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Abstract: Bacterial cellulose (BC) is a valuable biopolymer typically observed in Kombucha with
many potential food applications. Many studies highlight yeast’s roles in providing reducing sugars,
used by the bacteria to grow and produce BC. However, whether yeast could enhance the BC
yields remains unclear. This study investigates the effect of yeast Dekkera bruxellensis on bacteria
Komagataeibacter intermedius growth and BC production in molasses medium. The results showed that
the co-culture stimulated K. intermedius by ~2 log CFU/mL, which could be attributed to enhanced
reducing sugar utilization. However, BC yields decreased by ~24%, suggesting a negative impact
of D. bruxellensis on BC production. In contrast to other studies, regardless of D. bruxellensis, K.
intermedius increased the pH to ~9.0, favoring the BC production. Furthermore, pH increase was
slower in co-culture as compared to single culture cultivation, which could be the reason for lower
BC yields. This study indicates that co-culture could promote synergistic growth but results in the
BC yield reduction. This knowledge can help design a more controlled fermentation process for
optimum bacterial growth and, ultimately, BC production.

Keywords: Komagataeibacter intermedius; Dekkera bruxellensis; co-culture; bacterial cellulose; molasses

1. Introduction

Bacterial cellulose (BC) is an extracellular polysaccharide biofilm matrix synthesized
by specific types of bacteria. Unlike plant-derived cellulose, BC has a high purity level, as it
does not contain lignin, pectin, and hemicellulose. Although BC structure is similar to plant
cellulose, it possesses several unique characteristics, including higher crystallinity, Young’s
modulus, tensile strength, thermal stability, elasticity, and porosity [1,2]. Furthermore,
its large surface area increases its water holding capacity and its ability to form strong
bonding with other biomaterials, enzymes, and nanoparticles [3]. These features make BC
an attractive biopolymer for many applications, especially in food industries [4]. One of
the most popular food products derived from BC is known as nata-de-coco, produced by
Acetobacter xylinum grown in coconut water [5]. BC also finds promising applications as fat
replacer [6,7], texture modifier [8], probiotic and enzyme encapsulating material [9,10], as
well as film for food coating and packaging [11,12].

Despite all the unique properties, BC’s high production cost still limits its production
at an industrial scale. BC production requires a fermentation medium rich in glucose and
other nutrients, which is costly and can account for up to 30% of the total production
cost [13]. Low BC yield and long fermentation time also contribute to the high production
cost. Therefore, an alternative cheap fermentation media and suitable microbial cultures
are paramount in low-cost BC production at an industrial scale. In recent years, sugarcane
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molasses, a by-product of a sugar refinery, has attracted broad interest as a cheaper alter-
native fermentation media for BC production. Molasses is known for its high amounts
of fermentable sugars, such as fructose, sucrose, glucose, and nutrients such as nitrogen
and vitamins, essential for BC formation. However, BC-producing bacteria’s ability to
break down sucrose, which constitutes 50% of sugars in molasses, is limited, resulting in
lower BC yield. Consequently, expensive pre-treatments would be required, such as acid,
heat, or enzymatic treatment [1], to hydrolyse the sucrose before the fermentation process,
ultimately leading to higher production costs.

BC biosynthesis is typically observed during the production of Kombucha, a beverage
obtained by fermenting tea and sugar using a symbiotic culture of yeast and acetic acid
bacteria. The synergistic interactions between these two microbial groups have been
frequently highlighted in the literature [14–17]. Yeast is known as the invertase producer
that breaks down sucrose into reducing sugars, increasing their availability to yeast and
acetic acid bacteria. These reducing sugars are then metabolized by yeast and acetic acid
bacteria into ethanol and organic acids. Glucose, the building block for BC biosynthesis, is
also used by the acetic acid bacteria to produce BC, which is observed as a floating pellicle
on Kombucha tea’s surface [14]. Although it is tempting to infer that yeast and acetic acid
bacteria co-culture could increase the BC yield, the study supporting this claim is still
limited. The yeast-acetic acid bacteria synergistic interactions described above were only
reported in the context of Kombucha fermentation, using sucrose as the sole carbon source,
with organic acids as the main product of interest [17,18]. Moreover, current literature
reporting the optimization of BC production only focus on using acetic acid bacteria in
a single culture instead of a co-culture system with yeast [1,2]. Therefore, this study
investigates the interaction between Kombucha-derived yeast and acetic acid bacteria in
a molasses medium by monitoring growth, pH changes, and reducing sugar utilization.
Since yeast was expected to increase the availability of glucose that serves as a BC building
block, the impact of yeast inoculation on BC yield was also monitored.

