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Abstract

Objective: Intracerebral hemorrhage carries a high mortality and survivors are

frequently left with significant disability. Immunological mechanisms may play

an important role in hemorrhage-induced brain injury, however, research link-

ing these mechanisms with clinical outcome remains limited. We aim to iden-

tify serum inflammatory mediators that are associated with outcome after

intracerebral hemorrhage in order to translate data from experimental models

to a patient cohort and identify potential targets worthy of reverse translation.

Methods: A prospective cohort study at two comprehensive stroke centers

enrolled patients with spontaneous intracerebral hemorrhage. Peripheral blood

was collected at 6, 24, and 72 h from onset. Functional outcome was assessed

at 90 days using the modified Rankin Scale (mRS). Serum inflammatory media-

tors were measured using multiplex ELISA. Multivariable modeling identified

serum biomarkers independently associated with functional outcome at 90 days.

Results: 115 patients completed the study. At 6 h after onset, patients with ele-

vated CCL2 had worse mRS score at day 90 (OR 4.07, 95% CI 1.27–13.10,
P = 0.02) after adjusting for age, gender, ICH volume, IVH, infratentorial

location and NIHSS score. At 24 and 72 h after onset, elevation in CXCL10

was independently associated with worse 90 days mRS score (24 h: OR 8.08,

95% CI 2.69–24.30, P < 0.001; 72 h: OR 3.89, 95% CI 1.12–13.49, P = 0.03).

Interpretation: Acute and subacute elevations in specific immune factors are

associated with poor outcome, highlighting potential pathways that may con-

tribute to ongoing brain injury in patients with intracerebral hemorrhage.

Introduction

Intracerebral hemorrhage (ICH) accounts for 10–15% of all

strokes and is associated with the highest morbidity and mor-

tality of all stroke types.1,2 To date, there is no effective medi-

cal treatment for ICH. Much of the primary tissue damage in

ICH is caused by mechanical injury to tissues adjacent to the

hematoma. Further injury follows from the release of blood

components into the parenchyma, which can activate resident

immune cells, exacerbate blood-brain barrier disruption, wor-

sen edema, and trigger cellular necrosis and apoptosis.3–5 This

cascade of events is broadly referred to as secondary injury in

ICH, and inflammation appears to play an important role.6,7

Inflammation is initiated by numerous factors after

ICH. Although the process remains incompletely under-

stood, components of the hematoma—such as heme,

clotting factors, and complement—activate resident

microglia that then release chemokines and pro-inflam-

matory cytokines into the parenchyma.8 This inflamma-

tory milieu triggers an increase in the permeability of the

blood-brain barrier and peripheral leukocyte infiltration.

Neutrophils and monocyte-derived macrophages are the

first cell types to arrive at the site of injury and are the

predominate contributors of early inflammation.9,10 These

cells secrete additional cytokines and other inflammatory

mediators in response to stimuli in the perihematomal
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region and can modulate the progression of tissue injury

and cell death.10–12

Cytokines regulate local and systemic inflammation, as

well as cell growth, proliferation, and differentiation.

Chemotactic cytokines—or chemokines—induce the

migration of leukocytes throughout the body. In the per-

ihematomal tissue of ICH patients, cytokines, chemoki-

nes, and growth factors are some of the most highly

expressed gene types.13–15 Therefore, we chose to exam-

ine the association between elevations of these molecules

in peripheral blood and functional outcome after ICH.

We measured a broad panel of inflammatory and anti-

inflammatory cytokines, chemokines and growth factors

at three time points after ICH onset, with the hope of

identifying pathways of interest in patients with ICH for

both forward and reverse translation.

Methods

Patient enrollment

Patients were prospectively enrolled from the Hospital of

the University of Pennsylvania and Hartford Hospital

from July of 2008 to June of 2013. All patients aged

≥18 years who presented within 24 h of spontaneous ICH

were approached for enrollment. Patients with known

underlying vascular lesions (AVM, AVF, aneurysm,

venous sinus thrombosis), traumatic brain injury, sys-

temic malignancy, immunosuppression, or autoimmune

disease were excluded. Patients with significant pre-stroke

disability, defined as modified Rankin scale score greater

than 2, were excluded from the analysis of functional out-

comes. The study was approved by the institutional

review boards at both institutions and informed consent

was obtained for all subjects. Patients were managed by

stroke or neurocritical care specialists according to stan-

dard guidelines.16

Data collection

Baseline demographic information (age, gender, past

medical history, medication use), laboratory data (com-

plete blood count, electrolyte panel, and coagulation test-

ing), NIH stroke scale score, Glasgow coma score, ICH

volume (measured by ABC/2)17 and location, and inci-

dence of fever, infections, and surgical interventions, were

prospectively collected for each subject.

