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The teleoperated robotic system can support humans to complete tasks in

high-risk, high-precision and difficult special environments. Because this kind

of special working environment is easy to cause stress, high mental workload,

fatigue and other mental states of the operator, which will reduce the quality

of operation and even cause safety accidents, so the mental state of the

people in this system has received extensive attention. However, the existence

of individual differences and mental state diversity is often ignored, so that

most of the existing adjustment strategy is out of a match between mental

state and adaptive decision, which cannot effectively improve operational

quality and safety. Therefore, a personalized speed adaptation (PSA) method

based on policy gradient reinforcement learning was proposed in this paper. It

can use electroencephalogram and electro-oculogram to accurately perceive

the operator’s mental state, and adjust the speed of the robot individually

according to the mental state of different operators, in order to perform

teleoperation tasks efficiently and safely. The experimental results showed

that the PSA method learns the mapping between the mental state and the

robot’s speed regulation action by means of rewards and punishments, and

can adjust the speed of the robot individually according to the mental state

of different operators, thereby improving the operating quality of the system.

And the feasibility and superiority of this method were proved. It is worth

noting that the PSA method was validated on 6 real subjects rather than

a simulation model. To the best of our knowledge, the PSA method is the

first implementation of online reinforcement learning control of teleoperated

robots involving human subjects.
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Introduction

As a branch of the field of robotics, teleoperated robotic
systems have received extensive attention from academia and
industry due to their advantages such as remote operation
and operation in hazardous environments. In this system, the
operator guides the robot movement to perform the task. In
the process of the robot performing a task, the operator, as a
part of the system, can learn the task execution status through
information perception or feedback, and can also control the
robot by sending commands. Teleoperated robotic systems are
mostly used in special operations such as deep-sea exploration,
space operations, detoxification and detonation and precision
surgery (Nuño et al., 2011; Zhai and Xia, 2016). Due to the
characteristics of high risk, high precision and high difficulty
in this field, the amount of information that operators need to
process has increased dramatically, resulting in higher mental
workload and mental pressure. Studies have shown that higher
mental workload and mental pressure will cause rapid mental
fatigue, decreased vigilance, stress reaction, and increase people’s
errors and frustration (Zhang T. et al., 2019). On the contrary,
too low mental workload and mental pressure will cause a waste
of human resources or cause disgust. These adverse mental
states will lead to errors in information acquisition, analysis, and
decision-making, which will further lead to the decline of job
performance and even lead to safety problems caused by human
accidents (Wilson, 2005; Catelani et al., 2021).

To overcome this problem, various adjustment methods
have been proposed. As early as in the 1990s, an adaptive
automation method was first proposed. Parasuraman (1993),
Scerbo et al. (2003), Kaber et al. (2016) scholars published
a series of papers to discuss adaptive automation concept
and theoretical issues. It is defined as an automated human-
computer interaction system design method that can change
the level of automation by users and systems. This method
can dynamically adjust the automation level or working mode
at any time according to the operator’s mental state to match
the operator’s needs and mental state (such as the mental
workload state, fatigue state, etc.), thus achieving the purpose
of improving the operation performance and reducing human
errors (Parasuraman, 1993; Scerbo et al., 2003; Kaber et al.,
2016).

In recent years, adjustment methods based on physiological
signal detection has been widely accepted with its unique
advantages. Firstly, neurophysiological measures could
be obtained continuously and online. Secondly, the
neurophysiological ones may be recorded continuously without
using overt responses (i.e., additional tasks) and may provide
a direct measure of the operator’s mental (covert) activities.
Also, neurophysiological measures have good resolution and
form a good complementarity with performance measures (Di
Flumeri et al., 2015). Finally, neurophysiological measures can
be used not only to trigger the adjustment system but also to

highlight why adjustment method is important for enhancing
safety in high-risk and high-demanding tasks (Arico et al.,
2016). From the late 1990s to the recent years, most of the
studies have proved the positive effect of adjustment method
in improving the system performance and subjective feeling
using electroencephalogram (EEG), functional near-infrared
spectroscopy (fNIRS), electro-oculogram (EOG), and heart rate
variability (HRV) physiological parameters (Freeman et al.,
1999; Di Flumeri et al., 2019; Li et al., 2019; Zhang X. et al.,
2019; Wu E. Q. et al., 2021).

Among all these studies, EEG-based adjustment method
is getting much attention. Parasuraman and Wilson (2008)
proposed an adjustment system based on EEG detection, which
can realize real-time detection of the operator’s mental state and
dynamically assign task attributes and levels between machine
and human according to mental state, thus effectively improving
task performance. Jia et al. (2014) proposed an adjustment
system for teleoperated robot tasks, which can detect the mental
state according to the EEG of the operator and adjust the
running parameters of the robot in real-time according to the
mental state. The robot’s speed is increased and the response
time is decreased when the operator is in an excellent mental
state; on the contrary, when the operator is in a bad mental state,
the robot’s speed is reduced and the response time is improved.
Therefore, the adjustment system effectively improves control
accuracy and security (Jia et al., 2014). Yang and Zhang (2013)
used the fuzzy modeling method to establish an operator mental
state estimation and prediction model based on EEG. Once the
operator is found to be in a high-risk mental state, the model
will immediately adjust its task load or remind the operator
to take some measures to make the operator’s task match
with its current mental state (Yang and Zhang, 2013). Pietro
Arico used the passive brain-computer interface technology to
detect the operator’s mental workload in the realistic air traffic
control environment and took it as the indicator to trigger the
adjustment system. Meanwhile, the technology’s effectiveness
was verified in the realistic air traffic management system (Arico
et al., 2016).

Although adjustment technology, especially EEG detection-
based adjustment method, has achieved remarkable results, it is
undeniable that there are still challenges to be solved. Firstly,
due to the existence of individual differences, the relationship
between mental state and operational quality is also different
(Jia et al., 2012), and as the user’s operational skills improve, the
relationship between mental state and operational quality will
also change. This puts the conventional method based on static
and fixed adjustment strategies into a predicament, because it
does not have the ability of individual adjustment, and at the
same time, it cannot change the adjustment strategy with the
improvement of the operator’s skills. Secondly, most studies
predetermine the “good or bad” characteristics of mental states,
therefore, the task becomes more complicated when the “good”
mental state is detected and less complicated when the “bad”
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mental state is detected. What makes this subjectivity wrong is
the ignorance of mental states’ diversity, which is particularly
strong across individuals and across time. Also, because the
brain is in a highly dynamic and non-linear environment,
mental states and behaviors are not one-to-one correspondence,
but many-to-one, one-to-many or mixed cross correspondence
(Abbass et al., 2014). As a result, most of the existing adjustment
strategy is out of a match between mental state and adaptive
decision, which cannot effectively improve operational quality
and safety. Thirdly, the stability and robustness of adjustment
systems based on EEG detection alone need to be improved,
and adjustment systems for the fusion of multiple bioelectrical
signals are the trend of development (Laurent et al., 2013;
Wu W. et al., 2021).

To address these three problems, by introducing the
idea of policy gradient reinforcement learning (Mnih et al.,
2015) and combining the advantages of EEG and EOG, a
personalized speed adaptation (PSA) method was proposed.
Then, its feasibility was verified by designing a teleoperation
experiment. Prominently, The PSA method belongs to a
“human-in-the-loop” reinforcement learning framework, it is
an interactive learning technology, which uses the interaction
between the agent and the environment, and records each
reward and punishment as personalized feedback to update
the adjustment strategy. Compared with the methods based
on static and fixed adjustment strategies, it has better dynamic
adaptability. Secondly, reinforcement learning problems are
usually normalized as Markov decision process (MDP), so
this makes the PSA model have the natural characteristics of
modeling mapping sequences (Arulkumaran et al., 2017), which
can fully characterize the sequence features and capture the
individual characteristics of operators. Moreover, the setting
of the exploration mechanism can make the agent more fully
explore the state and action space, which improves the diversity
of results to a certain extent. Thirdly, since this type of
model often aims to maximize the cumulative reward of the
system, that is, the long-term feedback of the user’s operational
quality is the optimization goal to update the adjustment
strategy, so it can adapt to the development trend of the
operator’s personalization. Finally, for a “human-in-the-loop”
reinforcement learning training process, it’s arguably better for
the algorithm to learn certain repetitive subsequences of actions
(or patterns of actions) and store them in a rule-based fashion.
Once an action pattern has been shown to be successful in
multiple instances of a task context, it can be applied in similar
other task contexts. This reinforcement learning convergence
strategy can cope well with dynamic task environments (Wen
et al., 2020; van Zoelen et al., 2021). It is worth noting that
the mental state in this article does not refer to a specific
discrete state, but a continuous state, which is mainly evaluated
by the two indicators of arousal and valence in the dimension
theory of psychology (Russell, 2003). The arousal represents the
neurophysiological activation level of the subject, and the lower

