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Introduction
Gene expression reversal methodology is increasingly being 
utilized to identify potential drugs for repurposing.1-4 The 
underlying assumption of these approaches is that a disease can 
be treated by a drug that has been shown to revert the disease 
related gene expression signature (GES) back to a normal gene 
expression state. This approach has been enabled by the fast 
growth of large publically available gene expression databases 
such as GEO (Gene Expression Omnibus) at the National 
Center for Biotechnology Information (NCBI),5 the large-
scale perturbation database termed Connectivity Map 
(CMap),6 and the Library of Integrated Network-Based 
Cellular Signatures (LINCS).7-9 CMap is a resource that uses 
cellular responses to perturbations to find relationships between 
diseases, genes, and therapeutics.6 The LINCS Center for 
Transcriptomics at the Broad Institute has generated a more 
than 1000-fold expansion of CMap.10 1.3 million gene expres-
sion profiles have been generated by LINCS with L1000 tech-
nology, a high-throughput technique to estimate mRNA 
expression on a genome-wide scale.10,11 While only ~1000 
genes are determined in each L1000 experiment; a model using 
computational processing of extensive GEO gene expression 

datasets allows an estimation of the expression of genes 
(~22 000) in the remaining transcriptome. LINCS L1000 data 
can be queried using a web-enabled search interface called 
LINCS Canvas Browser (LCB).5,12

Strategies based on gene expression signatures (GES) are 
advantageous in that they do not require a large amount of a 
priori knowledge about particular disease targets.6,13,14 Gene 
expression data and pharmacologic databases can be combined 
to detect the gene expression/transcriptome reversal potency of 
drug candidates for a specific disease.15,16 Gene expression pro-
filing of drug response GES can be used to predict responses of 
drugs to disease. For example, recently, Berthelet et  al17 used 
computational screening of 90 FDA-approved anti-cancer 
drugs to identify a new BRCA independent GES that can be 
used to predict breast cancer sensitivity to cisplatin. Compounds 
that can reverse the gene expression profile of disease-related 
genes18,19 can complement those discovered via traditional tar-
get-based discovery methods. The potential of this approach 
was demonstrated by Chen et al,19 who showed that the potency 
of a drug to reverse cancer-associated gene expression changes 
positively correlates with that drug’s efficacy in preclinical mod-
els of several cancers, including liver cancer models.20 Using a 
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reverse gene expression scoring (RGES) approach, these authors 
predicted 4 compounds showing high potency to reverse gene 
expression in liver cancer,19 that they further validated as effec-
tive in 5 liver cancer cell lines. A number of recent studies have 
used the gene expression reversal approach to identify drugs for 
repurposing including for example those for a range of can-
cers,21-24 including breast cancer,25,27 psoriasis,26 and rare 
diseases.27,28

Inflammatory breast cancer (IBC) is rare, understudied, and 
the most aggressive subtype of breast cancer.29-31 IBC represents 
about 2% to 4% of all diagnosed breast cancers,32-34 however, it is 
estimated to account for as high as 8% to 10% of breast cancer 
deaths in the USA.14,33,35,36 Compared to non-IBC breast cancer 
patients, outcomes for IBC patients are worse, such as signifi-
cantly poor prognosis and survival rate.37,38 Treatment options 
for the most aggressive forms of IBC, including triple-negative 
(TN)-IBC are very limited.39,40 Recently, common diagnostic 
criteria to guide treatment and research of IBC was proposed 
based on clinical, pathologic, and imaging features.41 New treat-
ment strategies for IBC including genomic profiling are being 
pursued.42,43 Several transcriptome-wide gene expression studies 
have investigated GES for IBC compared to non-IBC.44 
However, the discovery and validation of distinct molecular and/
or genetic factors or pathways that are specific for IBC is chal-
lenging.41 An IBC-specific 79-gene expression panel enriched 
in immune pathways has been identifed,45 which includes a 

recently reported subset of adaptive stress response genes.46 A 
recent reanalysis of the 79-gene IBC signature identified a 
prominent role for MYC-mediated transcriptional activity in 
IBC.47 In another study, an analysis of TN-IBC and non-
TNIBC identified 75 and 81 gene sets that are differentially 
expressed.48 There is urgent need to develop therapeutics that 
target IBC specifically and to identify molecular targets unique 
to IBC.30,31

Here, we aimed to identify drug candidates that have the 
potential to reverse a GES compiled for IBC. We integrated 
gene expression patterns for IBC obtained from PubMed pub-
lications,45,48-52 as well as compound/perturbation-induced 
GESs obtained from open-source datasets (GSE92742) to 
identify 297 genes related to IBC. With this information, a 
computational scoring approach termed Gene Reversal Rate 
(GRR) was implemented to calculate GRRs, and used to iden-
tify drug perturbations in the LINCS database that gave the 
best gene expression reversal potential for IBC. Nineteen (19) 
drug candidates and 32 drug combinations were identified and 
are proposed as potential repurposed therapeutics for IBC.

Methods
Overall GRR drug repurposing design

The overall flow of the GRR drug repurposing method is 
shown in Figure 1. IBC specific GES were obtained from 
PubMed literature; and perturbation-induced gene expression 

Figure 1. Workflow for using Gene Reversal Rate (GRR) to identify drugs for IBC. Perturbation: Compound under specific experiment conditions such as 

dose, time-point, and cell-line (from LINCS). (A) Pipeline of IBC and perturbation GESs generation. (B) Pipeline of candidate drugs for IBC repurposing. 

