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Fernanda Maria Santiago 1, Joāo Santana Silva 2, José Roberto Mineo 1, Dario S. Zamboni 2

and Tiago W. P. Mineo 1*

1 Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo”, Institute of Biomedical Sciences, Universidade Federal

de Uberlândia, Uberlândia, Brazil, 2 Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil

Neospora caninum poses as a considerable threat to animal health and generates

significant economic impact in livestock production worldwide. Here, we have

investigated the mechanism that underlies the participation of the inflammasome

complex and Reactive Oxygen Species (ROS) in the regulation of immune responses

during N. caninum infection. For that purpose, we used in vitro (bone marrow derived

macrophages) and in vivo mouse models of infection. Our results show that NLRP3 and

NLRC4 receptors, alongside with ASC and Caspase-1, are required for proper activation

of the inflammasome duringN. caninum infection. As expected, the engagement of these

pathways is crucial for IL-1α, IL-1β, and IL-18 production, as well as the induction of

pyroptosis. Our results also show that N. caninum induces ROS production dependent

of the inflammasome assembly, which in its turn also depends onMyD88/NF-κB-induced

ROS to maintain its activation and, ultimately, lead to restriction of parasite replication.

Keywords: N. caninum, ROS, inflammasome, macrophages, mice

INTRODUCTION

Neospora caninum is an obligate intracellular parasite of the phylum Apicomplexa, that is able
to infect different animal species although most commonly associated with bovine abortion
worldwide (Horcajo et al., 2016).

The host protective immunity against N. caninum involves early production of the pro-
inflammatory cytokine interleukin-12 (IL-12) by macrophages and dendritic cells (DCs), in
response to recognition of pathogen-associatedmolecular patterns (PAMPs) and danger-associated
molecular patterns (DAMPs) by Toll- like receptors (TLR) (Mineo et al., 2009, 2010). IL-12
stimulates natural killer (NK) cells, alongside with CD4+ and CD8+ T cells, to release interferon-
γ (IFN-γ), which induces different killing mechanisms—as macrophage activation and reactive
oxygen species (ROS) production. It has been previously suggested that parasite proliferation in
vivo/in vitro is dependent on the absence or suppression of the cellular respiratory burst, and
that the role of ROS in host defense against protozoa still deserves further assessment, since its
parasiticidal mechanisms are still not completely known (Shrestha et al., 2006; Moreira-Souza et al.,
2017; Li and Zhang, 2018).
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In the last decade, a family of patterns recognition receptors
(PRRs), called Nucleotide-binding Oligomerization Domain
(NOD)-Like Receptors (NLRs) has emerged as an important
innate immune sensor of protozoan parasites (Melo et al., 2011;
Gurung and Kanneganti, 2016; Hakimi et al., 2017). NLRs are
involved in the assembly of a cytosolic multi-protein complex
called inflammasome, upon recognition of a ligand. The inactive
caspase is recruited to this complex, in which it is cleaved. After
proteolytic activation, Caspase-1/11 is able to cleave pro-IL-
1β and pro-IL-18 cytokines into its active forms and may also
result in a programmed form of cell death, named pyroptosis
(Zamboni and Lima-Junior, 2015; Gurung and Kanneganti,
2016; Bierschenk et al., 2017; Kovacs and Miao, 2017). The
activation of the inflammasome in response to infection by
intracellular pathogens has recently gained attention of the
scientific community. Research groups have linked mutations in
this pathway to uncontrolled parasite growth (Fink and Cookson,
2006; Riteau et al., 2016; Wang et al., 2017).

In this study, we assessed the interplay between ROS
production and the inflammasome activation during N. caninum
infection. Our results suggest that the engagement of the NLRP3
and NLRC4 inflammasomes have a crucial role in the restriction
of N. caninum replication. Notably, inflammasome activation
by N. caninum is independent of previous cell priming and
triggers the production of ROS, a major host defense mechanism
against intracellular parasites. In addition, we also show in the
context of the infection that oxidative stress directly activates the
inflammasome to control the infection.

MATERIALS AND METHODS

Parasites and Antigens
NIH/3T3 (ATCC

R©
CRL-1658

TM
) were cultured in RPMI-1640

medium supplemented with 10% heat- inactivated fetal bovine
serum (FBS), 100 U/ml penicillin/streptomycin, and cells were
maintained in an incubator at 37◦C in a humidified atmosphere
of 5% CO2. The cells were treated with PlasmocinTM (InvivoGen,
USA) for 2 weeks before parasite infection and screened by PCR
for Mycoplasma spp., in order to avoid bacterial contamination
in parasite stocks. Parasites were maintained in vitro by
serial passages on NIH/3T3 monolayers, cultured in RPMI
1640 medium supplemented with 2mM glutamine, 100 U/mL
penicillin, 100µg/mL streptomycin and 250 ng Amphotericin
B (Gibco), at 37◦C in 5% CO2 atmosphere. Briefly, tachyzoites
were harvested by scraping off the cell monolayer after 48–72 h of
infection containing mainly intracellular parasites (at least 90%),
passed through a 26-gauge needle to lyse any remaining intact
host cell, and centrifuged at low speed (45 × g) for 1min at 4◦C
to remove host cell debris. The supernatant containing parasite
suspension was collected and pelleted (800 × g, 10min, 4◦C).
Tachyzoites were counted in hemocytometry chamber using
0.4% Trypan blue vital staining and immediately used for the
experiments. Parasites of the Nc-Liverpool isolate of N. caninum
(NcLiv, Barber et al., 1995) were used in all experimental settings.
Occasionally, infections with the N. caninum isolate 1 (Nc-1,
Dubey et al., 1988) were also included in the experiments.