Outcome assessment

The modified Rankin Scale (mRS) was assessed by a certi-

fied member of the research team at 90 days either at an

outpatient follow-up visit or by a structured telephone

interview.18 All clinical data, including outcome, were

assessed blinded to serum cytokine/chemokine results.

Blood collection

The time periods for sample collection were predefined.

Peripheral venipuncture was performed for blood collec-

tion at 6 � 6 h, 24 � 12 h and 72 � 12 h after symp-

tom onset. When the onset of symptoms was uncertain,

the time the patient was last known normal was used.

Blood was collected into BD vacutainer serum separator

tubes, inverted five times, allowed to clot for 20 min, and

then centrifuged at 1000 g for 10 min for serum collec-

tion. Serum was frozen at �80°C in 500 lL aliquots until

analysis.

Cytokine/chemokine analysis

Serum was analyzed using a multiplex human cytokine

panel (human cytokine magnetic kit, Millipore, Billerica,

MA) for IL-1b, IL-1ra, IL-4, IL-6, IL-8, IL-10, CX3CL1
(fractalkine), G-CSF, GM-CSF, CXCL10 (IP10), CCL2

(MCP1), CCL7 (MCP3), CCL22 (MDC), and TNF, allow-

ing for multiple simultaneous cytokine analyses and

decreasing sample processing time. All samples were ana-

lyzed in a single batch according to manufacturers

instructions and read on a Luminex 200 instrument in a

clinical and translational research core facility by dedi-

cated laboratory staff. Samples were analyzed in duplicate

and any sample with greater than 20% coefficient of vari-

ation within an analyte was excluded. No samples

exceeded this threshold.

Statistics

Univariate descriptive statistics were performed on the

clinical characteristics of the cohort and each serum fac-

tor. Each serum factor was analyzed for overall distribu-

tion, changes over time, and associations with age,

gender, prehospital functional status (mRS), ICH volume,

intraventricular hemorrhage (IVH), infratentorial loca-

tion, National Institutes of Health Stroke Scale (NIHSS)

score, Glasgow Coma Scale (GCS) score, external ventric-

ular drain (EVD) placement, surgical evacuation, infec-

tions, and functional outcome (mRS at 90 days). The full

scale for the NIHSS, GCS, and mRS scores was used in

all analyses. Serum cytokine/chemokine levels were not

normally distributed and most did not become normally

distributed after logarithmic transformation. Thus, the

upper quartile was defined as elevated for analyses and

compared to the lower three quartiles in analyses. Multi-

variable analyses were conducted using ordinal logistic

regression to determine the clinical variables that were
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independently associated with poor outcome across the

entire mRS scale in our cohort. Each serum cytokine/che-

mokine level was then added to the multivariable model

to determine its independent contribution to outcome.

We did not adjust for multiple comparisons, consistent

with the recommendations of statistical experts,19 in order

to not inflate the likelihood of Type II errors in this

exploratory study. Rather we provided P values to facili-

tate interpretation of the strength of the association and

the likelihood of Type I errors (false positives). The pro-

portional odds assumption was upheld. Statistics were

performed using Stata/IC v11 (StataCorp, College Station,

TX).

Results

The study enrolled 128 subjects, including 59 at the

Hospital of the University of Pennsylvania and 69 at

Hartford Hospital. There were no differences in clinical

characteristics, outcome or inflammatory mediator

expression of the patients from the two hospitals. Of the

128 subjects, 13 were lost to follow up and were excluded

from the analysis (Fig. S1). Subjects that were lost to fol-

low-up had significantly lower pre-ICH mRS (P = 0.004),

lower NIHSS scores (P = 0.025), and fewer infections

(P = 0.026), but no difference in serum cytokine levels at

any time point. The final study population consisted of

115 subjects with complete outcome data. The character-

istics of the study cohort are shown in Table 1.

Seventy-six subjects presented to the hospital within

12 h and had samples drawn during the earliest time win-

dow (median 5.8 h [interquartile range (IQR) 3.6–9.1]
from onset), of which 36 had samples collected at all

three time points, 24 had samples collected in the first

two time points, 2 had samples collected in the first and

last time points, and 14 had a sample collected during the

first time point only. The most common reasons for

missing later sample collections were death and discharge.

Fifty subjects were enrolled in the second time window

(median 22.5 h, (IQR) 19.5–23.8] from onset), of which

25 had samples collected in the second and third time

window and 25 had a sample collected during the second

time window only. Two subjects were enrolled in the

third time window (median 68.5 h from onset).

