previously identified as having a role in the 
budding of the virus, including parts of the nuclear envelope 
(Fig. 4 B). The labeling for rabl colocalized with p58, but 
it was much more extensive. There were detectable but 
significantly lower levels of labeling for both markers over 
the rough ER (Fig. 4, A and B). The rabl labeling also ex- 
tended to one or two cisternae on the cis side of the Golgi 
stack, which also contained budding virion profiles. Rabl 
and p58 also colocalized in uninfected L cells treated with 
SLO, and the amount of labeling for both markers was very 
similar to the levels seen in infected cells (Fig. 5 A). Fig. 5 
A documents the extensive network of interconnected mem- 
brane structures that extend considerable distances away 
from recognizable Golgi stacks. This network comprises 
many different morphological structures. The large arrow in 
Fig. 5 A points to a continuity between an apparently tubular 
structure with a larger, more electron-dense domain of the 
IC. Vesicular buds that have the morphological features ex- 
pected of COP coats are also apparent on the IC (Fig. 5 A). 
In Fig. 5 B, the extent of rabl labeling of Golgi associated 
cisterna(e) is apparent. 

Colocalization of  the KDEL-R with KDEL Ligands 
and rub1 

In our previous study, we showed that the KDEL-containing 
protein disulfide isomerase (PDI) labeled not only the rough 
ER, but also the IC, extending to one cisterna on one side 
of the Golgi stack (Krijnse-Locker et al., 1994). As shown 
in Fig. 6, the PDI labeling also colocalized with rabl in an 
uninfected L cell treated with SLO, both extending to one 
Golgi cisterna. This point was documented further by using 
antibodies against a spectrum of KDEL proteins (Nguyen 
Van et al., 1989; Peter et al., 1992), including the calcium 
binding proteins CaBP1, CaBP2, and CaBP3 (calreticulin), 
as well as a generic anti-KDEL peptide antibody. The local- 
ization of these proteins in infected (not shown) and unin- 
fected cells (Fig. 7) was indistinguishable from that for PDI 
with a strong labeling of the rough ER, nuclear envelope, 
and the IC, extending in some sections to one, and occasion- 
ally two Golgi cisternae (not shown; see below). Fig. 7 
shows representative examples of the double labeling of 
KDEL-R and either the anti-KDEL peptide antibody (Fig. 
7, A and B) or anti CaBP1 (Fig. 7 C) in uninfected ceils per- 
meabilized with SLO. Whereas the Golgi stack is, for the 
most part, unlabeled for the KDEL proteins, significant lev- 
els of labeling are usually found in one and occasionally two 
cisternae, as well as in typical IC membranes on one side of 
the stack (Fig. 7, A-C). These membrane structures also la- 

Figure 5. Cryosections of an uninfected L cell permeabilized ~vith SLO. (A) Double labeling for rabl (small arrowheads, 10 nm gold) 
and p58 (arrows, 5 nm gold). Note the extensive nature of the IC extending to one side of the Golgi stack (G). The large arrow shows 
a continuity between a narrow, presumably tubular domain with a larger, more electron-dense vesicular profile of the IC. The large arrow- 
heads show coated buds that are most likely to be COP. (B) Single labeled for rabl, a continuity between the stack and a curved, cisternal 
element labeled for rabl is shown. Bars, 100 nm. 
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Figure 6. Colocalization of rabl and PDI in an SLO-treated, uninfected L cell. Rabl (arrowheads, 10 nm gold) colocalizes with PDI (arrows, 
5 nm gold) in membrane structures close to the cis side of the Golgi stack, including one cisterna. N, nucleus; C, putative clathrin bud. 
Bars, 100 nm. 

beled significantly for the KDEL-R (Fig. 7, A-C). However, 
the labeling of the latter often extends throughout the Golgi 
stack, although on average, the bulk was concentrated on the 
cis side of the stack, as for the other cell types examined. 
From this analysis, we conclude that the distribution of 
KDEL ligands and the KDEL-R significantly overlap in IC 
structures, including cisternal domains on one side of the 
Golgi stack. 