In order to test the effects of viability and distinct antigenic
fractions in the proposed context, we also exposed macrophages
to fixed or heat attenuated parasites, as well as to Neospora lysate
antigens (NLA) and excreted-secreted antigens (ESA), produced
according to previous description (Ribeiro et al., 2009;Mota et al.,
2016). Parasite suspensions of freshly lysed tachyzoites (∼108)
were washed at least twice in phosphate buffered saline (PBS, pH
7.2) for antigen preparation. For NLA, the parasites were lysed
by 10 freeze-thaw cycles followed by ultrasound disruption on
ice, in the presence of protease inhibitors (Complete, Roche).
After centrifugation (10,000 × g, 30min, 4◦C), the supernatant
was collected, filtered on 0.22µm membranes and its protein
concentration determined by the Bradford method. For ESA, the
parasite pellet was resuspended in Hank’s saline solution (30min,
37◦C), with gentile agitation. After centrifugation (800 × g,
10min, 4◦C) and the supernatant was collected and centrifuged
again (10,000 x g, 30min, 4◦C) to eliminate any insoluble
material from the preparation. The supernatant was then filtered
(0.22µm) and its protein concentration determined by Bradford
method. NLA and ESA were aliquoted and stored at −20◦C
until being used in the experiments. Fixed tachyzoites were
obtained by the incubation with 4% formaldehyde (30min, at
room temperature). The fixed parasites were then washed and
resuspended in PBS. Heat attenuated tachyzoites were obtained
by incubation of the parasite suspension at 56◦C for 50min. Fixed
and heat inactivated tachyzoites were counted and immediately
used in the experiments.

Mice
WTC57BL/6 mice (JAX 000664), along with genetically deficient
littermates in Caspase-1 and Caspase-11 (Casp-1/11−/−, Kuida
et al., 1995); Casp-1/11−/− complemented with Caspase-1
(Casp-1−/−; Kayagaki et al., 2011); NACHT, LRR and PYD
domains-containing protein 3 (Nlrp3−/−; Mariathasan et al.,
2006); NLR family CARD domain-containing protein 4
(Nlrc4−/−; Mariathasan et al., 2004); Apoptosis-associated
speck-like protein containing a CARD (Asc−/−; Mariathasan
et al., 2004), Myeloid differentiation primary response 88 protein
(Myd88−/−; Adachi et al., 1998), NADPH oxidase 2 gp91phox

subunit (Nox2−/−; Pollock et al., 1995), and IL-1 receptor
(Il-1r−/−; Glaccum et al., 1997) were bred under specific
pathogen-free conditions at the animal facilities of University of
São Paulo (FMRP/USP) and Federal University of Uberlândia
(REBIR/UFU). The animals were supplied with 6–10 weeks of
age and maintained at REBIR/UFU in individual cages, under
controlled conditions (12 h light and 12 h dark cycle, controlled
temperature of 22 ± 2◦C), and received food and water ad
libitum. All protocols involving mice were previously approved
by the institution’s animal research ethics committee (Comitê
de Etica na Utilização de Animais da Universidade Federal de
Uberlândia—CEUA/UFU), under protocol number 109/16, and
were carried out in accordance with the recommendations in
the International Guiding Principles for Biomedical Research
Involving Animals of the International Council for Laboratory
Animal Science (ICLAS), countersigned by the Brazilian
National Council for the Control of Animal Experimentation
(Conselho Nacional de Controle de Experimentação Animal,
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CONCEA; https://olaw.nih.gov/sites/default/files/Guiding_
Principles_2012.pdf). REBIR/UFU is accredited by the National
Commissions in Animal Experimentation (CONCEA, CIAEP
01.0105.2014) and Biosecurity (CTNBio, CQB 163/02).

Bone Marrow-Derived Macrophages
(BMDM)
BMDMs were obtained from WT and genetically deficient mice
after a 6-day differentiation in L929-conditioned media, as
previously described (Mota et al., 2016). Briefly, stem cells were
cultured on 10 cm-diameter polystyrene plates, for 6 days in
RPMI- 1640 medium, containing HEPES 15mM, 2 g of sodium
bicarbonate/L, 1mM l-glutamine, supplemented with 20% heat-
inactivated FCS and 30% cell-conditioned medium, obtained
from the supernatant of confluent L929 cells. Differentiated
BMDMs were removed from the plates by vigorous pipetting
of ice-cold PBS. Cells were counted in hemocytometry chamber
using 0.4% Trypan blue vital staining and set for experiments
at 2 × 105 and 1 x 106 cells per well in 96-well and 24-well
plates, respectively.