Abbreviations: GES: gene expression signature; LINCS = Library of integrated network-based cellular signatures.
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profiles collected for each perturbation (drug) candidate from 
LINCS (https://lincscloud.org/). Once the IBC-GES and 
perturbation-induced gene expression profiles were obtained, 
the GRR for each drug perturbation was computed based on 
the 2 signatures. GRR, based on RGES,19 was calculated using 
the number of reversed genes divided by the total number of 
IBC-specific genes. In addition, the gene expression profiles of 
binary combinations of the drug perturbations were computed 
and analyzed against the IBC-specific GES. The GRR of 
binary combination was calculated using the number of unique 
reversed genes in both perturbations divided by the total num-
ber of IBC-specific genes. This analysis resulted in binary drug 
combinations as potential “cocktail” treatment options for IBC.

The rationale of our method is based on the idea that a 
compound or a compound combination that could counteract 
the gene expression changes of the disease (i.e., IBC in this 
study) may have beneficial effects against the disease. The scor-
ing scheme should reflect this counteracting effect, and we 
have adopted the term Gene Reversal Rate (GRR) scoring for 
this study.

Construction of IBC gene expression signature (GES)

Gene expression data were compiled from prior PubMed pub-
lications assessing differential gene expression patterns for 
IBC.45,48-52 This gene list was curated to remove duplicates as 
well as any genes that have no associated gene expression data; 
and this resulted in the master list of IBC-GES comprising 
387 genes with associated gene expression data, including 265 
up-regulated and 122 down-regulated genes (see Supplemental 

Table S1). Figure 2 shows the relative expression profile for all 
the 387 collated genes in the master IBC-GES.

Perturbation-induced gene expression signatures

Two steps were taken to obtain the perturbation-induced GES 
to be used for calculating the GRR score against IBC. First, the 
387 IBC-related genes compiled above were entered into the 
LINCS Canvas Browser (LCB) as a query to search against dif-
ferentially expressed gene lists from the L1000 dataset, which 
contains ∼150 000 experimental conditions (e.g., compounds in 
different cell lines), to find the top matches.12 Overlap between 
the input gene list and the gene lists of each experiment in 
LINCS are compared by LCB and the top 50 with the highest 
overlap produced.12 Experimental conditions were searched that 
potentially reverse the direction of the gene expression changes 
of the query (i.e., the IBC gene expression pattern, a gene is 
reversed from up to down expression or vice versa). The magni-
tudes of the log fold changes in the datasets are not considered 
in the matching algorithm.12 Second, from LINCS (as of Mar 
03, 2021, https://lincscloud.org/ hosted by the Connectivity 
Map Project at the Broad Institute), we downloaded the Level 3 
(Q2NORM) gene expression data from a GEO GSE92742 
dataset, which consisted of 978 landmark transcripts (L1000 
genes) plus inferred genes. This was done using the R package 
Slinky (as of Mar 03, 2021, https://bioconductor.org/packages/
release/bioc/html/slinky.html). Gene expression data of the 
matched experiments were extracted from each of the identified 
datasets, which were then individually preprocessed using a log2 
transformation and normalization approach.

Figure 2. Combined IBC gene expression signature (GES). A total of 387 genes with detailed gene expression data comprise the IBC gene expression 

signature (265 up-regulated and 122 down-regulated genes). This master IBC-GES (387 genes) was generated from an initial list of 624 IBC-associated 

genes after removing duplicates and eliminating any genes without associated gene expression log fold change data. The initial 624 genes were collected 

from 6 PubMed publications.45,48-52

https://lincscloud.org/
https://lincscloud.org/
https://bioconductor.org/packages/release/bioc/html/slinky.html
https://bioconductor.org/packages/release/bioc/html/slinky.html
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Computation of gene reversal rate scores (GRR) for 
each perturbation

We define a score termed Gene Reversal Rate (GRR) as the 
percentage of total IBC-GES genes reversely expressed in a 
compound perturbation experiment. (i.e., for the IBC gene 
expression pattern, a gene is reversed from up to down expres-
sion or vice versa. The magnitudes of the log fold changes in 
the datasets are not considered.) The GRRs were computed 
between the IBC-GES and each of the perturbation’s GES. 
Specifically, for each of the selected perturbations, the GRR 
was calculated using the number of reversed genes divided by 
the total number of IBC-specific genes.

 GRR n
n

=
RG
IBC

* %100  (1)

where nRG = the number of IBC genes reversely expressed in a 
compound perturbation experiment; nIBC = the number of 
total IBC genes. Here, nIBC = 297.

Binary combination of perturbations

All possible combinations of any 2 perturbations’ GES (Gene 
Expression Signature) were conducted. For each combination 
of perturbations, a combined GRR was calculated; with those 
having a high combined GRR selected for further analysis. 
Note that only the binary (1 or 0) information about whether 
the genes are up- or down-expressed is used, irrespective of the 
actual fold values of any expression changes.