the degree of arousal, the stronger the degree of fatigue in the
mental state, and vice versa. The valence indicates the positive or
negative of the subject’s emotional state, and the lower the degree
of valence, the stronger the negative degree in the mental state,
and vice versa. Changes in the operator’s mental state in these
two dimensions (indicators) will lead to changes in the quality
of the operation. For example, as the degree of arousal decreases,
that is, the degree of fatigue of the operator increases, the quality
of the operation will be degraded or even human error will
occur (Chuang et al., 2018). As the valence decreases, that is,
the degree of negative mental state of the operator increases, the
quality of the operation decreases (Jin et al., 2017). Moreover,
the advantage of this setting using continuous indicators to
evaluate mental state is that the influence of the diversity of
mental states on operational quality can be fully considered. In
addition, the PSA method has the following three advantages:
(1) The PSA method is an end-to-end learning method that
learns the mapping between mental states and robot speed
regulation instructions through rewards and punishments, and
does not need to explicitly identify which specific mental state it
is, thus overcoming the above challenge 2. (2) The PSA method
is individually trained for each operator, and with the increase of
usage time, each operator’s personalized interaction habits, skill
growth, etc., will optimize the PSA model parameters, thereby
overcoming the above challenges 1. (3) The PSA method utilizes
multimodal bioelectrical signals combining EEG and EOG in
mental state perception, and fuses them on the feature layer,
thereby overcoming the above challenges 3.

The major contributions of the paper can be summarized
in three aspects. Firstly, according to the characteristics of the
tele-robot system and the advantages of human and computer,
a dual-loop human- machine information solution interaction
mechanism was designed. By introducing the idea of policy
gradient reinforcement learning, a mental state-based PSA
model was constructed. Secondly, the PSA algorithm was
developed which includes three steps, which are multimodal
bioelectrical signal data preprocessing, mental state feature
extraction and model efficient training. Finally, due to the high
cost of data acquisition and labor-intensive problems in the
“human-in-the-loop” reinforcement learning method (Nielsen
et al., 2015; Alamdari et al., 2020), this paper collects a large
number of experimental data with real human participation
by designing two experimental paradigms of teleoperation
robots with engineering value. The data not only proves the
effectiveness of the PSA method, but also provides valuable
knowledge and experience for future adjustment system design.
The remaining of this paper is organized as follows. Section
“Methodologies” describes PSA models and methods. Section
“Materials and experiments” presents experimental materials,
experimental paradigms, and data processing procedures. The
results are presented in Section “Results.” Remarks and
discussions are presented in Section “Discussion,” followed by
the conclusion in Section “Conclusion.”
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Methodologies

We first designed a dual-loop human-computer information
interaction mechanism according to the characteristics of the
teleoperated robot system and the respective advantages of
humans and computers. Secondly, by introducing the idea of
policy gradient reinforcement learning, the PSA framework that
could individually adjust the speed of the robot according to the
mental state of different operators was constructed. Thirdly, the
PSA problem was formulated and analyzed, and a mathematical
model was established. Finally, the convergence criteria of the
PSA model were defined.

Personalized speed adaptation
framework

The PSA method proposes a dual-loop human machine
information interaction mechanism composed of the active
control loop and the personalized regulation loop, as shown
in Figure 1. In the active control loop, the operator sent
control instruction to the robot through the control device,
and supervised the running state of the robot through visual
and auditory information, thus adjusting control instruction
in real-time, and correcting sudden errors. In order to solve
the problem that the operator’s mental state leaded to poor
operational quality or even danger, a personalized regulation
loop was designed on the basis of the active control loop. By
introducing the idea of policy gradient reinforcement learning,
the operator’s brain was innovatively used as the environmental
element, the control algorithm (CA) as the agent element,
the mental state as the state element, the speed adjustment
instruction as the action element, and the operational quality
as the reward element. Then, an end-to-end PSA model was
established, which took as input the multimodal bioelectrical
signals composed of EEG and EOG that reflect the operator’s
mental state, and used the robot’s personalized speed adjustment
instructions as the output. This model had been trained for
many times to establish a mapping relationship between the
operator’s mental state and the speed of the robot. It could adjust
the speed of the robot individually according to different mental
states, in order to improve the operational quality and system
safety.

Personalized speed adaptation
problem formulation

Markov decision process
In the personalized regulation loop, the idea of policy

gradient reinforcement learning was introduced, and a
reinforcement learning model composed of five elements: brain
environment, mental state, action indicating the robot speed

Active control loop

Personalized regulation loop

Control Algorithm 
(Agent)

Robot operating 
environmentOperational quality

(Reward)

Mental state
(State)

Robot speed adjustment
(Action)

Brain 
(Environment)

EEG&EOG

Operator Control 
device Telerobot

Visual/auditory 
information

Control
instruction

Speed adjustment 
instruction

FIGURE 1

The figure shows the overall framework of the personalized
speed adaptation (PSA) method.

adjustment command, reward indicating operational quality
and CA was built. More specifically, the study found that the
mental state of the operator can be changed by the task and the
behavior of the robot. For example, when a teleoperated robot
performs a difficult task or when the robot makes a mistake,
it will trigger the human brain alert (McIntire et al., 2013).
When teleoperation tasks are complex and take a long time to
perform, brain fatigue can occur due to high mental workload
(Warm et al., 2008). When the teleoperation task is too single
and simple, it will lead to a decrease in the concentration of the
brain (Daly et al., 2017). Therefore, we assumed that the process
conforms to a MDP (Chanel et al., 2020). The MDP framework
is a convenient choice for planning under uncertainty. This
famous stochastic control process is an elegant way to model
and solve probabilistic planning problems. Once the possible
actions and mental states have been identified, the goal of the
problem is defined using a reward function that evaluates the
utility of a state-action pair. This makes possible to define the
utility of an action sequence as the expected sum of the rewards
obtained over time given an initial state. The optimal sequence
of actions is the one that maximizes such an expected sum of
rewards.

Monte Carlo sampling
Unlike reinforcement learning models that know the reward

by performing a single-step operation, the PSA model needs
to perform a multi-step operation task before getting the
reward. At the same time, since the state transition probability
and reward function of the model are unknown, the model
belongs to the category of multi-step, model-free reinforcement
learning. Therefore, we started from Monte Carlo sampling
(Speagle, 2020) to design the PSA model. In the case of model-
free reinforcement learning, the first problem encountered by
the policy iteration algorithm is that the policy cannot be
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evaluated. This is due to the fact that the model is unknown
and cannot do full probability expansion. At this point, the
state of the transition and the reward obtained can only be
observed by performing the selected action in the environment.
Inspired by the K-armed bandit, a straightforward alternative to
policy evaluation is to “sample” multiple times and then find the
average cumulative reward as an approximation of the expected
cumulative reward. This is called Monte Carlo reinforcement
learning and is also a key point in designing the PSA model
(Andrieu et al., 2003).

Policy gradient
The policy gradient method is to directly simulate the policy

with a neural network. The input of the neural network is
the current corresponding state of the agent, and the output
is the corresponding action (or action selection probability).
The training of the model is actually a process of continuous
exploration directly in the policy space to find the optimal policy
(neural network parameters). This method works by modeling
the policy function and then using gradient descent to update
the parameters of the network. It does not have an actual
loss function in reinforcement learning, and its purpose is to
maximize the expected value of the cumulative reward, so the
expected value of the cumulative reward is used as the loss
function. The formula is as follows:

∇J(θ) =Eτ∼pθ(τ)[R (τ)∇ ln pθ (τ)] (1)

where R(τ) represents the reward for sampling trajectory τ.
pθ(τ) refers to the probability of sampling trajectory τ in the case
of given neural network parameters θ. For those cases of high-
dimensional or continuous state space, after obtaining the value
function through the learning based on the value function, when
formulating the strategy, it is necessary to compare the value
corresponding to various actions. In this way, if the dimension
of the action space is high or continuous, it is necessary to
compare an action with the maximum value function from
it, and this process becomes impractical. However, the policy
gradient method can be directly applied to reinforcement
learning scenarios in high-dimensional or continuous action
spaces. Therefore, this paper chose to design the PSA model
based on the policy gradient framework.