In vitro Stimulation Assays
BMDMs were plated at 2 × 105 cells per well (1 × 106/mL)
in 96-well plates and stimulated with live, fixed or heat
attenuated N. caninum tachyzoites at multiplicity of infection
(MOI) of 0.5 (1 parasite per 2 cells) or antigen of NLA and
ESA, in kinetics up to or at 18 h endpoint. This experimental
setup was chosen after preliminary assays that showed higher
production of IL-1β in MOI 0.5, compared to MOIs 1 and 3
(Supplementary Figure 1A). BMDM lysis was perceptible in the
higher MOIs tested at 18 h of infection, as well as in any other
dose for longer periods of incubation. For some assays, the cells
were pre-treated with 500 ng/mL Salmonella thypimurium LPS
(TLR4/Caspase-11 agonist, Sigma), 5µM Caffeic acid phenethyl
ester (CAPE, NF-κB inhibitor, Sigma), 10µg/mL Tanshinone
(AP-1 inhibitor, Sigma), 25–200µM KCl (Sigma) or 25–200µM
NaCl (Sigma) for 3 h, and for 1 h with 100µM N-acetyl-cysteine
(NAC, ROS scavenger, Sigma), 2.5µM ATP (NLRP3 inducer,
Invivogen) or 5µM Nigericin (NLRP3 agonist, Invivogen). The
wells were washed with fresh media to remove the drugs before
the addition of N. caninum tachyzoites.

In vivo Infection Assays
WT C57BL/6, along with CASP1/11−/−, with 6 to 8 weeks old,
were infected (n = 5/group) with sublethal doses (1 × 106) of
NcLiv tachyzoites per animal (i.p.). After 3 days post infection,
mice were euthanized by cervical dislocation, and their peritoneal
cells were removed by washing the cavities with ice-cold PBS.
The peritoneal cells were used for measurement of Caspase-
1/11 activity, ROS, pyroptosis and quantification of parasite
burden. Liver fragments were also collected for the quantification
of parasite burden by qPCR. Additional groups of mice were
similarly infected with NcLiv and euthanized after 30 days, had
their brains removed for parasite burden quantification.

Endogenous Caspase-1 Staining Using
FAM-YVAD-Fluoromethylketone (FMK)
BMDMs and peritoneal cells were plated at 2 × 105 cells per
well (1 × 106/mL) in 96-well black plates with clear bottom
(Costar) or at 1 × 106 cells/well in 24-well plates. After
18 h of infection, the cells were stained for 1 h with FAM-
YVAD-FMK as recommended by the manufacturer’s instructions
(Immunochemistry Technologies). Active Caspase-1/11 was then
measured by a plate fluorimeter (M2e, Molecular Devices),
analyzed in a fluorescent microscope (EVOS fl, ThermoFisher),
or by flow cytometry (FACSCantoII, BD). For the flow cytometry
analysis, we considered the percentage of positive cells and the
mean fluorescence intensity (MFI). Both parameters were used to
calculate the factor iMFI, which consists of the multiplication of
between the number of positive cells byMFI (Darrah et al., 2007).

Western Blot
A total of 4 × 106 BMDMs were seeded per well in 6-well
plates, infected with NcLiv tachyzoites for 18 h. The supernatants
were collected and cells were lysed in RIPA buffer (10mM
Tris-HCl, pH 7.4, 1mM EDTA, 150mM NaCl, 1% Nonidet
P-40, 1% deoxycholate, and 0.1% SDS) supplemented with
protease inhibitors cocktail (Roche). Lysates and supernatants
were boiled in Laemmli buffer, resolved by SDS-PAGE 12%,
and transferred (Semidry Transfer Cell, Bio-Rad) to 0.22-µm
nitrocellulose membranes (GE Healthcare). The rabbit anti–IL-
1β/IL-1F2 polyclonal antibodies (Novus; 1:1000), and species-
specific horseradish peroxidase-conjugated secondary antibodies
(R&D Systems; 1:1000) were used for antigen detection.
The blot was incubated with ECL substrate (Promega) and
chemiluminescence was detected using an imaging system with
dedicated software (ChemiDoc XRS, Bio-Rad).

Cytokine ELISAs
IL-1β, IL-1α, and IL-18 were measured by ELISA using
commercial kits, according to the manufacturer’s instructions
(BD Biosciences and R&D Systems).

Evaluation of Cytotoxicity by Lactate
Dehydrogenase (LDH) Release
Supernatants obtained from 2 × 105 BMDMs per well (1
× 106/mL) in 96-well plate of infected and naïve cells were
collected, and the activity of released LDH was measured using
colorimetric assays, according to manufacturer’s instructions
(Thermo Scientific). Data are expressed as a percentage of LDH
release induced in BMDMs by Triton-X100 [(sample OD x
100)/Triton-X100 OD].

Membrane Pore Formation Assay
The kinetics of pore formation were assessed by quantifying
the uptake of propidium iodide (PI) into infected cells (Cunha
et al., 2017). BMDMs were plated at 2 × 105 cells per well (1 ×

106/mL) in 96-well black plate with clear bottom (Costar). Before
infection, BMDM media was replenished with 2% SFB RPMI
without phenol red, NaHCO3 (0.038 g/mL), and PI (6µg/mL).
Infected BMDMs were maintained at 37◦C with 5% CO2; PI
was excited at 538 nm, and fluorescence emissions were read at
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617 nm every 5min with a plate fluorimeter (M2e, Molecular
Devices) or analyzed in a fluorescent microscope (EVOS fl,
ThermoFisher). The peritoneal cells extracted from in vivo
infections were seeded at 2x105 cells per well (1 × 106/mL) in
96-well black plate with clear bottom (Costar) and stained for 3 h
with PI at 37◦C and 5%CO2 before themeasurements were taken
in a plate fluorimeter.