2. Materials and Methods
2.1. Materials

Kombucha culture was provided by PT Tujju Kombucha, Indonesia. The culture was
stored at 4 ◦C until use. Molasses was supplied by PT Andalan Furnindo, Indonesia, with
characteristics presented in Table 1. Black tea (Teh Perbawati Goalpara, Sukabumi, Indonesia),
sugar (Gulaku Murni, Indonesia), and pure caffeine (PureBulk, Roseburg, OR, USA) were
purchased from the local market in Jakarta. The pH of molasses was maintained by adding
acetate buffer prepared using acetic acid (Merck, Darmstadt, Germany) and sodium acetate
(Merck, Darmstadt, Germany). Phosphate Buffer Saline (PBS; Sigma-Aldrich, St. Louis, MI,
USA) was used for serial dilution of microbial cells. Microbiological growth media used were
Nutrient Agar (NA; Merck, Darmstadt, Germany), Potato Dextrose Agar (PDA; HiMedia,
Mumbai, India), and Hestrin and Schramm (HS) comprised of 20 g/L glucose, 5 g/L peptone,
5 g/L yeast extract, 2.7 g/L Na2HPO4, and 1.15 g/L citric acid. The bacteria and yeast growth
were controlled by supplementing the agar media with chloramphenicol (HiMedia, Mumbai,
India) and cycloheximide (Sigma-Aldrich, St. Louis, MI, USA), respectively.

Table 1. Physicochemical characteristics of molasses used.

Parameter Molasses

Colour Brown/black
Brix, % 77.6

Sucrose, % 46.9
Inverted sugar, % 50.8

Purity, % 60.8
Specific gravity, % 1.4

pH 5.1
Ash conductivity, % 0.40
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2.2. Methods
2.2.1. Kombucha Culture Adaptation in Molasses Medium

Prior to the isolation step, the Kombucha culture was adapted in the molasses medium
to ensure that only the microbes capable of growing and producing BC in molasses were
isolated. The adaptation was carried out gradually in three steps using three different
media: (A) 100% sweetened tea, (B) 50% sweetened tea and 50% molasses, and (C) %100
molasses. Medium A was prepared by boiling 10 g of black tea and 100 g of table sugar
in 1 L of type III water. Medium C was prepared by mixing 100 g of molasses with 1 L of
acetate buffer solution (200 mM, pH 4.75). Medium B was prepared by combining medium
A and C to a ratio of 1:1. Before use, each medium was filtered through filter paper 125 mm
∅ (cat no 1004 125 Whatman) and autoclaved at 121 ◦C for 15 min.

The adaptation step started by first transferring the Kombucha culture (30 mL) to
medium A (300 mL) and incubated at 30 ◦C for 7 days until the BC layer was observed.
Then, the culture from medium A (50 mL) was transferred to 500 mL of medium B. After
5 days of incubation, the culture from medium B (50 mL) was transferred to 500 mL of
medium C and incubated for 6 days at the same temperature.

2.2.2. Microbial Isolation from Adapted Kombucha Culture

Bacteria and yeast were isolated from both liquid and solid phases (BC). Liquid (1 mL)
and BC (1 g) were collected and serially diluted using PBS before culturing it on their
respective agar media. Bacteria were isolated using NA and HS agar (20 g/L glucose,
5 g/L peptone, 5 g/L yeast extract, 2.7 g/L Na2HPO4, 1.15 g/L citric acid, and 15 g/L
agar) supplemented with 0.5 mg/mL cycloheximide. Meanwhile, yeast was isolated using
PDA supplemented with 25 mg/mL chloramphenicol. The agar plates were incubated at
30 ◦C for 2–3 days. The dominant colonies were picked from the agar with the highest
dilution and subjected to several purification steps by streaking on the same agar media
used during isolation. The bacterial cells were Gram-stained before microscopic evaluation,
while yeast cells were observed without staining. The pure isolates were cryopreserved in
1.5 mL of 20% glycerol solution and kept at −80 ◦C until use.