The extent of colocalization of the KDEL-R with rabl was 
next analyzed by double labeling of cryosections of SLO- 
permeabilized, uninfected L cells. As is evident in Fig. 8, 
there was extensive colocalization of these two proteins, a 
phenomenon most prominently seen on one side of the Golgi 
stack and in the IC, evident as membrane structures extend- 
ing from the stack. The KDEL-R also tended to label the 
whole stack (Fig. 8, A-C), albeit with a high variability from 
one stack to the next, as before. The three-dimensional com- 
plexity of the Golgi complex is especially evident in Fig. 
8 D, where a cisterna labeled for both rabl and the KDEL-R 
appears to wrap around two unlabeled cisternae. This double 
labeling analysis is consistent with the results of the MHV- 
infected cells, with both sets of experiments arguing strongly 
for a significant concentration of the KDEL-R in the IC and 
in the Golgi complex. 

Labeling of the KDEL-R in the TGN of Cultured Cells: 
Effect of Virus Infection, Temperature, and pH 
The data from tissue sections, and especially the early sper- 

matids, argue that the levels of the KDEL-R in the TGN are 
extremely low when compared to the amounts seen on the 
cis side of the stack. The same impression was obtained in 
NRK and HeLa ceils. In contrast, in the L cells infected with 
MHV (and to a lesser extent also in uninfected L cells), it 
seemed that there was more labeling over the whole Golgi 
stack. However, we were not confident that we were visualis- 
ing the TGN under this condition. We therefore used two 
well-characterized model systems where the TGN is more 
distinct. 

The first system was VSV-infected cells that have been left 
at 20°C for 2 h. Under this condition, the bulk of the G pro- 
tein accumulates predominantly in the TGN, which enlarges 
considerably while the Golgi stack shrinks (Griffiths et al., 
1985, 1989). In addition to the TGN, significant amounts of 
G protein may also accumulate throughout the Golgi stack. 
Here, we used mouse L ceils that were infected with a ts045 
strain of VSV at 37 ° for 1 h, switched to 39 ° to accumulate 
the G protein in pre-Golgi structures, and then put at 20°C 
for 2 h in the presence of cycloheximide (Grifliths et al., 
1985). When sections of these preparations were double- 
labeled for the G protein (using antibodies against either the 
lumenal or cytoplasmic domains) and the KDEL-R, there 
was extensive colocalization of both markers (Fig. 9). In 
many parts of these cells, the distinctive features of the TGN 
could be easily recognized, and some of these regions had 
relatively high levels of labeling for the KDEL-R (Fig. 9). 

The second model we tested was vaccinia virus infection. 
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Figure 7. Partial colocalization of KDEL proteins (arrowheads, 10 nm gold) with the KDEL-R (KR) (arrows, 5 nm gold) in SLO-treated, 
uninfected L cells. (A and B) An anti-KDEL peptide (KDEL) is used while C shows labeling for CaBP1 (BPI). While the.rough ER is 
strongly labeled for all KDEL proteins (shown for CaBP1 in C), it has only very low levels of labeling for the KDEL-R (no labeling evident 
in C). In structures directly adjacent to the stack, including the first cisterna, there is extensive colocalization of both the KDEL ligand 
and the KDEL-R. The latter also extends into more central regions oftbe stack. The arrowheads indicate putative COP buds. l~ars, 100 nm. 

Whereas the early stages of the virus acquire their mem- 
branes from the IC to form the intracellular mature virus 
(IMV), at a late stage in the infection, the IMV becomes en- 
wrapped b y  a cisterna that originates from the TGN 
(Schmelz et al., 1994). In sections of cells infected for >8 h 
with vaccinia, these wrapping membranes can easily be 
identified. The use of a vaccinia recombinant expressing the 
M protein of MHV gave us a second marker for the TGN 
since, after a cycloheximide chase, the bulk of this protein 
in this system is localized to the trans-Golgi/TGN under 
these conditions (Krijnse-Locker et al., 1992). Sections 
were made of L cells infected for 8 h with the M protein 
recombinant vaccinia virus. These were double labeled for 
the KDEL-R and for the M protein. The two proteins exten- 

sively colocalized and this colocalization extended to the 
membranes enwrapping the virions (not shown; see below). 