Formally, the MDP model of PSA was defined as a tuple (S,
A, P, R), where:

• S is the set of states, this paper represents the set of mental
states s;
• A is the set of actions, this paper represents the set of robot

speed adjustment instructions a;
• P is the transition function, which defines the policy p of

reaching the state si ∈ S given that the action a ∈ A is
performed in state si−1 ∈ S;
• R is the reward function that values any state-action pair,

this paper represents the operational quality function;

Personalized speed adaptation method

According to the framework of policy gradient
reinforcement learning, starting from the principle of Monte
Carlo sampling, the PSA model was designed. Among them,
the multi-step sampling process is shown in Figure 2. Starting
from any initial mental state s1, a certain policy p is used for
sampling, and the policy is executed for i steps and the trajectory
τ is obtained. This process can be represented by the following
formula (Zhang et al., 2021):

pθ(τ) = p (s1) pθ (c1|s1) p (s2|s1, c1) pθ (c2|s2)

p (s3|s2, c2) · · · pθ (ct|st) p (st+1|st, ct)

= p (s1)
∏T

t=1 pθ (ct|st) p (st+1|st, ct)

 (2)

where si (i = 1,. . .. . .,k) represents the mental state at the
moment i (hereinafter referred to as the state). ai (i = 1,. . .. . .,k)
represents the robot’s speed adjustment action at the moment
i (hereinafter referred to as the action). pθ(τ) refers to the
probability of sampling trajectory τ in the case of given neural
network parameters θ. p (s1) is the probability of the initial
state s1. pθ (ai|si) is the probability of taking action ai given
the current state si. p (si+1|si, ai) refers to the probability
of returning the next state si+1 based on the conditional
probability after taking the current state si and action ai. For
a certain sampling trajectory τ, the corresponding reward can
be obtained. Different rewards can be obtained by optimizing
the PSA model. The actions taken by the PSA model and the
appearance of a certain state are random. The ultimate goal is
to find a policy neural network with the maximum cumulative
expected reward Rθ, and according to Formula (1), the objective
function is shown as follows:

R̄θ =

∑
τ

R(τ)pθ(τ) (3)

where R(τ) represents the reward for sampling trajectory τ. To
calculate the maximum value of the objective function and the
corresponding neural network parameter θ, the gradient descent
method was adopted. The formula of the gradient ∇R̄θ of the
objective function is shown as follows:

∇R̄θ ≈
1
N

N∑
n=1

R
(
τ(n)

)
∇ ln pθ

(
τ(n)

)
(4)

where n is the number of sampling. N is the total number of
samples. From Formulas (2), (4), the following formula can be
obtained:

∇R̄θ ≈
1
N

N∑
n=1

k∑
i=1

R
(
τ(n)

)
∇ ln pθ

(
a(n)i |s

(n)
i

)
(5)

To make the reward value R(τ) not affected by the randomness
of sampling, a baseline b was introduced in this paper.
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FIGURE 2

Schematic diagram of Monte Carlo sampling in the PSA model.

Therefore, the gradient formula is optimized as follows:

∇R̄θ ≈
1
N
∑N

n=1
∑k

i=1(R
(
τ(n)

)
− b)∇ ln pθ

(
a(n)i |s

(n)
i

)
b ≈ E[R(τ)]

}
(6)

In Formula (6), the mental state si was represented by the
feature vector of the collected bioelectric signals, and see Section
“Mental state feature extractor” for the detailed formula. The
action ai representing the robot speed regulation command
was obtained from the output value of the neural network.
The reward R represented the operational quality, which was
obtained according to the task quality score, and see Section
“Personalized speed adaptation model trainer” for the detailed
formula. Finally, the gradient descent method was used to
update the parameter of the neural network θ. The detailed
update process is shown in Figure 3.

θ=θ+∇Rθ (7)

Personalized speed adaptation model
training convergence criteria

The PSA approach is a “human-in-the-loop” reinforcement
learning architecture that often exists in a dynamic task
environment with no fixed optimal solution, where
unpredictable events may require policy changes. In such
an environment, conventional convergence rules are not a good
criterion for performance evaluation because the agent needs
to continuously learn and adapt. For a “human-in-the-loop”
reinforcement learning training process, it’s arguably better
for the algorithm to learn certain repetitive subsequences of
actions (or patterns of actions) and store them in a rule-based
fashion. Once an action pattern has been shown to be successful
in multiple instances of a task context, it can be applied in
similar other task contexts (Wen et al., 2020; van Zoelen et al.,
2021). Therefore, we believed that research on reinforcement
learning of “human-in-the-loop” should not use conventional
convergence criteria as a criterion for whether a model is
valid, but should focus on whether a successful action pattern

emerges, and its sustainability. Therefore, we updated the PSA
model convergence evaluation method, which was evaluated
by two indicators: reward and operator’s subjective evaluation.
When the fluctuation of the reward is maintained in a relatively
small range, and the action level at this time is consistent with
the action level expected by the operator’s subjective evaluation.
That is to say, the operator is neither strenuous (it will not
consume too much mental workload because the difficulty is
too high), nor boring (it will not lose the sense of participation
or reduce the attention because the task is too easy), we believe
that the model training has reached convergence at this time.

Materials and experiments

Participants and experimental setup

Six healthy participants took part in this study (the age
range was 23−32, 1 female). All participants reported normal or
corrected-to-normal vision and had no previous experience with
the PSA system. Written informed consent was obtained from
each participant before the experiment. The Institutional Review
Board of Xi’an Jiaotong University approved the proposed
experiment, and all experiments were conducted following the
Declaration of Helsinki.

The PSA experimental system mainly included three
subsystems: the bioelectrical signals acquisition subsystem,
computer subsystem, and interactive subsystem. The
bioelectrical signals acquisition subsystem was mainly
responsible for acquiring, amplifying, and transmitting
EEG and EOG signals to the computer subsystem. EEG&EOG-
W32 model device manufactured by Neuracle Technology Co.,
Ltd., was used, the sampling frequency was 1000 Hz, and the
communication method was WiFi. The device consisted of
30 EEG measuring electrodes, 2 EOG measuring electrodes,
1 reference electrode (REF) and 1 ground electrode (GND).
The impedance level of all measuring electrodes were kept
below 10 k� in each experiment. The electrodes’ distribution
conformed to international 10−20 standards (Figure 4). The
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The figure shows the update process of the PSA model.

computer subsystem included two modules, the first one
was the PSA module, which was responsible for real-time
processing of bioelectrical signals (EEG and EOG), detecting
the operator’s mental state, and generating speed adjustment
instructions for the robot. This module used MATLAB 2019b
and PYTHON3.6. The second was the task simulator module,
which was responsible for generating the task environment.
This module uses PYTHON3.6. TCP/IP communication was
used between the two modules. A microprocessor with Intel
(R) Core (TM) i5-5600 CPU was employed in the computer.
The interactive subsystem (this refers to the mouse) was used to
realize the human-computer interaction function. An overview
of the system is illustrated in Figure 5. When the operator
controlled the robot through the mouse to perform tasks, the
EEG and EOG were collected and transmitted to the computer
in real-time. Then, the computer detected the operator’s mental
state and sent the speed adjustment instruction adaptively.
Specifically, the EEG and EOG cap worn by the operator
collected EEG and EOG data in real time while performing the
task and sent it to the computer. The computer sequentially
performed preprocessing (see section “Multimodal bioelectrical
signal preprocessor” for details), feature extraction (see section
“Mental state feature extractor”) and PSA model processing
(see section “Personalized speed adaptation model trainer”)
on these data. Then generated a speed adjustment instruction
and sent it to the robot. MATLAB 2019b was used in the data
preprocessing and feature extraction steps, and PYTHON 3.6
was used in the PSA model processing steps.