Results
Construction of the IBC gene expression signature 
(GES)

A compiled IBC gene expression list of 624 genes was assem-
bled by us from previously published studies assessing differen-
tial gene expression in IBC.45,48-52 (For more details, see 
Method and Supplemental Table S1). Figure 2 shows the 
expression profile for all 387 collated genes in the IBC-GES.

Identif ication of perturbations that potentially 
reverse IBC-GES

The 387 IBC-GES was entered into the LINCS Canvas 
Browser (LCB) as the query to search for matched experiments 
that could potentially reverse IBC-specific GES. A gene is 
deemed reversely expressed if expression changes from up to 
down expression or vice versa. The magnitudes of the log fold 
changes in the datasets are not considered. The search resulted 
in a total of 46 matching experiments in LINCS with 32 
experiments having associated gene expression data (Table 1).

Perturbation-induced gene expression signatures

Five levels of L1000 data are available for download. Level 3 is 
the normalized gene expression profiles.11 Level 3 (Q2NORM) 

gene expression profiles from the GEO GSE92742 dataset 
were downloaded (from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi on March 21, 2021) using R Package Slinky 
(https://bioconductor.org/packages/release/bioc/html/slinky.
html). The gene expression data for the above 32 matched 
experiments (Table 1) were extracted from each of the identi-
fied datasets, which were then individually preprocessed using 
a log2 transformation and normalization approach. Two hun-
dred ninety-seven of the 387 IBC-GES genes were found to 
be included in the 12 328 expression genes found in LINCS.

Calculation of Gene Reversal Rate (GRR)

For each of the 32 experiments identified from the LCB search 
(Table 1), Gene Reversal Rate (GRR) was calculated. The 
GRR scores ranged from 45% (for ST-209453_10 µm_24 h_
PC3_CPC013) to 60% (for ZM-336372_102.71 µm_6 h_
U937_CPC006 and Clobenpropit_10 µm_24 
h_PC3_CPC001) (Table 2). Figures 3 and 4 show examples of 
single perturbation drug reversal patterns for drugs Ticarcillin 
and Tyrphostin-AG-1478, respectfully on the IBC-GES.

Gene expression patterns of binary perturbation 
combinations

From the 32 selected experiments that have an impact in 
reversing the IBC-GES (Table 2), we generated all two-way 
combinations of the perturbation gene expression patterns to 
give a total of 496 combined expression profiles. Each of these 
496 profiles was then compared with the IBC-GES pattern to 
find the combinations that give the highest gene reversal rates 
(GRR). The GRR of a single perturbation ranged between 
45% and 60% (135-178 genes, Table 2) while the GRR of a 
binary combination ranged from 50% to 89% (149-264 genes). 
There are 131 combinations that give a GRR greater than 80%, 
with 35 of the 131 combinations have a GRR greater than 
83%. We chose a threshold of 83% for further analysis. The 
combination of Ticarcillin_10 µm_24 h_MCF7_CPD003 and 
Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006 had the 
highest GRR at 89% (Table 3 and Figure 5).

Identif ication from GRR analysis of drugs that 
could be repurposed for IBC

From the GRR analysis (Table 3), we identified 20 unique drug 
perturbations that can potentially be repurposed for IBC 
(Table 4), which includes 19 individual compounds.

Discussion
We have utilized a computational scoring system, termed Gene 
Reversal Rate (GRR), to mine public gene expression data sets 
to identify existing drugs to repurpose for rare and understudied 
diseases such as IBC. With limited information regarding spe-
cific IBC molecular targets, the GRR approach uses only a sig-
nature-based scoring function and is based on the RGES 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://bioconductor.org/packages/release/bioc/html/slinky.html
https://bioconductor.org/packages/release/bioc/html/slinky.html
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Table 1. Perturbations that potentially reverse IBC-GES.a