Thus, in two different viral systems, the KDEL-R ap- 
peared to be found in extremely high amounts in the TGN. 
This result was clearly at variance with the very low levels 
detected on the trans side of the stack, both in the tissues and 
the uninfected HeLa and NRK cells. Since the KDEL-R la- 
beled the whole stack in the MHV-infected L cells, these 
data collectively suggested that, after viral infection, the 
distribution of the KDEL-R shifts from the cis side towards 
the TGN. 

To unequivocally identify the TGN in an uninfected cul- 
tured cell, we used a HeLa cell (SA:48) stably expressing the 
cDNA encoding the human ot-2,6-sialyl transferase tagged 
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Figure 8. Colocalization of the KDEL-R (KR; 5 nm gold) with rabl (10 nm gold) in SLO-permeabilized, uninfected L cells. Note that 
both markers codistribute over extensive regions adjacent to the Golgi stack (G), and this colocalization extends also to one (or two) cister- 
nae of the stack. In D, note the bending of one cisterna, labeled for both markers, around the central cisternae. N, nucleus. Bars, 100 nm. 

on the lumenal side with the P5D4 epitope (Kreis, 1986) 
from the cytoplasmic domain of the VSV-G protein. The 
sialyl transferase is known to be localized to the TGN (Roth 
et al., 1985), and this construct is efficiently targeted to the 
TGN by all criteria tested (Rabouille, C., E Hunte, R. Kieks- 
busch, E. Berger, G. Warren, and T. Nilsson, manuscript in 
preparation). When sections of these cells were double la- 
beled with the anti-KDEL-R and a polyclonal antibody 
against the G protein tail epitope, the bulk of the KDEL-R 
did not colocalize with the structures enriched in the 
sialyltransferase construct (Fig. 10 A). However, a small, but 
significant m o u n t  of labeling did colocalize (not shown; see 
Table I/). In contrast, in SA:48 cells infected with the vac- 
cinia virus recombinant expressing the M protein of MHV, 
there was significantly higher labeling for the KDEL-R in the 
trans cisteruae/TGN (Fig. 10, B and C). 

The quantitative evaluation of these data from SLO- 
treated cells indicate that, whereas only 17 % of the KDEL-R 
is on the trans side of the stack in the uninfected cells, after 
vaccinia infection, the bulk (62%) was now shifted to the 
trans side (Table 1I). 

To test whether the observed shift of the KDEL receptor 

towards the trans side of the stack was a specific response 
to viral infections, or rather a general response to cellular 
stress, we cultured uninfected SA:48 cells under two differ- 
ent extremes of temperature, 20°C (2 h) or heat shock, 43°C 
(4 h). These cells were then prepared for immunocytochem- 
istry and double labeled as before for the KDEL-R and the 
G protein tag. A quantitative analysis of these experiments 
gave the following results. After the 20°C incubation, 56% 
of the Golgi stack-associated labeling for the KDEL-R was 
detected on the trans side, while after the heat shock treat- 
ment, the corresponding value was 46 %. These results sug- 
gest that the shift of the KDEL receptor towards the TGN 
side of the stack may be a general response to conditions of 
cellular stress. 

A recent paper from the Pelham group has provided in 
vitro data showing that binding of KDEL ligands to permea- 
bilized Golgi membranes is highest at acidic pH (optimal pH. 
'~5) (Wilson et al., 1993). We therefore asked whether the 
localization of the KDEL receptor was affected by bafilomy- 
cin A1, a specific inhibitor of the vacuolar proton ATPases 
(Altendorf et al., 1989). For this, the SA:48 HeLa ceils were 
filled with 16-nm gold-BSA (to mark late endosomes and 
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Figure 9. Double labeling of SLO treated L cells infected with the ts 045 VSV and switched to 20°C (plus cycloheximide) using anti- 
KDEL-R (KR; arrowheads, 10 nm gold) and anti-G protein spike (GP; small arrows, 5 nm gold). Note the extensive TGN elements (T) 
that label significantly for both the G protein and for the KDEL-R. The close packing of G protein into morphologically distinct quasicrystal- 
line assays in the TGN at 20°C has been previously documented (see Griitiths et al., 1985, 1989). These assays (parallel bars), as well 
as the numerous buds that accumulate (/arge arrows), are diagnostic features of the TGN under this condition. The G protein labeling 
also extends throughout the stack although it is often lower on the cis side (note the stack on the lower left part of A). Some residual G 
is also present in the rough ER (R), and a small amount evidently leaked to the plasma membrane (P). Bars, 100 nm. 