2.2.3. Screening for BC-Producing Capacity

Five bacterial isolates (13.7.KBC.HSA, 13.7.KBC.HSB, 13.7.KBC.HSC, 13.7.KBC.HSD,
and 13.7.KBC.HSE) obtained from the previous step were screened for their ability to
produce BC. The frozen stocks were revived by plating on HS agar, followed by incubation
at 30 ◦C for 7 days. After a week, a loopful of each bacterial isolate was transferred to
25 mL of HS broth and incubated at 30 ◦C for 5 days under static conditions. After 5 days,
each isolate’s optical density (OD) was measured at 600 nm and adjusted to ~0.2, which
further served as an inoculum source. The inoculum (1 mL) was then transferred to each
well of 6-well plates containing 9 mL of molasses medium, comprising 150 g/L molasses
(70.38 g/L sucrose and 76.14 g/L reducing sugars) and 500 mg/L caffeine in acetate buffer
(200 mM, pH 4.75). After 14 days of incubation at 30 ◦C under static conditions, the BC
yield was examined, and the isolate with the highest BC producing capacity was selected
for further study.

2.2.4. Identification of Bacterial and Yeast Isolates by DNA Sequencing

Bacteria and yeast isolates were identified by sequencing the 16S rRNA gene and
the D1/D2 region of the 26S rRNA gene, respectively. The DNA template was prepared
by gene amplification using the colony PCR technique. The 16S rRNA gene was am-
plified using universal primers (27F 5′-AGAGTTTGATCCTGGCTCAG-3′ and 1492R 5′-
GGTTACCTTGTTACGACTT-3′), while the D1/D2 region was amplified using NL1 (5′-
GCATATCAATAAGCGGAGGA AAAG-3′) and NL4 (5′-GGTCCGTGTTTCAAGACGG-3′)
primers. PCR reactions for 16S rRNA gene amplification were performed under the fol-
lowing conditions: 5 min initial denaturation at 95 ◦C, 34 cycles of denaturation at 94 ◦C
for 1 min, annealing at 55 ◦C for 1 min, extension 72 ◦C for 2 min, and final extension
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at 72 ◦C for 5 min. The PCR conditions used for D1/D2 region amplification were as
follows: 10 min initial denaturation at 94 ◦C, 35 cycles of denaturation at 94 ◦C for 1 min,
annealing at 52 ◦C for 1 min, extension at 72 ◦C for 2 min, and final extension at 72 ◦C for
10 min. The PCR product was analyzed using electrophoresis with 1% w/v agarose gel in
Tris-borate-EDTA. Agarose gel was then soaked in ethidium bromide (EtBr) and visualized
under UV light. Then, the PCR products were sent to Macrogen (Seoul, Korea) for further
purification and sequencing. The sequence similarity was then determined using the
BLASTn program in the GenBank database (https://www.ncbi.nlm.nih.gov/) (accessed on
15 January 2020). The gathered sequences were used to reconstruct a neighbor joining tree
(500 bootstraps) with close and distant-related species based on the BLASTn result using
MEGAX software [19]. The distant-related species were selected based on identified fungi
and bacteria in Kombucha to maintain relevance and some reference sequences [16].

2.2.5. Bacteria and Yeast Interactions in Molasses Medium

The selected BC producing bacteria and yeast interactions were evaluated by compar-
ing their growth in single and co-culture. The experiment was conducted in parallel in
several 6-well plates. Each well contained 10 mL of molasses medium containing 150 g/L
molasses and 500 mg/L caffeine dissolved in acetate buffer (200 mM, pH 4.75). Meanwhile,
the inoculum of the selected BC producing bacteria and yeast was cultured in HS and PDB
liquid media, respectively, for 4 days under a static condition at 30 ◦C. Different inocula (5%
v/v, 10% v/v, and 15% v/v) were then added to each well. In the case of co-culture, bacteria
and yeast inoculum were combined at a ratio of 1:1. The fermentation was conducted in
a static condition at 30 ◦C for 15 days. This experiment was repeated on two separate
occasions.