INFO (PERTURBATION, DOSE, TIME, CELL, BATCH)b

1 Medetomidine_10 µm_6 h_HCC515_CPC005

2 Tipifarnib-P2_10 µm_6 h_SW948_CPC006

3 Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006

4 AKT-inhibitor-IV_10 µm_6 h_NCIH596_CPC006

5 AZD-7545_22.2 µm_6 h_NCIH2073_CPC006

6 Clobenpropit_10 µm_24 h_PC3_CPC001

7 Ticarcillin_10 µm_24 h_MCF7_CPD003

8 Ambrisentan_10 µm_6 h_MCF7_CPD003

9 Dapsone_10 µm_24 h_PC3_CPD001

10 BMS-754807_10 µm_6 h_CORL23_CPC006

11 Parthenolide_20 µm_6 h_SNGM_CPC006

12 Tipifarnib_10 µm_6 h_SW948_CPC006

13 Valproic-acid_10 µm_6 h_SW480_CPC006

14 Valproic-acid_10 µm_6 h_SW480_CPD001

15 Butalbital_10 µm_6 h_MCF7_CPD002

16 COT-10b_44.4 µm_6 h_U937_CPC006

17 Piperlongumine_10 µm_6 h_HCC515_CPC006

18 Piperlongumine_10 µm_6 h_SNGM_CPC006

19 ZM-336372_102.71 µm_6 h_U937_CPC006

20 Nicardipine_10 µm_6 h_SKM1_CPC006

21 Ursolic-acid_70.07 µm_6 h_NOMO1_CPC006

22 BMS-536924_11.1 µm_24 h_HT29_CPC006

23 COT-10b_44.4 µm_6 h_SKM1_CPC006

24 Dexamethasone_10 µm_24 h_PC3_CPD001

25 Letrozole_10 µm_24 h_PC3_CPD003

26 Nimesulide_10 µm_6 h_MCF7_CPD001

27 PSH-008_10 µm_24 h_PC3_CPC007

28 AG-14361_25 µm_6 h_NCIH508_CPC006

29 ST-209453_10 µm_24 h_PC3_CPC013

30 Temsirolimus_10 µm_6 h_HT115_CPC006

31 Norepinephrine_10 µm_24 h_MCF7_CPC020

32 TPCA-1_10 µm_6 h_NCIH508_CPC006

aLINCS gave a total of 46 matching experiments with 32 experiments having associated gene expression data.
bAn experiment from LINCS is described in the format of “perturbation, dose, time-point, cell-line, and batch.” Experiments that were processed by the L1000 in 1 
experimental run are termed a batch. For example, experiment Medetomidine_10 µm_6 h_HCC515_CPC005 means use 10 µm medetomidine treatment for cell line 
HCC515 for 6 hours in batch CPC005.12
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Table 2. GRR of perturbations.

PERTURBATIONSa GRRb (%) # REVERSED GENESc

Clobenpropit_10 µm_24 h_PC3_CPC001 60 178

ZM-336372_102.71 µm_6 h_U937_CPC006 60 177

Tipifarnib-P2_10 µm_6 h_SW948_CPC006 59 176

Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006 59 175

AKT-inhibitor-IV_10 µm_6 h_NCIH596_CPC006 58 171

COT-10b_44.4 µm_6 h_U937_CPC006 57 170

Ambrisentan_10 µm_6 h_MCF7_CPD003 56 167

Ticarcillin_10 µm_24 h_MCF7_CPD003 56 166

Medetomidine_10 µm_6 h_HCC515_CPC005 55 164

COT-10b_44.4 µm_6 h_SKM1_CPC006 55 164

BMS-754807_10 µm_6 h_CORL23_CPC006 55 164

Butalbital_10 µm_6 h_MCF7_CPD002 55 163

AZD-7545_22.2 µm_6 h_NCIH2073_CPC006 54 160

BMS-536924_11.1 µm_24 h_HT29_CPC006 54 160

Letrozole_10 µm_24 h_PC3_CPD003 53 156

Tipifarnib_10 µm_6 h_SW948_CPC006 52 154

Nicardipine_10 µm_6 h_SKM1_CPC006 52 154

Dapsone_10 µm_24 h_PC3_CPD001 52 153

Piperlongumine_10 µm_6 h_SNGM_CPC006 52 153

Temsirolimus_10 µm_6 h_HT115_CPC006 51 151

Nimesulide_10 µm_6 h_MCF7_CPD001 51 150

AG-14361_25 µm_6 h_NCIH508_CPC006 51 150

Valproic-acid_10 µm_6 h_SW480_CPC006 50 149

Valproic-acid_10 µm_6 h_SW480_CPD001 50 149

Parthenolide_20 µm_6 h_SNGM_CPC006 50 148

Piperlongumine_10 µm_6 h_HCC515_CPC006 49 147

Ursolic-acid_70.07 µm_6 h_NOMO1_CPC006 48 142

Norepinephrine_10 µm_24 h_MCF7_CPC020 47 139

Dexamethasone_10 µm_24 h_PC3_CPD001 46 138

PSH-008_10 µm_24 h_PC3_CPC007 46 137

TPCA-1_10 µm_6 h_NCIH508_CPC006 46 136

ST-209453_10 µm_24 h_PC3_CPC013 45 135

aAn experiment in LINCS is described in the format of “perturbation, dose, time-point, cell-line, and batch.” Experiments that were processed by the L1000 in 1 
experimental run are termed a batch. For example, experiment Medetomidine_10 µm_6 h_HCC515_CPC005 means use 10 µm Medetomidine was used to treat the cell 
line HCC515 for 6 hours in batch CPC005.12

bThe Gene Reverse Rate is defined as the percentage of total IBC GES reversely expressed in a compound perturbation experiment and was calculated using the 
number of reversed genes divided by the total number of IBC-specific genes.
c# Reversed gene: number of IBC genes whose expression was reversed in a compound perturbation experiment. A gene is deemed reversely expressed if expression 
changes from up to down expression or vice versa. The magnitudes of the log fold changes in the datasets are not considered.
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approach developed by Chen et al.19 For our study, first, an IBC 
gene expression set consisting of 387 genes was collated from 
published studies.45,48-52 Two hundred ninety-seven of these 
387 IBC-GES genes were identified to be included in the 
12 328 expression genes in LINCS. We then used these IBC-
associated differentially expressed genes as the query against 

drug signatures from LINCS. We found that our GRR analysis, 
in addition to identifying individual compounds/perturbations, 
also identified binary perturbation combinations of 32 selected 
experiments with high GRR. Of the 297 genes, 45% to 60% of 
the genes were reversed by identified single perturbations  
and 50% to 89% of the genes were reversed by identified binary 

Figure 3. Gene expression patterns for single perturbation Ticarcillin_10 µm_24 h_MCF7_CPD003: (A) overall view of all of the 297 IBC-GES genes 

expressed in Ticarcillin_10 µm_24 h_MCF7_CPD003 with 56% gene reversal rate (GRR) and (B) focused view of 74 IBC-GES genes (| Log FC | >1, 66 

up-regulated, 8 down-regulated) that are reversely expressed in Ticarcillin_10 µm_24 h_MCF7_CPD003.