lysosomes, after an overnight chase) and subsequently with 
4-nm gold-BSA for 5 min (early endosomes) before fixation. 
For the last 8 h before fixation, the cells were treated with 
500 nM bafilomycin A1. This treatment effectively neutral- 
ized low pH compartments since by light microscopy we ob- 
served the loss of acridine orange staining of endosomes/ 
lysosomes (results not shown). The endocytic compartment- 
marked, bafilomycin-treated, SA:48 cells were then double- 
labeled with anti G tail (6 nm gold) and anti-KDEL-R (10 
nm gold). Under this condition, there was no significant 
labeling of any endocytic structure (not shown). When we 
quantitated the KDEL-R labeling over the Golgi stack, as 
above, there was no change in the distribution of the receptor 
(with 18% of the receptor on the trans side of the stack and 
82 % on the cis). These data argue that bafilomycin has no 
effect on the distribution of the KDEL-R. 

Localization of  the KDEL-R to [3-COP Buds~Vesicles 

The nonclathrin COP vesicles are widely believed to facili- 
tate transport between the ER and the Golgi complex, as well 
as intra-Golgi transport (Balch, 1990; Rothman and Orci, 
1992). When permeabilized cells or in vitro Golgi fractions 
are treated with GTPTS, a large increase can be seen in the 
number of COP-containing buds and/or vesicles (Rothman 
and Orci, 1992; Duden et al., 1991). In our recent study, we 
could show that after GTP3,S treatment of SLO-permeabi- 
lized mouse L cells, many of the B-COP-containing vesicu- 
lar buds were continuous with the membranes of the IC 
(Krijnse-Locker et al., 1994). We therefore postulated that 
these COP vesicles are responsible for the first vesicular 

transport step in the biosynthetic pathway, a step that medi- 
ates transport from the IC to the Golgi compartment, where 
Man I is expected to be localized. 

Since the KDEL receptor would be expected to be con- 
tinuously trafficking between the IC and the Golgi complex 
we asked whether this transport step might also be mediated 
by COP vesicles. We therefore prepared L cells that were ei- 
ther not infected or infected with MHV for 6 h and permeabi- 
lized with SLO in the presence of 50 #M GTPTS to facilitate 
the identification of these COP buds/vesicles. These cells 
were sectioned and double labeled with antibodies against 
the KDEL-R and B-COP. After GTP-yS treatment, there was 
extensive proliferation of buds/vesicles that labeled with 
anti-B-COP in single labeling studies (not shown). When 
the sections of this preparation were double-labeled with anti- 
B-COP and anti-KDEL-R, there was extensive colocaliza- 
tion of the two markers (Fig. 11, A-C). In MHV-infected 
cells, many of these buds were continuous with the IC, de- 
fined as membrane profiles into which the MHV assemble 
(Fig. 11 D; see Krijnse-l_x~ker et al., 1994). Thus, a 
significant fraction of the COP buds containing detectable 
amounts of KDEL-R labeling appear to be derived from the 
IC. The absence of appropriate (early) Golgi markers made 
it difficult, as in our previous study, to identify the COP 
buds/vesicles that originate from Golgi compartment(s). 