Experimental task

By analyzing the common characteristics of the telerobot
tasks, we abstracted two virtual tasks, namely trajectory tracking

and target positioning. Trajectory tracking could simulate tele-
operated EOD robots to perform explosive transfer tasks, tele-
operated detection robots to perform submarine inspection
tasks, and tele-operated AGV robots to perform cargo transfer
tasks, etc. Target positioning could simulate the remote-
operated weapon system to perform targeting tasks, and the
remote-operated aircraft to perform rendezvous and docking
tasks with the space station. The specific contents of these two
experimental tasks are as follows.

Figure 6A shows the screen of the trajectory tracking
task, in which the blue block represents the mobile robot,
and the red dotted line represents the preset trajectory. The
operator could control the robot to perform the trajectory
tracking task through the mouse. Specifically, the operator only
needed to move the mouse (without clicking any button), and
dragged the robot to move along the preset trajectory. The
robot’s position was coupled to the mouse coordinate system.
The trajectory of the robot’s movement in each round was
recorded by the computer, and the deviation between it and
the preset trajectory was calculated. When the robot moved
from the starting point to the endpoint, it was regarded as
having completed a round of trajectory tracking task. The
trajectory deviation and task completion time were recorded
to evaluate the trajectory tracking task’s operational quality
(the calculation formula is as shown in section “Personalized
speed adaptation model trainer”). To increase the diversity of
experimental trajectories, three difficulty levels of horizontal
straight, slope, and curve were designed; Figure 6B shows
the screen of the target positioning task, in which the red
center is the bullseye, and the white rectangle is the sight (it
can also be considered a robot). The operator could control
the sight to perform the target positioning task through the
mouse. Specifically, the operator only needed to move the mouse
(without clicking any button), and dragged the sight to track the
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FIGURE 4

The figure shows the distribution of EEG and EOG electrodes and how the participant wore them.
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FIGURE 5

The figure shows the overview of the PSA experimental system.

target. When the rectangular frame of the sight fully enclosed the
target’s ring and was locked for a while, the target positioning
mission was considered successful. The task completion time
was recorded to evaluate the operational quality (the calculation
formula is as shown in section “Personalized speed adaptation
model trainer”) of the target positioning task. The bullseye
moved randomly to the next position after each round. The
control instructions of the robot were controlled by the operator

through the mouse, and the speed adjustment instructions
were continuously adjusted by the CA in the PSA model
according to the changes in the operator’s mental state. The
robot combined the two instructions to perform the tasks. In the
task, the operator continuously adjusted the control instruction
by observing the robot’s running state. Meanwhile, the CA
adjusts the robot’s speed adjustment instruction in real-time by
detecting the mental state of the human brain.
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(A) The trajectory tracking task requires the operator to control the robot to move from the starting point to the finishing point. The higher the
fitting degree of the trajectory and the robot’s preset trajectory, and the shorter the task completion time, the higher the operational quality will
be. Besides, three stimulation conditions were set in the experimental task, namely positive mental state stimulation, negative mental state
stimulation, and nervous state stimulation. These stimulation conditions were also set in the target positioning task. (B) The target positioning
task requires the operator to control the sight to track the bullseye. The shorter the time to complete the task, the higher the operational quality
will be.

Experimental scenarios and
procedures

In the experimental task of controlling the robot, the
participants were asked to sit quietly in front of the computer
screen and control the robot or the sight on the screen to
perform trajectory tracking or target positioning tasks by mouse,
and the experimental scenarios are shown in Figure 7. The
experimental tasks were divided into three sessions, namely
training session, testing session and control session, and the
experimental procedures are shown in Figure 8. Firstly, the
training session was used to train PSA model parameters. In the
training session, the experiment was performed for 18 rounds.
The first 3 rounds were used to practice trajectory tracking
and target positioning tasks to prevent different operational
proficiency from affecting the experimental results. The last 15
rounds were formal experiments, with 1 min rest time in the
middle of every 5 rounds. Secondly, the testing session was
used to test the effect of the PSA method. And the trained
PSA model parameters were imported into the PSA model
in the testing session. In the testing session, the experiment
was performed for 15 rounds. Thirdly, the control session was
used to provide reference. The conventional method was used
in the control session (i.e., this method relies on a warning
threshold to trigger an adjustment strategy (Stanney et al., 2009).
A warning threshold for whether to enable the adjustment
strategy was preset. Then, if the output value of the mental
state detector was greater than the warning threshold, the
adjustment strategy will be initiated to adjust the speed of the
robot; otherwise, the adjustment strategy was not activated.
More specifically, when the output value of the mental state

FIGURE 7

The figure shows the experimental scenario.

detector was higher than the warning threshold, the speed of
the robot was reduced. Conversely, when the output value of
the mental state detector returned to normal, that is, when
it was lower than the warning threshold, the speed of the
robot was restored. It is a fixed, non-personalized method
of adjustment). In the control session, the experiment was
performed for 15 rounds. The effectiveness and superiority
of the PSA method were analyzed through the comparison
between the testing session and the control session. At the
end of each experimental session, the subjects were asked
to answer several subjective questionnaire questions. It took
about 2 h for each subject to complete the experiment of 3
sessions in total, and the whole experiment lasted 6 days to
complete.
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The figure shows the experimental procedure.

Moreover, to increase the diversity of mental states in
sampled data, two main measures were adopted. Firstly, three
kinds of stimulation conditions were set in the experimental
task, namely positive mental state stimulation: a positive text
prompt of “Performance is very good” would appear randomly
on the screen; negative mental state stimulation: a negative text
prompt “Performance is very bad” would appear randomly on
the screen; nervous state stimulation: a text prompt of “The
Key round” would appear randomly on the display screen,
accompanied by the audio prompt of a countdown. Secondly,
by setting up the rest time of the experiment, the mental state
of fatigue and non-fatigued could be increased. By analyzing
the questionnaires of the participants, the settings of these two
measures increased the diversity of mental states during the
experiment to a certain extent (see section “Changes in mental
state during teleoperation experiments” for details).

Data processing

Data processing mainly includes three steps of multimodal
bioelectrical signal (EEG and EOG) preprocessing, mental state
feature extraction, and efficient model training. The detailed
processing flow is shown in Figure 9.

Multimodal bioelectrical signal preprocessor
To feed real-time EEG and EOG into the PSA model, the

last 1 min long signal in the computer memory was extracted
at each round. A time window of 2000 ms duration was
designed for sliding sampling, and 50 sets of raw data were
generated. Then, the data was preprocessed, which mainly
includes three steps. Firstly, baseline drift in raw EEG and
EOG signals was eliminated by the fitted baseline method.
The purpose was to eliminate the effects of baseline drift in
technical artifacts. The detailed operation method was to fit the
trend term by the least squares method, and then subtracted

the trend term from the original data. Secondly, the 4th order
Butterworth bandpass filter was used to process the two original
signals, retaining the EEG of 0.5−45.0 Hz and the EOG of
0.1−30 Hz, respectively. Since EOG also contained mental state
information, it was an effective signal in this study, so no artifact
processing operation was required for it. Finally, the sampling
frequencies of EEG and EOG were down-sampled to 256 Hz and
128 Hz, respectively, thereby reducing the amount of data and
improving the calculation speed.