Figure 4. Gene expression patterns for single perturbation Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006: (A) overall view of all of the 297 IBC-GES 

genes expressed in Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006 with 59% gene reversal rate (GRR) and (B) focused view of 67 IBC-GES genes (| 

Log FC | >1, 60 up-regulated, 7 down-regulated) reversely expressed in Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006.
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Table 3. Binary drug perturbation combinations with GRR ⩾ 83%.

DRUG Aa DRUG Ba # REVERSED 
GENES A

GRR A (%) # REVERSED 
GENES B

GRR B (%) # REVERSED 
GENES A ∪ Bb

GRR A ∪ B (%)

Ticarcillin Tyrphostin 166 56 175 59 264 89

Ticarcillin ZM-336372 166 56 177 60 263 89

COT-10b Ticarcillin 164 55 166 56 261 88

AZD-7545 Medetomidine 160 54 164 55 254 86

Lobenpropit Tipifarnib-P2 178 60 176 59 253 85

Letrozole Ticarcillin 156 53 166 56 253 85

Ambrisentan ZM-336372 167 56 177 60 251 85

AG-14361 Ticarcillin 150 51 166 56 250 84

AKT-inhibitor-IV Ambrisentan 171 58 167 56 250 84

AZD-7545 Tipifarnib-P2 160 54 176 59 250 84

Clobenpropit Ticarcillin 178 60 166 56 250 84

COT-10b Dapsone 164 55 153 52 250 84

AZD-7545 Clobenpropit 160 54 178 60 249 84

COT-10b Ticarcillin 170 57 166 56 249 84

COT-10b Tipifarnib-P2 170 57 176 59 249 84

Temsirolimus Ticarcillin 151 51 166 56 249 84

Butalbital ZM-336372 163 55 177 60 248 84

Ambrisentan COT-10b 167 56 170 57 247 83

Ambrisentan Tipifarnib-P2 167 56 176 59 247 83

AZD-7545 Ticarcillin 160 54 166 56 247 83

BMS-536924 Medetomidine 160 54 164 55 247 83

BMS-536924 Ticarcillin 160 54 166 56 247 83

BMS-754807 Tipifarnib-P2 164 55 176 59 247 83

Butalbital COT-10b 163 55 164 55 247 83

Butalbital COT-10b 163 55 170 57 247 83

COT-10b Nimesulide 164 55 150 51 247 83

AKT-inhibitor-IV Clobenpropit 171 58 178 60 246 83

BMS-536924 Tipifarnib-P2 160 58 176 60 246 83

BMS-754807 COT-10b 164 55 164 55 246 83

Clobenpropit COT-10b 178 60 170 57 246 83

Clobenpropit ZM-336372 178 60 177 60 246 83

COT-10b Tipifarnib 164 55 154 52 246 83

COT-10b Nicardipine 170 57 154 52 246 83

Nicardipine ZM-336372 154 52 177 60 246 83

Tipifarnib-P2 Tyrphostin 176 59 175 59 246 83

aDrug name for each identified perturbation: Compound under specific experiment conditions such as dose, time-point, and cell-line. An experiment is described in the 
format of “perturbation, dose, time-point, cell-line, and batch.”
b∪ indicates combination.
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perturbation combinations. From the top 35 binary combina-
tions (GRR greater than 83%), we identified 20 unique pertur-
bations comprising 19 individual drugs that reverse to some 
degree up to 264 of the 297 genes. These included the following 
compounds: AG-14361, AKT-inhibitor-IV, Ambrisentan, 
AZD-7545, BMS-536924, BMS-754807, Butalbital, 
Clobenpropit, COT-10b, Dapsone, Letrozole, Medetomidine, 
Nicardipine, Nimesulide, Temsirolimus, Ticarcillin, 
Tipifarnib-P2, Tyrphostin-AG-1478, ZM-336372. The mech-
anisms of action (MOA) of these drugs and relevance as poten-
tial therapeutics for IBC are discussed below.

Mechanisms of the individual perturbations

Among the 19 compounds identified from our GRR study on 
IBC, 17 have published findings indicating that they may have 
potential pharmacologic effects against human cancers with 
varied mechanisms, spanning anti-proliferation, anti-inflam-
mation, tumor growth reduction, cancer drug resistance, and 
anti-metastatic potential (Table 5). For example, AG14361, 
Ambrisentan, AZD7545, and Clobenpropit have been used as 
anti-cancer therapy for many cancers including breast  
cancer.53-58 Anti-cancer agents AKT-inhibitor-IV and BMS-
754807 have been shown to have anti-proliferative activities 
against human cancer cells.59,60 BMS-536924, Tyrphostin 
AG-1478, and ZM-336372 significantly suppressed cancer 
viability, migration, and invasion of different human cancer 
cells.61-66 COT-10b, Dapsone, Nicardipine, and Nimesulide 