To document this result more clearly, we carried out a 
quantitative analysis. For this, the GTP-yS-treated cells were 
double labeled with anti-KDEL-R and anti-B-COP. Using 
the B-COP labeling to identify the buds/vesicles, the number 
of COP vesicles that gave at least one gold particle for the 
KDEL-R were counted (total 200 buds/vesicles). This anal- 
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Figure 10. Labeling of HeLa SA:48 cells with anti-KDEL-R (KR; small arrows, 10 run gold) and the anti-G tail, which detects the siaiyl 
transferase-G hybrid protein (S/U; arrowheads, small gold). A is from uninfected cells, while B and C are from vaccinia-infected ceils. 
In B the KDEL-R is labeled with 15 nm gold and the G is labeled with 10 nm gold, while in C it is KDEL-R (10 nm) and G protein 
(5 nm). The bulk of the KDEL-R labeling is on the cis side of the Golgi (C) stack in uninfected cells, but the distribution shifts towards 
the TGN after vaccinia infection. Bars, 100 nm. 

Table II. Quantitation of the KDEL Receptor in 
SLO-treated HeLa SA:48 Cells Expressing the G 
Protein-Sialyl Transferase Hybrid Molecule* 

Total Gold 
particles 

cis side~ t trans sidet 

Percent of 
KDEL-R on 

trans side 
of stack 

Uninfected cells 
(n = 28; Golgi stacks) 151 30 16.6 

Vaccinia infected 
(n = 22; Golgi stacks) 44 72 62.0 

*The cryosections were double labeled with anti-KDEL-R (10 nm gold) and 
a rabbit anti-G protein tail (I)4; 5 nm gold). 
~'he cis and trans sides were distinguished using the 5-nm gold labeling, and 
an imaginary line was used to define the middle of the stack. 

ysis showed that 24 % of these vesicles were labeled for the 
KDEL-R, whereas on average, only 4% of the COP-coated 
buds were labeled using two irrelevant antibodies against 
vaccinia,virus proteins. We conclude that a significant 
amount o f  the KDEL receptor can be detected in COP 
buds/vesicles after the GTP'yS treatment. Using double 
labeling Studies, we also found a significant labeling for rabl 
on these COP/bud vesicles (results not shown). The latter re- 
sult is consistent with the recent data of  Peter et al. (1993) 
and Pind et al. (1994). In the absence of  the GTP3,S, there 
were far fewer COP buds/vesicles, which made it much more 
difficult to evaluate whether significant amounts of  the 
KDEL-R were also present in these structures under normal 
conditions. 
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Discussion 

The Distinction be6veen the Intermediate 
Compartment and the Golgi Complex 

We have recently presented evidence that the intermediate 
compartment between the rough ER and the Golgi stack is 
essentially a specialized subdomain (or domains) of the ER 
from which COP vesicles destined for the Golgi complex 
originate (Krijnse-Locker et al., 1994). We operationally 
define the first of the Golgi compartments as that where Man 
I functions. This notion would be consistent with the fact that 
this is the first N-linked oligosaccharide modification seen 
after release of the 15°C block (which defines the ER to 
Golgi boundary) (Balch, 1989). In the present paper, we pro- 
vide additional support for our model. First, we show that 
rabl is an excellent marker for the IC since it precisely 
colocalizes with both p58 (which is a less abundant marker) 
in both uninfected cells and in MHV-infected cells. In many 
cases, the labeling for rabl extends to the first (and occasion- 
ally two) cisternae of the Golgi stack. Further, we provide 
additional evidence that KDEL proteins are also enriched in 
the IC. In most cases, these KDEL proteins are only in very 
low amounts in central parts of the Golgi stack. It should 
again be emphasized that a more definitive definition of the 
boundary between the IC and the bona fide Golgi complex 
awaits the availability of high titer antibodies against early 
Golgi proteins. A consequence of this problem is that it is 
difficult at present to estimate how much of the rabl is found 
in the Golgi compartments distal to the IC. 

The Localization of  the KDEL-R 

In every cell type we investigated in this study, there was a 
high concentration of the KDEL-R on the cisternae localized 
to the cis aspect of the Golgi stack. Under normal, steady- 
state conditions, our data argue that only low levels of the 
receptor are found in the trans cisternae and the TGN. Under 
no condition did we detect any significant amounts of this 
protein in any compartment distal to the TGN. 