Mental state feature extractor
We first introduced the feature extraction method of EEG,

which mainly included three steps: (1) Obtained rhythm waves
in different frequency bands through wavelet transform. (2)
Calculated the four features of sample entropy (SE), differential
entropy (DE), band power (BP) and band energy (BE) for
rhythmic waves of various frequency bands. (3) Calculated
the mutual information (MI) value between each feature and
arousal (or valence) to judge the validity of the feature (it should
be noted that the third step was to compare the pros and cons of
the four features, which was not required in the actual algorithm
running). The following is a detailed introduction. Firstly, the
EEG was decomposed and reconstructed using the wavelet basis
function of fifth-order vanishing interval Daubechies, and five
kinds of rhythmic waves were generated. Their frequency bands
are δ (0.5−3 Hz), θ (4−7 Hz), α (8−15 Hz), β (16−31 Hz), and γ

(>32 Hz), respectively (Hipp et al., 2011; Dimitrakopoulos et al.,
2018). The wavelet transform formula is as follows:

xj = ACj +

L∑
j=1

DCj (8)

where xj represents EEG of the jth frequency band; L
represents the number of decomposition layers; ACj represents
the approximate component of the jth frequency band; DCj

represents the detailed components of different scales of the jth
frequency band. Secondly, SE features, DE features, BP features,
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FIGURE 9

Flow chart of data preprocessing steps.

and BE features of 5 rhythmic waves from 30 EEG channels were
calculated. Studies had found that as the mental state changes,
the information complexity of EEG was also changing (García-
Martínez et al., 2016; Xu et al., 2019; Ahammed and Ahmed,
2020). For example, when the degree of fatigue increases, the
ability of the central nervous system to inhibit brain neural
activity may increase, resulting in a decrease in the disordered
degree of thinking in the cerebral cortex, thereby reducing
the information complexity of EEG (Wang et al., 2011). For
another example, Deli and Fry studied positive and negative
mental states from the perspective of thermodynamics, and
believed that the positive state is in an endothermic cycle
(Reversed Carnot cycle), which is a process of absorbing energy
from the environment and increasing entropy; In contrast,
the negative state is in an exothermic cycle (Carnot cycle), a
process that releases energy into the environment and reduces
entropy (Deli and Kisvarday, 2020). This also leads to changes
in the information complexity of EEG. Therefore, this paper
selected representative SE and DE features for analysis. The SE
is defined as the negative natural logarithm of the conditional
probability that the two subsequences are similar when the pair
of subsequences of length m are similar after adding one sample
point in each order. It can be used to describe the self-similarity
and complexity of a sequence (Cuesta-Frau et al., 2017). The
lower the SE value, the higher the self-similarity of the sequence
and the lower the complexity, and the calculation formula of SE
is as follows (Li et al., 2018):

SE(U, v,η) = − ln
Bv+1(η)

Bv(η)
(9)

where U is the sequence length. v is the length of continuous
subsequence. η is the distance error threshold to judge the
similarity of two subsequences. Bv(η) represents the logarithm
of the continuous subsequence with length m satisfies the
similarity condition r in the sequence. The parameters m and
r can be determined by cross-validation results on the training
set. In this paper, m = 2, r = 0.2∗std, where std is the data’s
standard deviation. Besides, DE could also be used to measure
the complexity of temporal sequence signals (García-Martínez

et al., 2016). For a fixed-length EEG sequence, the calculation
formula of DE can be approximated as (Shi et al., 2013):

DE(x) = −
∫

x f (x) ln(f (x))dx ≈

−
∫
∞

−∞

{
1

√
2πσ2 exp

[
−
(x−µ)2

2σ2

]
ln(

1
√

2πσ2 exp
[
−
(x−µ)2

2σ2

])}
dx =

1
2 ln

(
2πσ2)

+
1
2

σ2
=

1
L
∑L

j=1 x2
j


(10)

where f (x) is the probability density function of time series.
µ and σ represent the mean and standard deviation of the
Gaussian, respectively. In addition, the study found that the
frequency domain characteristics of EEG could also characterize
mental state. Therefore, this paper selected two features, BP (Liu
F. et al., 2021) and BE (Matei and Matei, 2021), respectively.
Finally, MI was used to analyze the amount of mental state
information contained in the four EEG features, so as to
select the optimal feature. MI between these four features (SE,
DE, BP, and BE) and the valence (or arousal) in dimension
theory were calculated separately. In probability theory and
information theory, MI of two random variables is a measure
of the interdependence of variables (Peng et al., 2005). In this
paper, the MI of XF and YL, two random variables representing
features and valence (or arousal), respectively, is defined as:

MI(XF;YL) =
∑

yL∈YL

∑
xF∈XF

p(xF, yL) log(
p(xF, yL)

p(xF)p(yL)
) (11)

where p(xF, yL) is the joint probability distribution function
of XF and YL. p(xF) and p(yL) are the marginal probability
distribution functions of XF and YL, respectively. Study found
DE could effectively characterize mental state (Zheng and Lu,
2015; Zheng et al., 2019; Liu S. et al., 2021) (see section “Analysis
of mental state features” for details), hence, it was selected as
an EEG feature to represent mental state in the following study.
There were 30 EEG channels, and the EEG of each channel was
decomposed into 5 rhythmic waves, so the features data of EEG
had a total of 150 dimensions.
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Then, we introduced the feature extraction method of
EOG. It was found that the low-frequency components of
EOG increased while the high-frequency components decreased
when the arousal level was low (Ma et al., 2014). Therefore,
the power ratios (PR) of low-frequency components and high-
frequency components in the signals were selected as the EOG
features representing mental states. The calculation formula is
as follows:

PR =
pl(x)
ph(x)

(12)

where pl(x) and ph(x) represent the power of low-frequency
component (0−1.5 Hz) and high-frequency component
(1.5−30 Hz), respectively (Magosso et al., 2007; Gao et al.,
2012). There were 2 EOG channels, so the features data of
EOG had a total of 2 dimensions. In summary, the EEG and
EOG features data were combined and normalized to form
152-dimensional characteristic data representing the operator’s
mental state.

Personalized speed adaptation model trainer
To consider the algorithm accuracy and response speed,

a three-layer fully connected state-to-action mapping neural
network (SAMNN) was established in the PSA model. The input
of the network was mental state si and the output was robot
speed adjustment instruction ai. There were 152 neurons in
the input layer, 80 neurons in the hidden layer, and 4 neurons
in the output layer, representing 4 dimensionless speed levels.
Tanh activation function (LeCun et al., 2012) was adopted in the
hidden layer. The reason was that (1) the network had only one
hidden layer, and under the premise of enjoying the advantages
of the Tanh activation function, there was no need to worry
about the hidden danger of gradient vanishing (Wang et al.,
2019). At the same time, (2) the problem of permanent neuron
death by using the ReLU activation function was avoided (Nair
and Hinton, 2010). Softmax function (Liang et al., 2017) was
used for the output layer. The higher the value of the output
neuron, the higher the probability of the corresponding action
being selected, and vice versa. Then, s, a, and R was input to the
objective function [Formula (6)], and the SAMNN parameters
were updated according to the adaptive moment estimation
method (ADAM) (Kingma and Ba, 2014), Among them, the
exponential decay rate for the 1st moment estimates was set
to 0.9, and the exponential decay rate for the 2nd moment
estimates was set to 0.999. The learning rate was set to 0.001.
Each round was an episode, each episode would generate 50 sets
of data pairs, and the batch size was 50. The SAMNN parameter
was updated once every episode until the model converged.

It is important to note that the reinforcement learning
model’s performance is directly affected by the convergence
property (Mnih et al., 2015). Therefore, to enhance the
convergence performance of the PSA model, shorten the
convergence process and improve data utilization, before the
online training of the PSA model, the DEAP (Koelstra et al.,

2012) dataset was first used to pre-train the SAMNN. The
input was feature data representing the mental state, which
was from the DEAP dataset. The output was 4 categories
representing High valence and High arousal, High valence and
Low arousal, Low valence and High arousal, and Low valence
and Low arousal, respectively. After 10,000 epoch training, the
loss function value was 0.001. It should be noted that before the
main model training starts, the pre-trained model parameters
need to be imported into the main training model.

In addition, it should be noted that the reward R in the PSA
model [that is, the R in Formula (6)] needed to be calculated
according to the specific task, which represented the operational
quality. The trajectory tracking reward Rt was evaluated by two
indicators of robot trajectory quality and task completion time.
The target positioning task reward Rp was evaluated by the
indicator of task completion time. The calculation formula is as
follows:

Rt =
1∑M

m=1|Ym−Om|
+

g
t

Rp =
g
t if t ≥ T

 (13)

where Y represents the trajectory of the robot. O represents the
target trajectory. t is the time to complete each round. g is the
time gain coefficient. M represents the total number of steps of
the whole trajectory, and T represents the time threshold of the
sight continuously aiming at the bullseye.