are anti-inflammatory drugs and also potential anticancer 
agents.67-72 Letrozole has been used in hormone therapy for 
breast cancer and polycystic ovary syndrome.73,74 Temsirolimus, 
a FDA-approved anti-cancer drug has efficacy in certain solid 
tumors as an inhibitor of angiogenesis.75 Ticarcillin is active 
against resistant organisms that commonly affect patients with 
cancer,76 and Tipifarnib effectively inhibits tumorigenesis in 
thyroid cancer.77 Six of the compounds, Dapsone, Letrozole, 
Nimesulide, Temsirolimus, Tipifarnib, and Tyrphostin 
AG-1478, have been studied in various breast cancer mod-
els.73,74,78-83 Rypens et al47 recently reported that MYC driven 
expression patterns are overexpressed in IBC. AZD-7545, 
BMS-754807, and Nimesulide target PDK,55 Met,60 and 
COX71,72 respectively, which are direct MYC target genes and 
so these drugs may have relevance for IBC.47 Al Abo46 recently 
reported that adaptive stress response (ASR) genes associated 
with breast cancer subtypes such as IBC and survival outcomes 
were functionally relevant in cell cycle, DNA damage response, 
signal transduction, and regulation of cell death-related pro-
cesses. AG-14361,53 butalbital,84 and clobenpropit56,57 target 
DNA damage, cell cycle, and apoptosis respectively, and may be 
potential therapeutic candidates against IBC. Two of the 19 
compounds, Letrozole and Tipifarnib, have different mecha-
nisms of action, and have been tested in clinical trials with 
varying degrees of success against IBC.85 Table 5 lists the 19 
drugs and their associated mechanisms.

The approval status of the 19 drugs was also investigated 
(Table 6). Eleven of the 19 predicted compounds: Ambrisentan, 

Figure 5. Gene expression patterns of binary combination of Ticarcillin_10 µm_24 h_MCF7_CPD003 and Tyrphostin-AG-1478_56.78 µm_6 h_U937_

CPC006: (A) overall view of the 297 IBC-GES genes expressed in binary combination of Ticarcillin_10 µm_24 h_MCF7_CPD003 and Tyrphostin-

AG-1478_56.78 µm_6 h_U937_CPC006 with 89% GRR and (B) 109 IBC-GES genes (| Log FC | >1, 95 up-regulated, 14 down-regulated) reversely 

expressed in binary combination of Ticarcillin_10 µm_24 h_MCF7_CPD003 and Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006.
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BMS-754807, Butalbital, Dapsone, Letrozole, Medetomidine, 
Nicardipine, Nimesulide, Temsirolimus, Ticarcillin, and 
Tipifarnib, are either FDA-approved (https://www.accessdata.
fda.gov/scripts/cder/ob/index.cfm) or found in ClinicalTrials 
(https://www.clinicaltrials.gov/). The remaining 8 compounds, 
AG-14361, AKT-inhibitor-IV, AZD-7545, BMS-536924, 
Clobenpropit, COT-10b, Tyrphostin-AG-1478, and 
ZM-336372, have not been FDA-approved.

Mechanisms of binary combinations of perturbations

Thirty-five (35) of the identified binary perturbation combina-
tions had a GRR greater than 83%. Anti-cancer drug combina-
tions have the potential to enhance therapeutic efficacy 
compared to a single drug approach as they can target key 
pathways in a synergistic or additive manner, potentially also 

reducing drug resistance.87 In our study, 28 out of the 35 com-
binations are the results of a binary combination of the 17 
compounds with potential activity in cancer mentioned above. 
For example, the GRR increased from 51% for a single pertur-
bation (such as Temsirolimus and AG14361) to 89% for a 
binary perturbation combination (such as Ticarcillin + ZM-
336372 or Ticarcillin + Tyrphostin AG-1478). The approach 
to combine therapeutic agents initially used for the treatment 
of different diseases other than cancer can be effective primar-
ily when the FDA-approved agents target similar pathways to 
those also found in cancer. In our study, 2 of the 19 compound 
candidates, Butalbital and Medetomidine, have not to our 
knowledge, been reported as having anti-cancer activity. 
Butalbital and Medetomidine, are sedatives that help to 
decrease anxiety and depression.84,86 Depression is a common 
comorbidity in cancer cases where a common biological mech-
anism may be involved, such as a dysregulated immune sys-
tem.88 When Butalbital is combined with COT-10b, Tipifarnib, 
or ZM-336372, the GRR increased from 55% to 84%. Thus, 
we propose that Butalbital and Medetomidine may also have 
potential pharmacologic effects against IBC.