In many, but not all of the cell types we examined, the 
labeling extended to membrane elements peripheral to the 
Golgi stack. The bulk of this labeling was localized to 
the IC, which we could convincingly identify in the SLO- 
permeabilized, MHV-infected L cells by the presence of bud- 
ding virions. In these cells, the concentration of the receptor 
in the IC, as estimated by quantitation of the immunogold 
labeling, was similar to that observed in the Golgi stack. In 
these cells, we could also detect a significant (albeit fivefold 
lower than the IC/Golgi) labeling of the rough ER and a still 
lower level in the nuclear envelope. In these SLO-treated 
cells, the accessibility for the cytoplasmic epitopes of the 
KDEL-R for the antibody was clearly enhanced on the sec- 
tions. This was evident from a comparison of the labeling of 
permeabilized with nonpermeabilized cells. Therefore, in 

the absence of the permeabilization step to remove cytosolic 
components, the anti-KDEL-R may have significantly less 
accessibility to its antigen on the section. This point should 
be considered in evaluating the absence of detectable label- 
ing in the rough ER of cells such as the pancreatic acinar 
cells. 

We were initially surprised in this study to see such high 
levels of labeling for the KDEL-R in the Golgi stack and in 
the IC, levels which approached those seen for viral spike 
proteins in the Golgi complex of infected cells. However, a 
recent study by Wilson et al. (1993) estimated from the num- 
ber of KDEL binding sites available in alkali-treated rat liver 
Golgi fractions that the KDEL receptor would constitute 
•1.3 % of the mass of total Golgi membranes. These data, 
in conjunction with our results, indicate that the receptor is 
a highly abundant protein of both the Golgi complex and 
the IC. 

The validity of using the MHV budding compartment as 
a marker of the IC was supported by our analysis of rabl. 
This marker colocalized with the MHV budding compart- 
ment and with p58 in both infected and uninfected cells. 
Whereas the density of immunogold labeling seen for rab2, 
p58/p53 is usually relatively low, the afffinity-purified anti- 
body against rabl gave unexpectedly strong labeling of the 
extensive peri-Golgi membrane structures. It also facilitated 
our appreciation of the heterogeneous nature of the IC since 
it labeled many different kinds of morphological entities 
within what we consider to be the IC network in uninfected 
cells. In the absence of such a marker, many of the electron- 
dense elements (Figs. 5 A and 7 A) might easily be mistaken 
for parts of the endocytic pathway. The use of this marker es- 
tablished beyond doubt that, also in uninfected ceils, consid- 
erable amounts of the KDEL-R can be localized to the IC 
at steady state. 

Shift of  the KDEL-R to the TGN under Conditions 
of  Stress 

While the levels of the KDEL-R in the TGN of all cell types 
we examined under normal conditions were relatively low, 
our data suggest that when the cells are infected with viruses 
or treated at low or high temperatures, the protein shifts 
its distribution such that much higher levels are found in 
the TGN. These observations suggest that the shift of the 
KDEL-R towards the TGN may be a general response of the 
cell towards conditions of stress. It should be noted that, for 
all of the virally infected cells we used, host protein synthesis 
is effectively switched off. In these cases, the redistribution 
of the KDEL-R must be independent of host protein synthe- 
sis. Further studies will be necessary to determine whether 
this is a general response of ceils to situations of stress, as 
well as to work out the functional significance of such a shift 
in distribution. 

Although the KDEL-R is normally present at lower levels 
in the TGN as compared to the IC and the Golgi stack, its 