2.2.6. Bacterial and Yeast Cell Enumeration

Cell enumeration was carried out by taking samples of 0.1 mL, followed by serial dilu-
tion in PBS and plating on HS supplemented with cycloheximide and PDA supplemented
with chloramphenicol for bacteria and yeast, respectively. Bacteria and yeast colonies were
enumerated after 2–3 days of incubation at 30 ◦C.

Specific growth rate µ (h−1) were calculated by Equation (1) [20]

µ =
Ln(X0 − Xt)

t− t0
(1)

where in:
Xt and X0 are the microbial population (CFU mL−1) at t and initial time, respectively
t and t0 are the t and initial time when the sample is measured, respectively
µ is specific growth rate (1 h−1)

2.2.7. BC Yield Measurement

After the fermentation, the BC was collected and oven-dried at 105 ◦C for 20 h. The
weight measurement was carried out using an analytical balance. To ensure the water was
removed entirely, this process was repeated until the stable weight was achieved. The BC
yield is expressed as the BC dry weight per volume of the fermentation medium (g/L).

2.2.8. pH and Reducing Sugar Measurement

The pH of the medium was measured using a pH meter. Sugar consumption was
monitored by calculating the remaining reducing sugar using the dinitrosalicylic acid
(DNS) method. The sample was diluted 100× with Type III water. Then, 2 mL of sample
was mixed with 1 mL of 3,5-dinitrosalicylic acid reagent using a vortex. The mixture was
boiled for 15 min and then cooled down in an ice bath before 9 mL of Type III water was
added. The absorbance was then read at 540 nm.

https://www.ncbi.nlm.nih.gov/
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2.2.9. Statistical Analysis

Significant differences among means were tested by one-way analysis of variances
(ANOVA) using XLSTAT™ version 2020.5.1 (Addinsoft, New York, NY, USA) at p < 0.05
and Tukey’s test was applied for means comparison.

3. Results and Discussion
3.1. Screening and Identification of Potential BC Producing Bacteria and Predominant Yeast

A total of 6 isolates, consisting of 1 yeast (13.7.KBC.HSF) and 5 bacterial isolates
(13.7.KBC.HSA, 13.7.KBC.HSB, 13.7.KBC.HSC, 13.7.KBC.HSD, and 13.7.KBC.HSE) were
obtained from the Kombucha culture adapted in molasses medium. All bacterial isolates
were screened for their BC producing capacity in molasses medium. The results showed
that after 14 days, bacteria isolates 13.7.KBC.HSA and 13.7.KBC.HSB produced 0.018 g/L
and 0.019 g/L of BC, respectively, which were the highest among the isolates. Although
both isolates produced a similar yield, the BC produced by 13.7.KBC.HSB was more brittle.
Therefore, 13.7.KBC.HSA was selected as a starter culture for the experiment.

Isolate 13.7.KBC.HSA was subsequently identified through 16S rRNA gene sequenc-
ing, and the result showed a 99.91% similarity with the sequence of Komagataeibacter
intermedius (Figure 1a). K. intermedius is a Gram-negative rod-shaped bacteria commonly
found in fruit juice, wine vinegar, and Kombucha [2,21]. Gaggìa et al. [22] reported the
presence of K. intermedius and Komagateibacter spp. in Kombucha regardless of the tea
types used for the fermentation (black tea, green tea, or rooibos tea). The bacteria is well-
known for its ability to produce BC with mannitol as the sole carbon source. According
to Fernández et al. [2], the K. intermedius strain isolated from a commercial wine vinegar
showed 48% higher BC producing ability than K. xylinus, a commonly used BC producing
bacteria. The BC produced was also free from impurities, exhibited a high crystallinity
index, and showed similar mechanical properties to the one produced by K. xylinus. Unlike
K. xylinus, K. intermedius is able to produce BC within a wide pH range (4–9), and maximum
production can occur within a short period in alkaline conditions [21]. In a study by Tyagi
and Suresh [1], K. intermedius demonstrated the ability to produce BC in molasses medium;
however, the yield was reduced by ~60% compared to those obtained using pure glucose
or fructose medium.