Among these top 35 combinations, the anti-inflammatory 
drug COT-10b is especially interesting as 12 out of the 35 com-
binations are a combination with COT-10b (LINCS ID: LSM-
6226). COT (Tpl2 in mice) is a serine/threonine MAP3 kinase 
that regulates production of TNF-a and other pro-inflammatory 
cytokines such as IL-1b via the ERK/MAP kinase pathway. 
COT-10b was demonstrated to selectively inhibit the COT 
pathway following LPS stimulation in macrophages.67 Since 
inflammatory signals are a key feature of IBC,46,89 the identifica-
tion of COT-10b solely based on its gene expression pattern 
reversal is significant and needs to be explored. Another interest-
ing drug is Ticarcillin, with 10 of the 35 combinations resulted 
from a combination of Ticarcillin with other perturbations. 
Ticarcillin is an antibiotic that is effective against gram-positive 
cocci and most Gram-negative organisms.90 Ticarcillin is also 
active against resistant organisms that commonly affect patients 
with cancer.76

Since 2017, the LINCS database has cataloged ~40 000 
unique perturbations from over 50 different human cellular sys-
tems using more than 19 000 chemical reagents including drugs 
and other small molecule chemicals.10,12 If one conducts a com-
plete binary drug combination of the >19 000 chemical rea-
gents, there would be over 1.8 × 108 possible combinations and 
it would be impossible to screen all of them by conventional 
wet-lab high-throughput drug screening approaches. Using the 
GRR approach, the overall time and costs of identifying combi-
nation perturbations can be reduced dramatically, and we 
quickly identified 35 targeted combinations. Thus, this GRR 
method can be effective in prioritizing combinations for bio-
logical testing. However, the ultimate validation should be based 
on experimental testing of the combinations predicted by this 
method. This will be performed in our future work in this area.

Table 4. LINCS drug perturbations predicted by GRR for IBC.

PERTURBATION EXPERIMENTS

AG-14361_25 µm_6 h_NCIH508_CPC006

AKT-inhibitor-IV_10 µm_6 h_NCIH596_CPC006

Ambrisentan_10 µm_6 h_MCF7_CPD003

AZD-7545_22.2 µm_6 h_NCIH2073_CPC006

BMS-536924_11.1 µm_24 h_HT29_CPC006

BMS-754807_10 µm_6 h_CORL23_CPC006

Butalbital_10 µm_6 h_MCF7_CPD002

Clobenpropit_10 µm_24 h_PC3_CPC001

COT-10b_44.4 µm_6 h_SKM1_CPC006

COT-10b_44.4 µm_6 h_U937_CPC006

Dapsone_10 µm_24 h_PC3_CPD001

Letrozole_10 µm_24 h_PC3_CPD003

Medetomidine_10 µm_6 h_HCC515_CPC005

Nicardipine_10 µm_6 h_SKM1_CPC006

Nimesulide_10 µm_6 h_MCF7_CPD001

Temsirolimus_10 µm_6 h_HT115_CPC006

Ticarcillin_10 µm_24 h_MCF7_CPD003

Tipifarnib-P2_10 µm _6 h_SW948_CPC006

Tyrphostin-AG-1478_56.78 µm_6 h_U937_CPC006

ZM-336372_102.71 µm_6 h_U937_CPC006

An experiment in LINCS is described in the format of “perturbation, dose, 
time-point, cell-line, and batch.” A batch is a collection of experiments that 
were processed by the L1000 in 1 experimental run. For example, experiment 
Medetomidine_10 µm_6 h_HCC515_CPC005 means use 10 µm Medetomidine 
treat cell line HCC515 for 6 hours in batch CPC005.12 Twelve cell lines are 
involved in these 20 predicted perturbations in LINCS: 4 large intestine cell 
lines—NCIH508, HT29, HT115, and SW948; 3 lung cell lines—NCIH596, 
NCIH2073, and HCC515; 1 breast cancer cell line—MCF7; 1 metastasis: 
CORL23; 1 prostate—PC3; 1 blood - SKM1; and 1 pleural effusion—U937.

https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
https://www.clinicaltrials.gov/
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A number of complementary signature-based drug screen-
ing methodologies have been reported such as machine learn-
ing, network analysis, text mining and semantic 
inference.3,4,14,91,92 Recently, Yang et  al4 reported a survey of 
optimal strategies for signature-based drug repositioning, with 
XSum being identified as the optimal signature matching 
method for drug retrieval.93 These analyses4 also demonstrated 
that the RGES approach19,20 was superior to other methods 
and might serve as an alternative approach. Chen et al19 devel-
oped the RGES approach and applied it to predict and test 4 
compounds with efficacy against liver cancer. Shukla et al2 dis-
cussed various signature-based approaches to drug repurposing 
and suggested an approach for utilizing LINCS resources 
involving using disease- or phenotype-associated differentially 
expressed genes (DEG) as the query against the drug signa-
tures. This is consistent with our approach, in that we used an 
IBC-associated GES as the query against the drug signatures 
from LINCS. In the literature, the exact sizes of optimal signa-
tures vary substantially, and a query signature size of 100 has 
been suggested to be applicable for drug retrieval.4 In our 
LINCS query, the IBC signature size was 297, which is more 
than the literature recommended size of 100 and should 

represent a reasonable reflection of the genetic characteristics 
of IBC. A caveat to the utility of the gene reversal approach has 
been suggested recently by Koudijs et al,15 where they under-
took a comprehensive validation of the transcriptome reversion 
concept and suggest that its potential predictive power may be 
overstated as many of the drugs identified in these types of 
studies have general anti-proliferative effects which should be 
accounted for when trying to identify drugs targeting specific 
disease relevant pathways. Instead of trying to reverse all dif-
ferentially expressed genes, a solution suggested by Koudijs 
et al15 is to separate upstream driver gene effects from down-
stream passenger gene effects, which is beyond the scope of our 
current study.