ROS Production
BMDMs and peritoneal cells were plated at 2 × 105 cells
per well (1 × 106/mL) in 96-well black plates with clear
bottom (Costar). After 3 or 18 h of infection, the cells were
stained for 30min with 1µM DHCFDA (carboxymethyl-H2-
dichlorofluorescein diacetate, Molecular Probes) at 37◦C and
5% CO2. The reactions were read in a plate fluorimeter (M2e,
Molecular Devices) or analyzed in a fluorescent microscope
(EVOS fl, ThermoFisher).

Determination of Parasite Burden
N. caninum tachyzoites in the infected cell cultures was
determined by fluorescent ester-based probe as previously
described (Mota et al., 2014), parasites were stained with
5µM/mL of DDAO-SE (Thermo Scientific). After 10min at
37◦C, the tachyzoites were washed with 10mL of RPMI-
1640 with 10% FCS and centrifuged at 800 × g for 10min
at 4◦C. Viable tachyzoites were determined with the Trypan
blue exclusion test and used to infect BMDM. After 18 h,
the infected cell monolayer was harvested and read in a flow
cytometer (FACSCantoII, Becton, Dickinson and Company—
BD, Franklin Lakes, NJ, USA) with at least 50,000 events acquired
per tube.

Liver and brain parasite burden was determined by
quantitative real-time PCR as previously described (Ribeiro
et al., 2009), by the use of primer pairs (sense 3′ -GCTGAA
CACCGTATGTCGTAAA-5; antisense 3′-AGAGGAATGCCA
CATAGAAGC-5) to detect the N. caninum Nc-5 sequence.
DNA extraction was performed from 20mg of murine tissues
(Genomic DNA kit, Promega Co., USA) and parasite loads
were calculated by interpolation from a standard curve of NcLiv
tachyzoite DNA included in each run. As negative control,
DNA obtained from liver or brain tissues of non-infected mice
was analyzed in parallel. The amplification, data collection and
analysis were performed with a real-time PCR thermal cycler
(StepOne Plus, Life, Thermo Scientific) using the SYBR green
system (PowerUpTM SYBR Green Master Mix, ThermoFisher).
In addition, parasitism of the peritoneum was determined after
3 days of infection, the animals were euthanized, and their
intraperitoneal cavity washed with 1mL of PBS and saved for
counting parasites by two independent observers by using
Trypan blue.

Statistical Analysis
Statistical analysis was carried out using GraphPad Prism
8.0 (GraphPad Software Inc., La Jolla, CA, USA). After
passed to the normality tests, values were expressed as mean
± standard error, and analyzed by one-way ANOVA test,
followed by Bonferroni post hoc test for comparison among

the groups or Student t-test was used for comparison between
two groups. Values of P < 0.05 were considered statistically
significant. Each experiment was independently conducted at
least two times, and each condition was analyzed in triplicates,
at least.

RESULTS

Neospora caninum Induces Activation of
the NLRP3 and NLRC4 Inflammasome
Complexes, Dependent of MyD88 and
Caspase-1
The NLRP3 inflammasome has been described to become
activated in response to several intracellular pathogens, including
N. caninum (Zamboni and Lima-Junior, 2015; Riteau et al.,
2016; Wang et al., 2017, 2019). First, in order to validate
the model within our experimental conditions, we ran a set
of experiments using BMDMs exposed to N. caninum to
determine the kinetics of IL-1β production in macrophages
during infection. For that purpose, WT BMDMs were infected
with tachyzoites at multiplicity of infection (MOI; cell:parasite
ratio) of 0.5 and IL-1β production was measured in different
times of infection (3, 6, and 18 h). This MOI was chosen to
ensure the measurement of higher levels of active IL-1β by
ELISA (Supplementary Figure 1A), whereas longer periods of
incubation caused significant host cell lysis and consequent
release of the pro-form of the cytokine into the supernatant
(data not shown). Also, in this experimental scenario, we
estimate that ∼50% of the BMDMs were infected after 18 h
(Supplementary Figure 1B). As seen in Figure 1A, there is a
notable buildup in the concentration of IL-1β as the infection
progressed. We also looked for active/secreted IL-1β as a product
of the enzyme’s activity. We found that naïve WT BMDMs
did not produce measurable levels of pro- (38 kDa) or active
(18 kDa) IL-1β, whereas both forms of the cytokine were
robustly detected after infection with live N. caninum tachyzoites
(Figure 1B).

Next, we sought to determine whether IL-1β production
by BMDMs exposed to N. caninum required actual infection
mechanisms by the parasite or if different antigenic fractions
were capable of inducing the release of the cytokine. As shown in
Figure 1C, live tachyzoites were the only stimuli able to induce
IL-1β production by BMDMs. In order to measure Caspase-1/11
(CASP-1/11) activity, we used the fluorescent probe (FAM-
YVAD-FMK), which irreversibly binds to active CASP-1/11
(20 kDa). As expected, we detected a higher percentage of
CASP-1/11+ BMDMs exposed to live N. caninum tachyzoites by
microscopy (Figure 1D), increased fluorescent signal in a plate
reader (Figure 1E), and increased percentage and expression
(MFI) by flow cytometry (Figure 1F), that from here on will be
expressed as the correlation of both values (iMFI). Noteworthy,
we also tested whether these phenotypes would be conserved
in different N. caninum isolates, directly comparing NcLiv
with Nc-1. As it may be observed in Supplementary Figure 2,
WT BMDMs infected with either isolates produced similar
amounts of IL-1β (Supplementary Figure 2A) and had
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FIGURE 1 | Without previous priming, the inflammasome complex is activated in response to Neospora caninum. Bone marrow-derived macrophages (BMDMs) were

infected with N. caninum tachyzoites (NcLiv; MOI 0.5). Kinetics of IL-1β production was measured by ELISA (A) or detected by western blotting in the supernatant

and lysed cells (18 h, B). IL-1β secretion was measured by ELISA in BMDMs exposed to live, fixed, or heat inactivated tachyzoites, or stimulated (10µg/mL) with