The most dominant yeast isolated (13.7.KBC.HSF) was identified through the D1/D2
region of the 26S rRNA gene sequencing and was shown to have 99.83% similarity with
the sequence of Brettanomyces/Dekkera bruxellensis (Figure 1b). D. bruxellensis is one of the
yeast species that is commonly found in Kombucha [23,24] and other fermented products,
such as beer [25], wine [26], cider [27], and kefir [28]. This yeast has a complex phenotypic,
genotypic, and population structure, which can vary based on the substrate, isolation origin,
and geographical origin, suggesting the anthropic influence of the species’ diversity [29]. D.
bruxellensis has been considered industrially important due to its high resistance to osmotic
and ethanol stress, the ability to grow in oxygen-limited environments, and low pH. It
also demonstrates the ability to produce biofilm with characteristics known to be strain-
dependent [30]. The genetic sequence analysis of different D. bruxellensis strains reveals that
they are equipped with a gene cluster comprising of a nitrate transporter, nitrate reductase,
nitrite reductase, and two Zn(II)2 Cys6 type transcription factors that enable the utilization
of nitrate as a sole nitrogen source [31–33]. Such a cluster might allow the yeast to thrive in
low-nitrogen environments like molasses. D. bruxellensis is also capable of utilizing sucrose
efficiently due to the expression of a high-efficiency sucrose transporter, which allows D.
bruxellensis to outcompete Saccharomyces cerevisiae in sucrose-based fermentations [34,35].
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3.2. Synergistic Growth of K. intermedius and D. bruxellensis in Co-Culture

As two or more microbial species co-exist, a mutualistic or antagonistic interaction
may occur since each microbe requires different nutrition and optimal growing conditions,
which lead to different growth rates. To find out which types of interactions occur between
K. intermedius and D. bruxellensis in the co-culture system, the population of both species in
single and co-culture was compared.

During the first 3 days of single culture fermentation, K. intermedius multiplied at
a specific growth rate of 0.188 ± 0.01 h−1, which increased by 14.4% in co-culture to
0.215 ± 0.01 h−1, suggesting a stimulatory effect of D. bruxellensis on K. intermedius growth
(Table 2). In co-culture, K. intermedius maintained a relatively stable population during the
first 12 days before it was decreased from 7.11 log CFU/mL to 5.85 log CFU/mL on day 15.
By contrast, when D. bruxellensis was absent, K. intermedius population started to decrease
on day 9, from 6.52 log CFU/mL to 3.42 log CFU/mL on day 15 (Figure 2a).

Table 2. Specific growth rate µ (h−1), the sugar consumption rate (g/L/d), initial production rate (g/L/d), and total BC
yield (g/L) of K. intermedius (bacteria) and D. bruxellensis (yeast) in single and co-culture.

Sample Specific Growth Rate
µ (h−1) a

Sugar Consumption
Rate (g/L/day) b

BC Production

Initial Production
Rate (g/L/day) c Total Yield (g/L) d

Single culture- K.
intermedius 0.188 ± 0.01 15.9 ± 0.01 7.33 ± 0.01 22.0 ± 0.01

Single culture- D.
bruxellensis 0.213 ± 0.18 25.8 ± 2.1 NA NA

Co-culture: 46.4 ± 3.2 5.50 ± 0.5 17.5 ±1.5
K. intermedius 0.215 ± 0.01 NA NA NA
D. bruxellensis 0.223 ± 0.01 NA NA NA

a,c Specific growth rate and initial BC production rate during the first 3 days of incubation. b Initial sugar consumption rate during the first
4 days of incubation. d Total yield produced after 15 days of incubation. Data measured for 10% inoculum size, NA: no assessment.