From our study, 19 compounds are predicted to be poten-
tially useful to be repurposed for treating IBC, with published 
studies confirming that 17 of the compounds have anti-cancer 
or anti-inflammatory activities. The 19 compounds we identi-
fied by GRR come from different disease areas and have widely 
varying mechanisms of action, and their potential anti-prolifer-
ative effects await experimental verification as part of future 
studies. An additional beneficial feature of our approach is that 
we identified drug combinations from different therapeutic 

Table 5. Mechanisms and molecular targets of GRR identified compounds.

NAME MECHANISM OF ACTION TARGET

AG-14361 DNA damage, anti-cancer PARP153,54

AKT-inhibitor-IV Cytotoxic and antiproliferative, anti-cancer Akt59

Ambrisentan Cardiovascular disease Endothelin Receptor, GPCR & G Protein58

AZD-7545 Adenocarcinoma Pyruvate dehydrogenase kinases (PDK), PDHK55

BMS-536924 Suppresses tumor growth IGF-1R/IR61

BMS-754807 Inhibits tumor growth IGF-1R/InsR, Insulin Receptor, TrkB, Met, TrkA, Aurora A, Aurora B, 
RON, FLT360

Butalbital Tension-type headache, cell cycle Epithelial cell signaling, JAK SATA signaling, P53 signaling, and 
NOTCH signaling pathway84

Clobenpropit apoptosis, anti-tumor histamine H3 receptor, PI3K/AKT pathway56,57

COT-10b Acute myeloid leukemia Serine/threonine MAP3 kinase67

Dapsone leprosy, anti-infection Immunology/Infection68

Letrozole Cancer Aromatase73,74

Medetomidine Neurological disease/psychotic disorders Adrenergic Receptor86

Nicardipine Cardiovascular disease Calcium Channel69,70

Nimesulide Inflammation COX, Neuronal Signaling71,72

Temsirolimus Cancer PI3K/Akt/mTOR75

Ticarcillin Infection Anti-infection76

Tipifarnib Cancer farnesyltransferase (FTase)77

Tyrphostin-AG-1478 Histiocytic lymphoma EGFR62,63

ZM-336372 Histiocytic lymphoma JAK/STAT pathway, miR-205, Raf-164-66
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areas; that is, anti-cancer drugs and anti-inflammatory drugs, 
solely based on the gene expression pattern reversal without any 
pre-conceived notion of targets and pathways. Our study sup-
ports the use of a computational reversal gene expression 
approach to identify new drug candidates for disease where very 
few known targets are available. Hence, the GRR approach has 
potential for identifying new drugs for understudied diseases. In 
addition, the compounds identified in the present study are not 
the same as the ones identified in our previous work.94 The pre-
vious paper found 24 molecules based on textual phenotype 
analysis (i.e., Word2Vec similarity analysis) of cancer-related 
textual corpus and drugs. The suggested compounds are being 
evaluated in experimental work ongoing in our laboratory. Our 
current study has been proposed as a complementary and 
orthogonal approach to the text mining one. It appears that the 
gene reversal analysis based on the LINCS database (which 
contains a much wider set of more than just cancer-related 
compounds or perturbations) has identified additional different 
compounds that are not limited to anti-cancer drugs. Even 
though it would be mutually supporting if both methods identi-
fied an overlapping list of compounds, the fact that the 2 lists 

are not overlapping indicated that the 2 methods are comple-
mentary and orthogonal as designed in order to increase the 
diversity of candidates for drug repurposing.

While we identified a number of novel compounds for 
potential testing in IBC, challenges in our study include the 
limited number of IBC cases with associated gene expression 
data and the development of relevant functional assays to assess 
the identified drugs for effects in IBC models. Thus, future 
research should include developing relevant mechanistic func-
tional assays to ensure successful development of these ideas 
into potential drug candidates for IBC.
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Table 6. FDA-approval status of GRR identified compounds.

NAME FDA STATUSa CLINICALTRIALS.GOV

AG-14361 Non-approved No

AKT-inhibitor-IV Non-approved No

Ambrisentan Approved for idiopathic, heritable PAH and connective tissue 
disease-associated PAH (Pulmonary arterial hypertension.

Yes

AZD-7545 Non-approved No

BMS-536924 Non-approved No

BMS-754807 Non-approved Yes

Butalbital Approved for headache. Yes

Clobenpropit Non-approved No

COT-10b Non-approved No

Dapsone Approved for inflammatory and infectious diseases. Yes

Letrozole Approved for breast cancer and polycystic ovary syndrome (PCOS). Yes

Medetomidine Approved for anesthesia. Yes

Nicardipine Approved for anti-inflammatory. Yes

Nimesulide Approved for anti-inflammatory. Yes

Temsirolimus Approved for anticancer drug. Yes

Ticarcillin Approved for antibiotic for Gram-negative bacteria. Yes

Tipifarnib Non-approved Yes

Tyrphostin-AG-1478 Non-approved No

ZM-336372 Non-approved No

aDrug FDA status (for any indication) (https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm) and clinical trials status (https://www.clinicaltrials.gov/) was accessed on 
7 July, 2022.

https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
https://www.clinicaltrials.gov/
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