Neospora lysate antigens (NLA) or excreted secreted antigens (ESA) (C). Caspase-1/11 (CASP-1/11) activity was detected in BMDMs infected with NcLiv tachyzoites

after 18 h (MOI 0.5) using the fluorescent FAM-YVAD-FMK probe through microscopy (D) in a plate reader (E) or through flow cytometry—represented by histogram,

percentage of positive cells and expression levels (MIF; iMIF = % of positive cells X mean intensity of fluorescence of the population) (F). Values are representative of at

least two independent experiments and each condition was conducted at least in triplicates. Values indicating mean ± SEM of cytokine levels in relation the standard

curve and CASP-1/11 activity (mean fluorescence intensity—MIF or in relative fluorescence units – RFU) (*P < 0.05; ANOVA with the Bonferroni multiple comparison

post-hoc test or t-test between naïve and N. caninum infected BMDMs).

almost identical percentages of CASP-1/11 positive cells
(Supplementary Figure 2B).

Next, we sought to further investigate the immune signaling
involved in the inflammasome activation induced byN. caninum.
For that purpose, we verified whether BMDMs deficient in
components of the pathway were able to release IL-1β, IL-1α,
and IL-18 in the same manner as WT cells in response to
the infection by live tachyzoites (Figure 2A). We also checked
which of the tested genes would negatively influence the
upregulation of CASP-1/11 in BMDMs cocultured with NcLiv

(Figure 2B). The experiments were performed alongside with
cells deficient in the major TLR adaptor protein MyD88, known
to participate in the early responses against N. caninum (Mineo
et al., 2009, 2010), contributes to the production of pro-IL-
1β and IL-1 receptor signaling (Dinarello, 2009). Genetically
deficient cells failed (partially or completely) to induce CASP-
1/11 and the consequent release of the cleaved cytokines into the
supernatant in response to the infection by NcLiv tachyzoites.
Noteworthy, NLRC4 is also required for full inflammasome
activation, in addition to the already described NLRP3 pathway
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FIGURE 2 | N. caninum promotes inflammasome activation through NLRP3 and NLRC4 receptors, in a MyD88-dependent manner. BMDMs obtained from WT,

Myd88−/−, Nlrp3−/−, Nlrc4−/−, Asc−/−, Caspase-1−/− and Caspase-1/11−/− mice were infected for 18 h with N. caninum tachyzoites (NcLiv; MOI 0.5). IL-1β, IL-18,

and IL-1α were measured by ELISA (A). Caspase-1/11 activity was assessed by flow cytometry, using the fluorescent probe FAM-YVAD-FMK. These results were

represented in histograms indicating the % of FAM-YVAD-FMK-positive cells and expression levels (iMIF = % of positive cells X mean intensity of fluorescence of the

population) (B). Values are representative of at least two independent experiments and each condition was conducted at least in triplicates. Values indicating mean ±

SEM of cytokine levels in relation the standard curve and CASP-1/11 activity (*P < 0.05; ANOVA with the Bonferroni multiple comparison post-hoc test between WT

and genetically deficient BMDMs infected with N. caninum).

(Wang et al., 2017). In addition, two other relevant results
derived from this experimental setup are significant: (1) Caspase-
11 has no or limited role in the cleavage of the cytokines induced
by the infection with live tachyzoites, as single knockout BMDMs
to Caspase-1 produced similar levels of the active cytokines
if compared to the double knockout cells (Casp-1/11−/−); (2)
MyD88, an adaptor protein for most TLRs and also the IL-1
receptor, is a crucial component of the Inflammasome activation.

Another feature of the inflammasome is the cell death
triggered in response to intracellular pathogens, induced by
pore formation in the cellular membranes, also called pyroptosis

(Fink and Cookson, 2006). To investigate the pore-forming
ability of BMDMs in response to N. caninum, we first

performed experiments using naïve WT BMDMs exposed to
live NcLiv tachyzoites and evaluated the loss of membrane

integrity by propidium iodide (PI) incorporation and lactate
dehydrogenase (LDH) release after 18 h. We found that N.
caninum triggered cell death that peaked between 60 and
120min of infection, a phenomenon detected by the increased
PI incorporation (Figures 3A,B) and LDH release (Figure 3C),
compared to uninfected cells. In addition, to determine the
components required for inflammasome-induced cell death
during the infection, we assessed whether genetically deficient
macrophages would present impaired pyroptosis after exposure
to live tachyzoites. We observed that genetic disruption
of each of the tested components of the pathway led to
decreased PI incorporation (Figure 3D) and LDH release
(Figure 3E), especially in Nlrc4−/− and Casp-1/11−/− BMDMs,
in comparison with WT BMDMs.