Results

Analysis of mental state features

In order to find EEG features that can stably and effectively
represent mental state, we used the DEAP dataset to calculate
the average of the four EEG features (SE, DE, BP, and BE)
described above, and the MI between these four averages and
valence. The higher the MI, the more mental state information
was contained in the feature data, and vice versa. For a more
intuitive display, for each feature, the MI of each rhythmic
wave in 30 EEG channels was calculated separately, and the
brain topographic map was drawn according to the MI value.
Figure 10A shows the MI brain topography between SE and
valence for the five rhythmic waves. By contrast, it was found
that MI decreased with increasing rhythmic wave frequency.
Figure 10B shows the MI brain topography between DE and
valence for the five rhythmic waves. By comparison, it was
found that the MI not only did not show an obvious decreasing
trend, but also all channels remained at a relatively high level
(the average was 0.85), which indicated that the DE features
contained more information of mental state and had a high
stability. Figures 10C,D show MI brain topography between
BP, BE, and valence for the five rhythmic waves, respectively.
Both MI values showed a low level (average values were 0.4,
0.3, respectively), and the volatility between each rhythm wave
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was large, and the volatility between each channel was also large.
Comprehensive comparison found that the MI value of the DE
feature data was the highest and the stability was strong. At
the same time, the study found that the MI between these four
features and arousal also had the same regularity. To sum up,
the DE feature contained the most mental state information, and
the PSA method achieved the expected effect in the experiment,
which also proved the reliability of this phenomenon. Therefore,
DE features were selected as EEG features to represent mental
states.

Changes in mental state during
teleoperation experiments

In order to analyze the change characteristics of the subjects’
mental state during the experiment, we integrated the data
recorded by the subjective evaluation scale to generate Table 1.
The fatigue level of all subjects changed during the experiment.
All subjects except subject 2 experienced changes in their stress
level. Except for subjects 4 and 6, the positive and negative
mental states of the other subjects changed. It showed that by
setting the task difficulty and auxiliary stimulation conditions,
the subjects could be induced to induce different mental state.
Comprehensive analysis found that subject 1, subject 3, and
subject 5 had changes in the degree of fatigue, stress and
positive/negative states. Compared with other subjects, these
three subjects were more likely to have mental state fluctuations,
which was also a manifestation of individual differences.

Taking subject 3 to perform the trajectory tracking task as
an example, we recorded his EEG in three states of normal,
fatigue and stress during the experiment, and calculated the DE
feature of the EEG in 30 channels, and then drawn the brain
topography according to DE value. Firstly, by comparing the
brain topographic maps of the fatigue (Figure 11B) and normal
state (Figure 11A), it was found that the DE value decreased
when the subject moved from the normal state to the fatigue
state, indicating that the complexity of the EEG was reduced.
This is in line with previous studies, where one explanation is
that fatigue induces the inhibition of cerebral cortical activity
by the central nervous system, resulting in a reduced degree
of disorder in the EEG of the cerebral cortex (Liu et al., 2010;
Wang et al., 2011; Xu et al., 2019). In addition, in the fatigue
state, the DE values of the occipital lobe, part of the parietal
lobe and the prefrontal lobe region decreased to a greater extent
(the regions indicated by the arrows in Figure 11B), indicating
that these regions are closely related to the processing of the
fatigue state. And this phenomenon had also been confirmed
in previous studies (Chuang et al., 2018; Ma et al., 2019; Liu
et al., 2020). Secondly, by comparing the brain topographic
maps in the stress state (Figure 11C) and the normal state
(Figure 11A), it was found that the DE values in both temporal
lobes increased in the stress state (the regions indicated by the

arrows in Figure 11C). This phenomenon is consistent with
previous studies, and one explanation is that the temporal lobe
is involved in the processing of stress states, which are closely
related to stress states (Hosseini and Naghibi-Sistani, 2011;
Lucassen et al., 2014; Choi et al., 2015; Katmah et al., 2021).

Without loss of generality, the average properties of all
subjects’ mental states while performing the trajectory tracking
task were analyzed. Taking the fatigue state as an example, the
reason is that in the experiment, each subject reported that
the fatigue state appeared. We recorded the EEG when all
subjects reported fatigue during the experiment, calculated the
DE characteristics of the EEG in 30 channels separately, and
plotted a line graph based on their mean and standard deviation.
Figure 12 shows that, relative to the normal state, the DE value
of the fatigue state is reduced, especially in the occipital region,
part of the parietal region and the prefrontal region, which is also
consistent with the phenomenon in Figure 11B. The generality
of EEG features in the fatigue state was demonstrated. To sum
up, by analyzing the EEG characteristics of the subjects when
they appeared in various mental states during the experiment,
and it was found that the same phenomenon existed in previous
studies, which proved that the subjects would produce different
mental states during the experiment.

Feasibility analysis of personalized
speed adaptation

To demonstrate the feasibility of the PSA method, we
recorded the operational quality of each subject at the early
(the first 3 rounds) and late (the last 3 rounds) training stages,
normalized the data, and plotted it into boxplots (Figure 13).
In the two experimental tasks, the operational quality of each
subject in the late training stage was significantly improved
compared with the early training stage. A total of 36 data pairs
were formed by recording the operational quality data of all
subjects at the early and late stages of training. Statistical analysis
using two-sample T-test found that there was a significant
difference in the operational quality between the two periods, as
shown in Figure 14A. It showed that in the training process of
the PSA model, CA gradually learned the mapping relationship
between each subject’s mental state and the robot’s speed
adjustment instructions, and could adjust the robot’s speed in
real time according to the mental state, thereby improving
the operational quality. In addition, in the trajectory tracking
task, the interquartile range (IQR) value of each subject (except
subject 5) at the later stage of training was lower than that at the
early stage of training. In the target positioning task, the IQR
value of each subject (except subject 3) was lower in the late
training period compared to the early training period. At the
same time, Figure 14A shows that in both experimental tasks,
the standard deviation of the operational quality data in the later
stage of training is smaller than that in the early stage of training.
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FIGURE 10

(A) Brain topography based on MI between SE and valence. (B) Brain topography based on MI between DE and valence. (C) Brain topography
based on MI between BP and valence. (D) Brain topography based on MI between BE and valence.

TABLE 1 Subjective evaluation results of mental state during the experiment.

Has fatigue level changed? Has the stress level changed? Have positive and negative mental states changed?

Subject1 Yes Yes Yes

Subject2 Yes No Yes

Subject3 Yes Yes Yes

Subject4 Yes Yes No

Subject5 Yes Yes Yes

Subject6 Yes Yes No
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(A) Brain topography in normal state. (B) Brain topography in fatigue state. (C) Brain topography during stress state.
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FIGURE 12

Line graph of the average DE characteristics of all subjects in normal and fatigue states, respectively.

Both phenomena illustrated that after training, the PSA model
gradually converges and the stability gradually improves. Taken
together, the feasibility of the PSA method was demonstrated by
these phenomena.

Superiority analysis of personalized
speed adaptation

In order to demonstrate the superiority of the PSA method,
we choose the current conventional adjustment method based
on mental state and the PSA method for comparison, that is,
the comparison between the control session and testing session
experiments. In the control and test groups of each experimental
task, the operational quality data of 6 subjects who performed
15 rounds of the task were recorded, forming a total of 90
data pairs. The mean and standard deviation of these data
were calculated, respectively, and then a contrast histogram was
drawn. Figure 14B shows that the average operational quality of

the PSA method is better than that of the conventional method
in both experimental tasks. And the statistical analysis by the
two-sample T-test found that there was a significant difference
in the mean between the two. In conclusion, the validation of
6 subjects in two independent experimental tasks showed that
the PSA method was superior to conventional mental state-
based adjustment methods. Furthermore, since the feasibility
and superiority of the PSA method could be verified on two
experimental tasks with different levels of difficulty and task
modes, it was proved that the PSA method has good universality.

Personalized analysis of personalized
speed adaptation

Through the analysis of the robot speed adjustment
instructions (actions) output by the trained PSA model for each
subject, it was found that the PSA method had been individually
adjusted according to the mental state of different subjects.
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FIGURE 13

Boxplots were drawn based on the operational quality of all subjects in the early (the first 3 rounds) and late (the last 3 rounds) stages of PSA
model training. The dots in the figure represent the mean value, and the horizontal line represents the median. (A) Trajectory tracking task.
(B) Target positioning task.
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(A) The comparison histogram of operational quality between early and late training. (B) The comparison histogram of operational quality
between the conventional method and the PSA method. ∗∗Represents p < 0.01, and ∗∗∗ represents p < 0.001.