As the numbers of subjects in each time window dif-

fered, associations between clinical factors, cytokine levels,

and the subset of subjects enrolled in each set of time

points were explored for possible bias. Subjects that had

only a 12-h sample collected did have significantly higher

in-hospital mortality than other groups (P < 0.001), how-

ever these subjects accounted for fewer than 20% of all

samples collected at the 12 h time point. There were no

significant differences in other clinical factors or cytokine

expression among groups of subjects contributing data at

each time point.

Summary statistics for each inflammatory mediator at

each time point are shown in Table 2, and the threshold

considered elevated is defined by the upper quartile. The

thresholds established for defining elevation of each cyto-

kine/chemokine were higher than reported for healthy

subjects.20 Scatterplots of the distributions of each factor

at each time point are presented in Figs. S2–S15.
Univariate analyses were performed to detect associa-

tions of elevations in each inflammatory mediator with

these clinical variables. These results are shown in

Table 3.

A multivariable model was created to determine clinical

factors independently associated with outcome in the

cohort. Components of the ICH score, including age,

ICH volume, presence of intraventricular hemorrhage,

infratentorial location, and Glasgow Coma Scale score, as

well as gender, site of enrollment, and NIHSS score were

initially included. In our cohort, age, gender, ICH vol-

ume, IVH, infratentorial location, and NIHSS score were

associated with outcome. These variables were therefore

included in the multivariable analyses of each serum

inflammatory mediator and outcome. The results of the

multivariable analyses are shown in Table 4. Elevated

CCL2 levels at 6 h and elevated CXCL10 levels at 24 and

72 h were independently associated with poor outcome at

90 days. No other inflammatory mediators had an associ-

ation with outcome after adjusting for these clinical pre-

dictors of outcome (Tables S1–S3).
The temporal pattern of expression of each biomarker

was identified for subjects with data from all 3 collection

times (n = 36). The pattern assignments are shown in

Figure 1. The temporal pattern variable was added to the

multivariate model to explore associations between

Table 1. Characteristics of the cohort.

Age (years) 67.5 [57.5–78.0]

Male 60.9%

Pre-ICH functional status (mRS) 0 [0–0]

ICH volume (mL) 16.8 [5.6–40.0]

Initial NIHSS score 15 [5–24]

Initial GCS score 14 [9–15]

Infratentorial location 12.2%

Intraventricular hemorrhage 45.2%

EVD placed 17.9%

Surgical evacuation 17.0%

Length of hospitalization (days) 7.2 [3.6–19.3]

In-hospital mortality 23.5%

Functional outcome at 90 days (mRS) 4 [2–6]

Poor outcome (mRS 4–6) at 90 days 54.8%

Data are presented as median [Interquartile range] or percent.

n = 115.
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temporal changes in biomarker expression and outcome.

Two patterns of expression of CCL2 were associated with

outcome at 90 days after adjusting for clinical predictors

of outcome (Table 5). Early elevation in CCL2 with

decreasing levels over time was associated with poor out-

come, while increasing levels of CCL2 over time was asso-

ciated with improved outcome.

Discussion

The main objective of our study was to identify innate

immune factors that are independently associated with

clinical outcome in ICH. We adopted a relatively unbi-

ased approach and surveyed a broad panel of cytokines,

chemokines, and growth factors at 6, 24, and 72 h after

ICH. We also collected a comprehensive set of clinical

data from the subjects in our study and determined that

in our cohort, age, gender, ICH volume, IVH, infratento-

rial location, and NIHSS score were associated with func-

tional outcome at day 90, consistent with previous

work.21–26 We then included these variables in our multi-

variable analyses assessing for independent contributions

of inflammatory markers to poor functional outcome.

After controlling for these factors, we found that very

early elevation in serum CCL2 was associated with worse

functional outcome at 90 days. CCL2 is a potent chemo-

kine for circulating monocytes as well as memory T-cells

and dendritic cells.27–30 By binding to its receptor CCR2,

CCL2 induces the migration of these cell types to sites of

injury and infection.31,32 It is primarily produced by

monocytes and macrophages in response to LPS, IFN-c,
IL-4, IL-10, and IL-13.33,34 The CCL2-CCR2 interaction is