The Interplay Between ROS and the
Inflammasome in Response to N. caninum
One of the primary mechanisms underlying host resistance
against intracellular pathogen replication is the production of
reactive oxygen species (ROS). It is known that ROS and
its signaling pathway are involved in the resistance against
N. caninum infection (da Silva et al., 2017). Therefore, to
check the interplay between inflammasome complex activation
and ROS production induced by N. caninum, we measured
ROS in BMDMs exposed to live NcLiv tachyzoites using a
fluorescent probe (DHCFDA, Figure 4A). First, we quantified
ROS production in WT and Casp-1/11−/− BMDMs exposed to
live NcLiv tachyzoites, after 3 and 18 h of incubation. The results
indicated a sharp ROS production inWTmacrophages especially
during at 3 h of infection, while amarked decreased of the relative
fluorescence was perceived in Casp-1/11−/− infected BMDMs in
both time of 3 and 18 h after infection (Figure 4B). In addition,
we evaluated whether other inflammasome components would
be crucial to control N. caninum replication. Therefore, we
performed in vitro parasite load assays using BMDMs infected
with live pre-stained N. caninum tachyzoites, analyzed by flow
cytometry, along with paired measurement of ROS by the
cells. We found that the insufficient amounts of ROS produced
by genetically deficient BMDMs (Figure 4C) were directly
correlated to their permissiveness to the replication of parasites
(Figure 4D)—especially regarding Nlrp3−/− macrophages—if
compared to WT cells.

On the other hand, we also assessed whether the oxidative
stress could interfere with inflammasome complex activation
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FIGURE 3 | N. caninum infection induces NLRP3- and NLRC4-dependent pyroptosis in macrophages. BMDMs were infected with N. caninum tachyzoites (NcLiv;

MOI 0.5). Kinetics of pore formation was measured using propidium iodide (PI) in a plate reader (A) and visualized by microscopy after 3 h of infection (B). Lactate

dehydrogenase (LDH) release was measured after 18 h of infection using colorimetric assays and expressed as the percentage of LDH release, compared to the

assay’s positive control (BMDMs in Triton-X100, C). BMDMs obtained from WT, Nlrp3−/−, Nlrc4−/−, Asc−/−, and Caspase-1/11−/− mice were infected with NcLiv

(MOI 0.5). Pore formation was measured after 3 h of infection by PI incorporation (D) and LDH release was measured after 18 h (E). Values are representative of at

least two independent experiments and each condition was conducted at least in triplicates. Values indicating mean ± SEM for PI incorporation (relative fluorescence

units—RFU) and percentage of LDH release (*P < 0.05; ANOVA with the Bonferroni multiple comparison post-hoc test between WT and genetically deficient BMDMs

infected with N. caninum or t-test between naïve and N. caninum infected BMDMs).

in response to N. caninum, through FAM-YVAD-FMK probe
reactivity (Figure 5A) and IL-1β secretion (Figure 5B) in Casp-
1/11−/−, Nox2−/−, and WT BMDMs treated with N-acetyl-
cysteine (NAC), a ROS scavenger. It was striking to us that, in
the absence of ROS signaling and production, the inflammasome
activation was severely inhibited, while IL-1β levels presented
a marked decrease. In addition, we sought to determine the
host’s transcription factors involved in the interplay between
inflammasome complex formation and ROS production during
N. caninum infection. NF-κB and AP-1 have been shown to
trigger the ROS pathway during infections (Mazière et al., 1999;
Huang et al., 2016). Indeed, we found that the ROS production
and inflammasome activation by N. caninum was dependent
on NF-κB, while partially dependent of the AP-1 pathway,
in experiments where we measured the expression of ROS
(Figure 5C) and CASP-1/11 (Figure 5D), in N. caninum infected
WT BMDMs treated with NAC, CAPE (NF-κB inhibitor) or
Tanshinone (AP-1 inhibitor), alongside with Nox2−/− cells. We
also investigated whether the oxidative stress could interfere in
the cell death by pyroptosis in response to N. caninum, through

PI incorporation (Figure 5E) and LDH release (Figure 5F) in
Nox2−/− and WT BMDMs, treated or not with NAC. It was also
notable that, in the absence of ROS, pyroptosis was inhibited
as demonstrated by significantly decreased pore formation and
LDH release. Furthermore, we observed that pyroptosis induced
by live tachyzoites was completely dependent of NF-κB and
partially dependent of AP-1, in experiments using LDH release
(Figure 5G) and PI incorporation (Figure 5H) as readouts,
observing NcLiv-infected WT BMDMs. treated or not with
NAC, CAPE (NF-κB inhibitor) or Tanshinone (AP-1 inhibitor),
alongside with Nox2−/− cells.

In order to investigate whether the interplay between ROS
and the Inflammasome during N. caninum infection was
reproducible in vivo, we performed experiments to check the
immune responses and parasite burden ofWT andCasp-1/11−/−

mice, after 3 and 30 days of infection.We first analyzed peritoneal
cells after the 3 days of in vivo infection, and established
that there is an increase in FAM-YVAD-FMK probe reactivity
(Figure 6A) in peritoneal cells of WT mice, as well as a decrease
in PI incorporation in cells derived from Casp-1/11−/− mice
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FIGURE 4 | The inflammasome complex is required for ROS production and consequent restriction of N. caninum replication. ROS production was assessed by the

fluorescent DHCFDA probe, as observed by microscopy of naïve BMDMs and cells infected with N. caninum tachyzoites (NcLiv; MOI 0.5) for 18 h (A). BMDMs

obtained from WT and Caspase-1/11−/− mice were infected for 3 and 18 h with NcLiv (MOI 0.5). ROS production was measured in a plate reader (B). BMDMs

obtained from WT, Myd88−/−, Nlrp3−/−, Nlrc4−/−, Asc−/−, Caspase-1−/−, and Caspase-1/11−/− mice were infected for 18 h with NcLiv (MOI 0.5) and ROS

production was measured in a plate reader (C). Parasite burden was assessed using DDAO-SE (fluorescent ester-based probe) stained parasites and measured by

flow cytometry, as results were represented in expression levels (MIF) (D). Values are representative of at least two independent experiments and each condition was

conducted at least in triplicates. Values indicating mean ± SEM of fluorescence levels (mean fluorescence intensity—MIF or in relative fluorescence units—RFU) (*P <