Referring to previous studies on the classification of operators
(or drivers) style (Sadrpour et al., 2014; Gilman et al., 2015;
Wang et al., 2020), we divided the subjects into aggressive
and conservative types according to the speed of the robot
controlled. Subject 1 and 5 belonged to the aggressive style,
and the other 4 subjects belonged to the conservative style.
Taking the trajectory tracking task as an example, we plotted the
distribution histogram and fitting curve of the robot speed data
controlled by the aggressive and conservative subjects during the
task (Figure 15). Figure 15A shows that the robot controlled
by the aggressive subjects has a wide range of X-axis velocity

distribution (0∼9.0), the mean value of the velocity distribution
is 1.22, and the standard deviation is 1.17; and the Y-axis velocity
distribution range is also wide (−5.0∼4.0), the mean value of
the velocity distribution is 0.09, and the standard deviation is
1.28. It showed that the aggressive subjects paid more attention
to the sense of control when manipulating the robot, and there
would be more rapid acceleration and deceleration. However,
Figure 15B shows that the robot controlled by conservative
subjects has a narrow range of X-axis velocity distribution
(−0.3∼2.7), the mean value of velocity distribution is 0.38,
and the standard deviation is 0.32; and the Y-axis velocity
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distribution range is also narrow (−2.1∼1.8), with a mean
value of 0.03 and a standard deviation of 0.41. It showed
that conservative subjects paid more attention to the stability
when manipulating the robot and avoid rapid acceleration and
deceleration. Through this phenomenon, it was fully proved that
the PSA method can perceive the differences between operators
and make individual adjustments to the robot speed according
to the mental state.

Visual analysis of personalized speed
adaptation

In order to observe the effectiveness and superiority of the
PSA method in the two experimental tasks more intuitively, the
trajectories of subject 1 when controlling the robot (and sight)
to perform the task in the testing session and the control session
were recorded 5 times, respectively, as shown in Figures 16, 17.
In the trajectory tracking task, it can be seen from the relatively
fluctuating trajectories of the control session that the mobile
robot frequently loses the trajectory target (Figure 16A), so the
operator needs to constantly adjust the control instructions. Not
only does this lead to longer time spent on the entire task, but
it also increases mental workload and negative emotions. For
the testing session using the PSA method, the fit of the mobile
robot’s motion trajectory and the target trajectory is better than
that of the control session, and the phenomenon of missing
targets is reduced (Figure 16B). From the relatively smooth
motion trajectories, it could be seen that the operator could
control the mobile robot’s travel trajectory compliantly, and did
not need to adjust the control commands frequently, and the
operation was more accurate and efficient. This phenomenon
also exists in the target positioning task, especially when the
sight is getting closer and closer to the bullseye, the trajectories
of the control session shows that the sighting frequently loses
the position of the bullseye. The trajectories at the 5 bullseye
positions are like a mess of ropes, as indicated by the arrows in
Figure 17A. This not only results in longer time spent on the
entire task, but also increases the operator’s mental workload
and negative emotions. For the testing session using the PSA
method, the trajectories show that the sight can quickly locate
and lock the bullseye, no matter whether it is close to the
trajectories of the bullseye stage, or the trajectories of the locking
stage of the bullseye has been improved (Figure 17B). This
showed that the operator could accurately control the sight, and
did not need to adjust the control commands frequently for
repeated positioning, and the operation was more accurate and
efficient.

Without loss of generality, we listed the performance of
all subjects in the test and control sessions. In the trajectory
tracking task, Table 2 shows that the operational quality of each
subject (except subject 6) under the PSA method is better than
that of the conventional method, and in the target positioning

task, the operational quality of each subject under the PSA
method is also better than that of the conventional method.
Moreover, in both experimental tasks, the mean operational
quality of the PSA method was also superior to that of the
conventional method, thus proving the general applicability of
the PSA method.

Discussion

This paper aims to study the feasibility of the PSA
method based on mental state for teleoperated robots. The
PSA model based on policy gradient reinforcement learning
was established, and related algorithms were developed and
verified by experiments on real subjects instead of simulation
models. The following sections focus on personalization, rapid
reinforcement learning, and the scalability of the method in
application areas. Then, the existing limitations and future
work are prospected.

Personalization

Due to the huge number of teleoperators involved in various
fields of operation, different operators have obvious differences
in age, personality, psychological state, and proficiency, as
well as the inherent complexity of the operator’s mental state
and behavior. As a result, the differential representation of
the operating habits and qualities of different operators has
become a difficult problem. In the adjustment strategy design
of the conventional teleoperated robot system, the method
of adapting to the operator’s behavior through parameter
calibration is difficult to meet the individual needs of a large
number of operators. Different from the conventional subjective
(i.e., biased by developer experience) and fixed adjustment
methods, the PSA method is objective and flexible (Sogaard
et al., 2019; Tang et al., 2019; Wen et al., 2020). The first reason
is that the PSA method is designed based on a reinforcement
learning architecture, which can obtain feedback rewarded with
operational quality through the interaction between the CA
and the brain environment, to capture the mapping between
various mental states and robot speed regulation commands
in real time. Then, the mapping between the various mental
states and the robot’s speed-regulating commands is captured
in real time. In this way, a personalized “human-in-the-loop”
teleoperated robot system model is dynamically established. It
can better solve the problems that are difficult to overcome
by conventional methods. For example, Figure 15 shows that
under the adjustment of the PSA method, the distribution of
the speed (action) data of the robot controlled by the subjects
has changed, indicating that the method has established a
personalized adjustment strategy for each subject. Not only that,
as the operating time increases, the operator’s cognitive level and
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FIGURE 15

Histograms and fitting curves of the speed distributions of the robots controlled by aggressive style and conservative style subjects.
(A) Aggressive style subject. (B) Conservative style subject.

operation skills of the system are also continuously improved,
and the operation habits are also changed. The second reason
is that the CA (agent) in the PSA model collects more
and more personalized, comprehensive information about the
operator. Based on this data, model parameters are continuously
optimized and adjusted, allowing each teleoperated robotic
system to evolve toward a personalized direction. Therefore, the
teleoperated robot system equipped with the PSA method also
has the ability of lifelong learning and continuous evolution.

Rapid reinforcement learning

Personalized speed adaptation is a reinforcement learning
method based on “human-in-the-loop,” which includes a

typical online interactive learning process and has unique
advantages, such as personalization, evolution, and better
dynamic adaptability. However, due to the difficulty in ensuring
the convergence and training efficiency of the “human-in-
the-loop” reinforcement learning model, most of the current
research is mostly carried out on simulated human models. For
example, Wu et al. (2022) established a robot knee tracking
control method based on “human-in-the-loop” reinforcement
learning, which was verified in a so-called realistic human-
robot system simulator. To the best of our knowledge, there is
little research and experimental validation on human models,
and even less in the field of teleoperated robotics. One reason
is that the human brain is an element in the model, which
increases the model’s complexity and uncertainty. As Xuesen
Qian pointed out, the living system, especially people with
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FIGURE 16

The figure shows the trajectories of the mobile robot in the trajectory tracking task. (A) Robot trajectories in the control session. (B) Robot
trajectories in the testing session.
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FIGURE 17

The figure shows the trajectories of the sight in the target positioning task. The position indicated by the arrow in the figure is the bullseye
position. (A) The trajectories of the sight in the control session. (B) The trajectories of the sights in the testing session.

advanced psychological activities, is an open and complex giant
system. In this case, the control actions are essentially infinitely
flexible (Sheridan, 2011). Another reason is that such methods
have high data acquisition costs and labor-intensive problems.
In this paper, the following efforts are made to solve the problem
of rapid learning of the “human-in-the-loop” reinforcement
learning model: In terms of algorithms, (1) by setting pre-
training, the existing data sets were used to accelerate the
learning process of online tasks. (2) By reducing the dimensional
space of state and action, the network structure of SAMNN was
simplified and the difficulty of network training was reduced. In

terms of experimental paradigm, (1) the diversity of samples was
increased by setting stimulation conditions in the experiment.
(2) A reasonable number of experimental rounds was designed
after many attempts. The study found that too many experiment
times will reduce the experimental experience of the subjects,
but too few experiment times often cannot achieve convergence.
It has to be admitted that there are some subjects who can
achieve convergence after several attempts. To sum up, after
various efforts, the PSA model achieved rapid learning with the
participation of real people. However, this work still needs to
be further improved, and the next step will be to explore the
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TABLE 2 Operational quality of all subjects.