A similar stimulatory effect of co-culture was also observed on D. bruxellensis, indi-
cated by an increase in specific growth rate by 4.69% from 0.213± 0.18 h−1 to 0.223± 0.01 h−1

during the first 3 days of fermentation (Table 2). In co-culture, D. bruxellensis constantly
multiplied during the first 9 days, increasing its population from 5.68 log CFU/mL to 8.80
log CFU/mL. While during the same period, D. bruxellensis in single culture propagated
slower, increasing its population only by ~1 log CFU/mL from 6.05 log CFU/mL to 7.18
log CFU/mL (Figure 2b). Similar synergistic growth has also been observed between
other bacterial and yeast species involved in soy sauce [36] and milk [37] fermentation.
Such synergistic interaction could be associated with the production of metabolites such as
pyruvate, amino acids, and vitamins, essential for one’s population growth. In addition,
the transformation of potential inhibitory substances into other compounds that are less
toxic to one’s population growth could also explain such synergistic interaction [38].

3.3. The Effect of Co-Culture on Reducing Sugar Content

Yeast has been known as an important invertase producer that breaks down sucrose
into reducing sugars, which are more accessible to any microbial members of the Kombucha
consortium. BC-producing bacteria will subsequently use these reducing sugars to produce
organic acids and BC as a floating pellicle. In this study, the reducing sugar consumption
rates by K. intermedius and D. bruxellensis in both single and co-culture were monitored.
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As shown in Figure 3a, maximum reducing sugar consumption by K. intermedius and
D. bruxellensis in single culture occurred on day 8 followed by a plateau. However, the
maximum amount of reducing sugars consumed by K. intermedius only reached 36%, while
D. bruxellensis reached up to 82%, leaving ~50 g/L and ~14 g/L reducing sugars in the
media, respectively. The results confirm that D. bruxellensis could consume higher reducing
sugar than K. intermedius, which might explain its survival during fermentation (Figure 2a).
A higher reducing sugar consumption rate by D. bruxellensis was expected since it can
break down sucrose into reducing sugars, increasing their availability to both microbes.
However, the increase in reducing sugar concentration could not be observed, suggesting
that the consumption rate exceeded the production rate, resulting in a constant decrease in
reducing sugar concentration during the fermentation.
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ratio, 1:1; temperature, 30 ◦C. Means with different letters are significantly different (p < 0.05).

The reducing sugar consumption rates of K. intermedius and D. bruxellensis in single
and co-culture during the first 4 days of fermentation were calculated and compared as
presented in Table 2. In single culture, the sugar consumption rate was 62.3% higher
for D. bruxellensis as compared to K. intermedius, which was about 25.8 ± 2 g/L/day
and 15.9 ± 0.01 g/L/day, respectively. The consumption rate for D. bruxellensis and K.
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intermedius increased in co-culture by 79.8% and 191%, respectively, to 46.4 ± 3.2 g/L/day,
slightly higher than the sum of their individual consumption rate. Such an increased
consumption rate caused the depletion of nearly 80% of total reducing sugar in co-culture
within the first 4 days of fermentation (Figure 3a). The result was in agreement with
previous studies reporting the importance D. bruxellensis to make sugars more available to
K. intermedius [14,16,17].

3.4. The Effect of Co-Culture on pH Changes

In single culture, K. intermedius caused a significant pH increase from 4.74 to 9.61, while
D. bruxellensis maintained a constant pH (~4.8) throughout fermentation. On the other hand,
the pH increased more slowly in co-culture, as it took 12 days for the co-culture to reach pH >
8.0, whereas it took only 6 days for the single culture. This observation could be attributed
to D. bruxellensis’ ability to produce acetic acid [39]. However, pH increase was unexpected
with the presence of K. intermedius in both single and co-culture, since acetic acid bacteria
of the Komagataeibacter genus are well known for their ability to produce various organic
acids, such as acetic acid, gluconic acid, and glucuronic acid causing the pH to decrease.
Although acid production is less significant than K. xylinus, a decrease in pH was previously
observed by Fernández et al. [2]. Most investigations performed on BC production by K.
intermedius have reported pH reduction throughout fermentation. For instance, Lin et al. [21]
conducted a fermentation using K. intermedius FST213-1 in an HS medium with an initial
pH of 8.0 and found the pH to drop to ~4.0 after 4 days, which remained constant until the
end of the fermentation. Furthermore, Fernández et al. [2] reported a pH reduction by one
order of magnitude within 96 h when K. intermedius JF2 was cultivated in HS and HS-glucose-
mannitol media with an initial pH of 5.5 and 6.0, respectively. Similarly, a decreasing pH
trend from 4.5 to 3.0 was reported by Nguyen et al. [17] during Kombucha fermentation using
Gluconacetobacter intermedius KN89 and D. bruxellensis co-culture due to acid production. A
pH reduction was also observed using G. intermedius SNT-1 in HS medium supplemented
with pre-treated molasses as a carbon source [1].