0.05; ANOVA with the Bonferroni multiple comparison post-hoc test between infected WT and genetically deficient BMDMs or t-test between infected WT and

Casp1/11−/− BMDMs).

(Figure 6B). Also, within the same context, we assessed whether
the intact inflammasome pathway would be crucial to control
N. caninum replication and ROS production in vivo. We found
that Casp-1/11−/− mice presented a pronounced decrease in
ROS production during the acute infection (Figure 6C) and,
in association, it was detected a six-fold increase of parasite
burden in the genetically deficient mice (Figure 6D). Significant
increments in parasite burden of Casp-1/11−/− mice were also
observed in liver (3 days of infection, Figure 6E) and brain (30
days of infection, Figure 6F) samples.

DISCUSSION

Innate immunity plays an important role in protection and
pathogenesis of protozoan infections, including N. caninum.
MyD88-dependent TLR signaling has been reported to play a key
role in parasite recognition and induction of suitable immune
response against this parasite (Mineo et al., 2009, 2010; Beiting
et al., 2014; Gurung and Kanneganti, 2016). However, activation

of MyD88-independent TLR pathways, such as the TRIF-
dependent TLR3 signaling, are also important for activation of
the immune response against N. caninum, as potent inducers
of type I interferons (Beiting et al., 2014; Miranda et al., 2019).
In parallel, NLRs have also emerged as important components
of the innate immune system, due to its ability to recognize and
eliminate intracellular parasites (Zamboni and Lima-Junior,
2015; Coutermarsh-Ott et al., 2016). Recent studies have reported
that NLR-mediated host immune responses contribute to N.
caninum elimination and pathogenesis of neosporosis (Davoli-
Ferreira et al., 2016; Wang et al., 2017, 2018, 2019). In this study,
we identified the NLRP3 and NLRC4 inflammasomes as critical
innate immune components during N. caninum infection in
macrophages that, along with MyD88-dependent TLR responses,
coordinate immune restriction mechanisms against the
parasite replication.

The inflammasome activation requires a priming step,
typically provided by LPS pre-treatment as first signal in
different experimental setups, which induces the expression
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FIGURE 5 | ROS production is required for the Neospora caninum-induced inflammasome activation in a NF-κB-dependent manner. BMDMs obtained from WT,

Nox2−/− and Caspase-1/11−/− mice or WT treated for 1 h with N-acetyl-cysteine (NAC, ROS scavenger), and 3 h with 5µM Caffeic acid phenethyl ester (CAPE,

NF-κB inhibitor) or 10µg/mL Tanshinone (AP-1 inhibitor), were infected with N. caninum tachyzoites (NcLiv; MOI 0.5). Caspase-1/11 (CASP-1/11) activity was

measured in BMDMs after 18 h of infection using the fluorescent FAM-YVAD-FMK probe in a plate reader (A,D) and IL-1β production was measured in the

supernatant by ELISA (B). ROS production was measured after 18 h infection by fluorescent signal in a plate reader using fluorescent DHCFDA probe (C). Pore

formation was measured after 3 h of infection using propidium iodide (PI) incorporation in a plate reader (E,H) and Lactate dehydrogenase (LDH) release was

measured after 18 h of infection using colorimetric assays and expressed as a percentage of LDH release compared to the assay’s positive control (BMDMs in

Triton-X100; F,G). Values are representative of at least two independent experiments and each condition was conducted at least in triplicates. Values indicating mean

± SEM of fluorescence levels (relative fluorescence units—RFU) and percentage of LDH release (*P < 0.05; ANOVA with the Bonferroni multiple comparison post-hoc

test between WT, treated and genetically deficient BMDMs, infected with N. caninum).

of biologically inactive precursors (pro-CASP-1, pro-IL-
18, and pro-IL-1β) and sensor molecules that need to be
activated via auto-proteolysis processing. Consequently, the
activation that leads to the formation of a cytosolic multi-
protein signaling complex, the inflammasome, requires two
distinct signals from pathogen-associated molecular patterns
(PAMPs) or host-derived danger-associated molecular pattern
(DAMPs) (Afonina et al., 2015; Zhu and Kanneganti, 2017).
In our study, we demonstrated that N. caninum is able
to induce both signals by itself in BMDMs, in order to
fully active the inflammasome. To further demonstrate that
capability, we also ran experiments with known agonists of
the inflammasome (LPS and ATP) side-by-side with NcLiv
tachyzoites (Supplementary Figure 3). These processes involve
the regulation of the active cytokines IL-18, IL-1α, and IL-
1β. Thus, NLRP3 and NLRC4 receptors—along with ASC
and CASP-1/11—are crucial for secretion of active factors
that culminate in ROS production, that will ultimately
restrict N. caninum growth. While the demonstration that
the NLRC4 Inflammasome participates in the context of N.
caninum infection is entirely new, the activation of the NLRP3
inflammasome has been previously demonstrated in mouse
macrophages and bovine monocytes (Wang et al., 2017, 2019),
although the authors showed a similar mechanism in LPS-
primed BMDMs (Wang et al., 2018), not in naïve cells as we have
shown in this work.