Trajectory tracking task Target positioning task

Operational quality under
conventional method

Operational quality
under PSAmethod

Operational quality under
conventional method

Operational quality
under PSAmethod

Subject1 0.18 0.26 1.14 1.41

Subject2 0.23 0.31 1.19 1.23

Subject3 0.18 0.29 0.72 1.05

Subject4 0.31 0.32 0.98 1.20

Subject5 0.25 0.36 1.14 1.26

Subject6 0.25 0.24 1.13 1.21

Average 0.23± 0.05 0.30± 0.04 1.03± 0.18 1.23± 0.10

Bold text indicates better values.

following aspects: (1) Introduce a meta-learning strategy, meta-
learning is to use past knowledge and experience to guide the
learning of new tasks, so that the network has the ability to
learn to learn, and it is one of the commonly used methods to
solve the few-shot learning problem. Theoretically, the meta-
reinforcement learning algorithm can enable the agent to learn
new skills from a small amount of experience. Although there
are some drawbacks, it is a way to try (Rakelly et al., 2019). (2)
Introduce the bootstrapped policy gradient rapid reinforcement
learning strategy. The bootstrapped policy gradient method can
introduce prior knowledge into the policy gradient to improve
sample efficiency. Its core idea is to update the sum probability
of a series of related actions in the gradient estimation sample,
rather than the sum probability of a single action (Zhang and
Goh, 2021; Zhang et al., 2021).

Implications of the results

In this paper, only the speed parameter of the robot
was selected as the adjustment variable for research, and
exciting results were obtained. The research shows that on the
basis of the PSA method, other parameters can be selected
as adjustment variables according to the characteristics of
the specific teleoperating system and the robot. Furthermore,
the PSA method can realize not only the adjustment of a
single parameter, but also the coupled adjustment of multiple
parameters. It should be noted that when a single parameter
is adjusted, the complexity of the teleoperated robot system
is relatively easy to determine, but when multiple parameters
are adjusted in coupling, the complexity of the system
will increase dramatically due to the coupling relationship
between the parameters.

The PSA method has been verified in the two tasks of
trajectory tracking and target positioning. These two tasks
are abstracted according to the common characteristics of the
tasks of the teleoperated robot system, and do not depend
on any specific teleoperated robot system. Therefore, the PSA

method can be well extended to a variety of teleoperated
robotic systems. For example, in the field of manipulating
special operation robots, such as remote-operated fire-fighting
robots, maintenance robots, surgical robots, and space station
maintenance robots (Bucolo et al., 2022). The set adjustment
parameters can be the response time of the robot system,
the speed and acceleration of the moving parts of the robot,
and the coupling parameters between them, etc. At the same
time, it also has application prospects in other fields, such
as information matching and recommendation fields, such as
education and training, web page information recommendation
(Lan and Baraniuk, 2016; Mizgajski and Morzy, 2019). The set
adjustment parameter can be the difficulty level of the task (or
event).

Limitations and future work

The core of the PSA method based on the reinforcement
learning framework is to learn the mapping from the mental
state (state) to the robot speed regulation instruction (action),
which is an end-to-end learning method. Its advantage is that
it has the learning ability of non-linear mapping, and it does
not need to abstract the rules of the teleoperated robot process,
nor to establish a mathematical model between EEG indicators
and behavioral performance, thus avoiding the cumulative bias
introduced by oversimplifying the study subjects. However, it
has to be admitted that its learning process is “black box” and has
poor interpretability (special research in this area can be carried
out in the next step). Even so, this still cannot hide the unique
advantages of the PSA method.

The mental states in this study can be defined in many
ways, with different meanings in different disciplines. This
paper draws on the definition method of dimension theory in
psychology, because it evaluates mental state on a continuous
dimension through indicators such as design valence and
arousal. The evaluation criteria can fully take into account
the characteristics of the diversity of mental states. In the
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future, the mental state detector in the PSA method can be
specially designed and improved for specific fields. A specific,
single mental state can be selected for more targeted research.
For example, to study the influence of mental fatigue on the
teleoperation robot system, it is only necessary to replace the
feature extraction method in the mental state detector. The PSA
method can realize the function of special customization and
rapid transplantation, so as to adapt to the teleoperated robot
system with special requirements.

In related fields such as teleoperated robots and car driving,
the driving styles of operators (or drivers) are mostly divided
into conservative and aggressive types according to driving
habits and the speed of the robot (or car) being driven
(Sadrpour et al., 2014; Gilman et al., 2015; Wang et al., 2020).
Referring to research findings in related fields, we divided
the subjects into aggressive and conservative types according
to the speed of the robot controlled. However, it has to be
admitted that there are still some limitations. Firstly, the existing
research on driving style has not formed a unified conceptual
framework, and there is no general scheme for the classification
of driving style (Sagberg et al., 2015). Secondly, in the field
of teleoperation, the theoretical basis for the classification of
driving styles and objective group differentiation methods need
further exploration.

In this paper, there was no special method for removing
electromyogenic artifacts in signal processing, but filtering
(retaining the maximum frequency of EEG to 45 Hz) was used
to reduce the influence of electromyogenic artifacts as much as
possible (Hipp and Siegel, 2013). At the same time, it can ensure
the efficient running of the algorithm to meet the requirements
of online training for the speed of the algorithm. However, it
has to be admitted that when the frequency band of EEG is
less than 45 Hz, it is still unable to remove all electromyogenic
artifacts. After balancing the advantages and disadvantages of
various aspects, we designed this processing method suitable
for the working conditions of this paper. In the future, we
need to deepen research from two perspectives: (1) Develop
a more efficient electromyogenic artifact removal method that
is suitable for our online training. (2) Further quantitatively
evaluate the advantages and disadvantages between the
developed electromyogenic artifact removal method and the
low-frequency EEG preservation method, such as the degree
of electromyogenic artifact elimination, the degree of effective
signal mis injury, and the algorithm running rate.

This paper selects 6 subjects to participate in the online
experiment, the main reasons are as follows: Different
from other methods that need to verify cross-individual
characteristics, they use a large number of subjects to verify their
cross-individual accuracy, robustness and stability, however, the
focus of the PSA method is on the study of individualized
adjustment for the mental state of different operators,
not only does not involve cross-individual verification, but
instead focuses on the differences between individuals. In

the experimental validation involving 6 subjects, it has been
observed that the PSA method has carried out personalized
regulation for aggressive style and conservative style subjects.
And at the same time, it also avoids the drawback that the overall
sample is too large to blur the characteristics of the data. In
addition, the effect of the PSA method in a single subject is
robust and has significant differences. Therefore, this paper used
6 subjects for experimental verification (Fischer and Whitney,
2014).

Conclusion

Aiming at the problem that the poor mental state of the
teleoperator causes the quality of the operation to decline,
or even dangerous, the PSA model based on policy gradient
reinforcement learning was established in this paper. This model
had a dual-loop human-computer information interaction
mechanism, which could give full play to the advantages of
humans and computers. At the same time, the PSA algorithm
was developed, which could extract the DE feature of EEG and
the PR feature of EOG, and performed feature-level fusion to
obtain a data matrix that effectively characterizes the mental
state. In addition, by fusing the perceptron based on artificial
neural network and the decision maker based on reinforcement
learning, the function of individually adjusting the speed of
the robot according to the mental state of different users was
realized. Experiments were carried out on 6 real subjects instead
of simulation models. The results showed that the method
could accurately perceive the mental state of the operator
when performing the task, and the speed of the robot was
individually adjusted according to the mental state of different
operators, which effectively improved the operational quality
and realized the efficient and safe execution of teleoperation
tasks. Aiming at the problem of performance degradation of
teleoperated robotic systems caused by human factors, this
research result may inspire a new control framework. Compared
with the conventional methods based on user behavior model
mining, a series of methods based on this framework have better
personalization and dynamic adaptability.
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