Figure 11. Sections of uninfected (A and B) or MHV-infected (C and D) L cells treated with SLO followed by GTP).S and double labeled 
with anti-KDEL-R (KR; 10 nm gold) and anti-B-COP (arrows, 5 nm gold). The COP buds/vesicles that label for the KDEL-R are indicated 
by arrowheads..C denotes putative clathrin coated buds/vesicles. In C and D, the structures where the assembling virions are found (large 
arrows, MHV) are continuous with buds/vesicles that label for B-COP and for the KDEL-R. The large arrowhead in C indicates the network 
of intermediate filaments that often become visible after SLO extraction. Bars, 100 nm. 
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existence in the TGN may play a functional role. The TGN 
is the major site where the endocytic pathway converges with 
the exocytic pathway (Griffiths and Simons, 1986; Duncan 
and Kornfeld, 1988; Neefjes et al., 1988; Green and Kelly, 
1990), and recent studies have shown that the effects of some 
toxins, which enter the cell via the endocytotic pathway, 
depend on their COOH-terminal, KDEL-like sequence 
(Chaudhary et al., 1990; Pastan et al., 1992 and references 
therein; Pelham et al., 1992 and references therein). Indeed, 
the cytotoxic activity of some toxins could be enhanced 
by having the KDEL sequence on the COOH terminus 
(Seetharam et al., 1991). Furthermore, a KDEL-containing 
ER glycoprotein, calreticulin (CaBP3), acquires significant 
amounts of galactose, a trans-Golgi modification, in rat liver 
(Peter et al., 1992). These observations, in conjunction with 
the localization of some KDEL-R to the TGN, suggest that 
KDEL receptor-mediated retrieval from this compartment 
may be involved in the transport of these toxins to the ER, 
where translocation to the cytosol has been proposed to oc- 
cur (Pastan et al., 1992; Pelham et al., 1992). A recent study 
by Sandvig et al. (1992) has now directly demonstrated that 
endocytosed Shiga toxin could be transported to the ER, 
most likely via the TGN and the Golgi stack. 

The Role of COP Vesicles in KDEL 
Receptor Trafficking 
There is now compelling evidence that COP vesicles mediate 
both ER to Golgi, as well as intra-Golgi traffic (Pepperkok 
et al., 1993; Peter et al., 1993; Rothman and Orci, 1992). 
In permeabilized cells, the budding and/or fusion of these 
vesicles can be arrested with GTP3,S, a treatment that leads 
to a considerable increase in the frequency of COP vesicles 
(Krijnse-Locker et al., 1994). A significant finding in the 
present study was the presence of easily detectable levels of 
the KDEL-R in these GTP-yS-arrested COP buds and/or 
vesicles. Using the MHV (as well as rabl: see Fig. 5 A) to 
identify the IC, we can conclude that at least some of these 
buds/vesicles originate from the IC, and that they are proba- 
bly involved in anterograde traffic from the IC into the Golgi 
complex (presumably the Man I compartment). The sim- 
plest interpretation is that the "empty" receptor follows the 
normal vesicular traffic route from the ER (IC) to the Golgi. 
Whether any of the COP vesicles may also be involved in the 
retrograde trafficking pathway can only be investigated when 
a suitable system becomes available for following this retro- 
grade transport step in more detail. 

Retrieval of KDEL-containing Proteins at Multiple 
Post-ER Compartments 
The finding that a significant amount of the KDEL receptor 
is present in both the IC and the Golgi stack means that the 
receptor is concentrated in at least two distinct functional 
compartments that are connected by vesicular transport, at 
least in the anterograde direction. This observation is 
significant since it is consistent with the generally accepted 
model for KDEL receptor function. Accordingly, the recep- 
tor would bind ligand in a downstream compartment and 
recycle it back to an upstream organelle that, by definition, 
must have a different lumenal environment necessary for the 
ligand to dissociate (Munro and Pelham, 1987; Pelham, 
1988, 1989). A recent study has shown that the binding of 

KDEL ligands to Golgi membranes in vitro is enhanced at 
relatively low pH (,05) (Wilson et al., 1993). Although this 
suggests that pH may be an important factor for binding in 
vivo, this notion is hard to reconcile with other lines of evi- 
dence that argue in favor of a neutral pH in the pre-TGN com- 
partment(s) of the Golgi complex (Griffiths and Simons, 
1986; Anderson and Orci, 1988). In this study, bafilomycin 
A1 had no effect on the distribution of the receptor. While 
the precise role of pH in the binding of KDEL ligands to the 
receptor in the cell remains to be elucidated, our data argue 
that the "downstream" organelle where the KDEL-R binds its 
ligands is the Golgi complex, while the upstream (disso- 
ciation) organelle would be the IC. The number of com- 
partments comprising the Golgi is still controversial (see 
Mellman and Simons, 1992). However, the finding of low 
but variable labeling for the KDEL-R in the TGN would 
necessitate, at a minimum, one additional recycling step 
from the TGN back to earlier compartments. 
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