In addition, the activation of inflammasome-associated
inflammatory caspases drives cleavage of the pro-pyroptotic
factor gasdermin D to form pores on the host cell, causing
membrane permeabilization and consequent pyroptosis. This
process is required to restrict the replication of intracellular
pathogens by eliminating the infected cell and removing the
protective niche of the pathogen, while simultaneously elicits an
inflammatory response (Cunha et al., 2015; Kovacs and Miao,
2017; Man et al., 2017). Based on previous work, pyroptosis
has been shown to be regulated by CASP-1/11-dependent or -
independent mechanisms. Caspase-1-independent pyroptosis is
executed by human Caspase-4, human Caspase-5, or mouse
Caspase-11. This alternative pyroptosis pathway presents a
similar phenotype to that induced by CASP-1 alone, while also
leads to the release of IL-1β and IL-18 (Man et al., 2017). Our data
reveal a partial role for NLRP3-inflammasome in this context,
while pore formation and consequent pyroptosis triggered by N.
caninum relied mainly on NLRC4 and ASC, as demonstrated for
others pathogens (Silveira and Zamboni, 2010; Mascarenhas and
Zamboni, 2017; Mascarenhas et al., 2017).

Several molecular and cellular events have been proposed
as the trigger for NLRP3 inflammasome activation, including
K+ efflux, Ca2+ signaling, reactive oxygen species (ROS),
mitochondrial dysfunction, and lysosomal rupture (Sutterwala
et al., 2014; Zamboni and Lima-Junior, 2015; He et al.,
2016; Man et al., 2017; Ty et al., 2019). In general, ROS is
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FIGURE 6 | The absence of Caspase-1/11 leads to decreased pyroptosis and ROS production, while mice fail to properly restrict N. caninum replication in vivo.

C57BL/6 WT and Caspase-1/11−/− mice (n = 5/group) were infected with 1 × 106 tachyzoites of N. caninum tachyzoites (NcLiv) and euthanatized after 3 days for

the collection of peritoneal cavity cells and liver fragments, or after 30 days for the collection of brain fragments. Peritoneal cells were assessed in a plate reader for

Caspase-1/11 (CASP-1/11) activity, measured by the fluorescent FAM-YVAD-FMK probe (A); pore formation or pyroptosis, quantified by propidium iodide (PI)

incorporation (B); and ROS production, measured by the fluorescent DHCFDA probe (C). Peritoneal parasite burden was determined counting the extracellular

parasites in a hemocytometer (D). Parasite burden in liver (E) and brain (F) fragments were measured by quantitative real-time PCR, and parasite loads were

calculated by interpolation from a standard curve of NcLiv tachyzoite DNA (E). Values are representative of two independent experiments and indicate mean ± SEM of

fluorescence levels (relative fluorescence units—RFU) and parasite burden (*P < 0.05; t-test between infected WT and Casp1/11−/− mice).

known to cause inflammation in response to the destruction
of tissues and release of danger signals (Ty et al., 2019).
In this context, we found a crucial requirement of ROS to
induce inflammasome activation and to control the parasite
replication. Our data show that ROS is critical player for the
activation of the inflammasome, while it is also a product of
its activation, which is an important host defense mechanism
against N. caninum in vitro and in vivo. Previous work,
on different models, have shown that ROS are produced
by NLRP3 activators, while are also essential secondary
messengers for NLRP3 inflammasome activation (Reviewed by
Martinon, 2010).

Although infections by different apicomplexan parasites have
been shown to induce ROS, it is also relevant to the field to
demonstrate that early sensing ofN. caninum results in increased
oxidative stress.

On the other hand, this positive inflammatory feedback
loop between ROS and the inflammasome, if left uncontrolled,
may lead to increased pathology in the infected hosts. This
is one interesting topic that should be verified using proper
experimental setups—different from those used in this work, that
intended to verify initial host responses triggered by the infection.
Classically, N. caninum is associated with reproductive disorders
in cattle, with mid- to late-term abortions as its main clinical
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feature (Thilsted and Dubey, 1989). An increasing number of
research groups have published promising results on in vivo and
ex vivo bovine immune responses against N. caninum during
gestation (Andrianarivo et al., 2001; Rosbottom et al., 2008; Rojo-
Montejo et al., 2009; Bartley et al., 2013; Hecker et al., 2015;
Pereyra et al., 2019). Also, some groups adopt the gestational
mouse model in order to draw their experimental conclusions
on this topic (Long and Baszler, 2000; Arranz-Solís et al., 2015;
Aguado-Martínez et al., 2017). Regardless of the model, it is clear
that IFN-γ is the crucial factor for parasite restriction, although
its abundance in the placental environment is detrimental to
fetal development (Innes, 2007). The association of active IFN-
γ-dependent mechanisms and the inflammatory loop described
here could be related to immunopathological features of the
infection that are worth pursuing.

In conclusion, we show in this work that N. caninum induces
activation of the NLRP3 and NLRC4 inflammasome complexes
through a positive interplay withMyD88/NF-κB-dependent ROS
production, that will lead to restriction of parasite replication by
the hosts’ immune system.
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