The increasing trend in pH observed in this study could be attributed to sodium
acetate in the acetate buffer used, as previously reported by Jeffery et al. [40]. The finding
was confirmed in the present study as the pH decreased significantly (p < 0.05) from 5.98
to 4.27 within 7 days in the absence of acetate buffer (Figure 4). In contrast, a significant
increase in pH was observed in its presence, regardless of the starting pH (4.0, 4.75, and
5.5). Nevertheless, the reason that acetate buffer causes the pH of molasses medium to rise
warrants future investigations.
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temperature, 30 ◦C. Different upper-case letters indicate significant differences (p < 0.05) in BC yields.
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3.5. The Effect of Co-Culture on BC Production

BC production by K. intermedius in single and co-culture are shown in Figure 3c.
Significant growth of the BC layer in both single and co-culture was observed during the
first 3 days of fermentation. However, the production rate was higher in single culture
(7.33 g/L/day) than in co-culture (5.5 g/L/day), producing 22 g/L and 16.5 g/L of BC by
day 3, respectively (Table 2). After 3 days, BC growth in single culture reached a plateau,
while it lasted until day 12 in co-culture. By the end of fermentation, the total BC yields
obtained in single and co-culture were 22 g/L and 17.5 g/L, respectively. The results
suggest that the presence of D. bruxellensis could cause a significant reduction (p < 0.05) in
BC production (~24%) despite its stimulatory effect on K. intermedius growth (Figure 2a).
In co-culture, D. bruxellensis might have utilized a significant portion of reducing sugar,
limiting the amount of sugar available for K. intermedius to convert into BC. Another
possible reason is that D. bruxellensis might have stimulated K. intermedius to convert a
higher proportion of reducing sugar into acid production instead of BC, as previously
reported by Nguyen et al. [17]. They suggest that D. bruxellensis can increase the level of
acetic acid in the media that could provoke a feedback inhibition in the glycolysis pathway
of K. intermedius, promoting glucose conversion into glucuronic acid. The two possibilities
may explain why the pH during the early to mid-stage fermentation was more acidic
in co-culture than in single culture (Figure 3c). Furthermore, the relatively lower pH in
co-culture might provide a less favorable environment for K. intermedius to produce BC. The
results shown in Figure 4 further confirm that the highest BC yield (13.19 g/L) was obtained
when the pH increased to 7.56. In contrast, the lowest BC yield (2.60 g/L) was achieved
when the pH dropped to 4.27. This result was in accordance with the study conducted by
Lin et al. [21], which demonstrated the ability of K. intermedius FST213-1 to produce BC
within the range of pH 4–9, with pH 8 resulting in the highest BC yield (1.2 g/L). Based on
these results, it could be suggested that the BC production is more favorable in alkaline
conditions, which in this case, could be achieved by adding acetate buffer into the media.
However, the underlying mechanisms of how acetate buffer increases pH and eventually
the BC yield require further investigation.

4. Conclusions

In this study, the effect of D. bruxellensis on K. intermedius growth and BC production
was investigated. The results showed that D. bruxellensis could prolong K. intermedius’
stationary phase up to 12 days and maintain a 2.43 log CFU/mL higher population by the
end of the fermentation process. However, the BC production was compromised as the
BC yield decreased by ~24% in co-culture. Moreover, an unusual increasing pH trend was
observed as K. intermedius proliferated, associated with higher BC production. Although K.
intermedius growth could be stimulated, further investigation should be conducted to find
an optimum inoculation procedure, to prevent D. bruxellensis from interfering with the BC
production.
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