necessary for inflammatory monocytes to exit the bone

marrow and enter circulation. Mice lacking either this

chemokine or its receptor are also unable to recruit

macrophages during inflammation.35,36 In addition to its

chemotactic role, CCL2 increases the permeability of the

blood-brain-barrier.37,38

Previous human studies have indicated an association

between CCL2 expression and outcome after stroke. In

one ischemic stroke study, elevated CCL2 plasma expres-

sion 7 days after onset was associated with a higher mRS

score at 90 days post stroke in patients with a National

Institute of Health Stroke Scale (NIHSS) score greater

than 12.39 Another ischemic stroke study found that ele-

vated expression of CCL2 in the serum at 24, 48, and

72 h after onset was associated with worse outcome after

28 days.40 An earlier analysis of this cohort found a simi-

lar association between CCL2 levels at 24 h after ICH

onset and outcome at day 7,9 but long-term outcome was

not assessed. Consistent with our CCL2 findings, others

have reported that early elevations in monocyte counts

are associated with fatality after ICH.41,42

In murine models of ICH, results have indicated that

suppression of CCL2, or its receptor CCR2, has time-

dependent effects on outcome. In one study, CCL2�/�

and CCR2�/� mice demonstrated delayed hematoma

expansion and clearance,28 supporting the proposed func-

tion of this cytokine-receptor axis as a mediator of vascu-

lar integrity in the brain. Another study confirmed that

CCR2�/� mice, as well as wild-type mice that have been

monocyte depleted, exhibit better motor functioning dur-

ing the first few days after ICH compared to wild-type

controls.9 Together these experimental studies support a

deleterious role for the CCR2-CCL2 axis early after ICH,

which is consistent with our results in humans.

Through temporal exploration of biomarker expression

patterns, we found additional evidence to support this

time-dependent effect of CCL2. Interestingly, in our

cohort, two patterns of CCL2 expression were associated

Table 2. Levels of each inflammatory mediator by time point.

6 h 24 h 72 h

CCL2 444 [317.5–654] 326 [236–525] 344 [233–512]

G-CSF 29.1 [16.4–53.6] 51.0 [24.4–93.8] 36.4 [18.6–90.4]

GM-CSF 1.9 [1.6–4.2] 2.1 [1.6–6.4] 2.0 [1.6–4.2]

CX3CL1 7.8 [4.0–39.4] 7.8 [4.0–61.6] 6.0 [4.0–33.3]

IL-10 6.5 [1.7–25.1] 3.1 [1.9–15.9] 4.3 [1.7–13.8]

CCL7 3.1 [2.8–9.4] 4.2 [2.8–13.7] 3.3 [2.8–19.1]

CCL22 1074 [813–1376] 862 [677–1177] 712 [550–1152]

IL-1ra 3.1 [1.8–31.2] 9.5 [1.9–47.8] 7.0 [2.5–81.0]

IL-1b 1.2 [1.0–1.4] 1.3 [1.0–1.5] 1.3 [1.0–1.5]

IL-4 1.4 [1.0–3.2] 1.5 [1.0–3.9] 1.3 [0.9–3.7]

IL-6 5.0 [1.4–20.6] 10.3 [3.5–35.9] 16.6 [2.8–47.1]

IL-8 21.2 [10.3–36.6] 16.4 [10.9–33.4] 17.5 [10.5–43.2]

CXCL10 147 [90.5–255] 117 [90.5–208] 147 [116–242]

TNF 6.3 [4.5–12.2] 5.4 [3.4–9.5] 6.5 [4.4–9.9]

Data are presented as median [IQR]. All values are expressed as pg/mL.
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with outcome. Subjects with an acute elevation in CCL2

after ICH that then decreased by 72 h after ICH had

worse outcomes at 90 days. Conversely, those with low

early CCL2 that then increased by 72 h after ICH had

better outcomes at 90 days. Preclinical work has identified

important contributions of macrophages to recovery in

ICH,43 ischemic stroke,44 and mild traumatic brain

injury45 through mechanisms such as phagocytosis of cel-

lular debris, promotion of angiogenesis, and secretion of

growth factors. These temporal patterns are consistent

with the 6 h data and also provide clinical evidence for

potential later beneficial effects of monocyte-macrophage

recruitment in patients. No other temporal biomarker

patterns were associated with outcome.

The second major finding of this work is that subacute

elevations in serum CXCL10 are independently associated

with worse long-term clinical outcome. CXCL10 is a

chemokine that is secreted by a variety of immune and

non-immune cell types in response to IFN-c46,47 as well

as Toll-like receptor ligands, TNF, and other inflamma-

tory stimuli.48 It functions as a chemoattractant for acti-

vated T cells, B cells, macrophages and NK cells.49,50

CXCL10 and its cognate receptor CXCR3 facilitate the

migration of lymphocytes into target tissues.50,51 In non-

immune cells, the CXCL10-CXCR3 axis appears to play

an important role in angiostasis,52,53 wound repair and

tissue remodeling,54 and cellular apoptosis.55,56

Numerous murine ischemic stroke studies have noted

that CXCL10 is significantly upregulated within the

ischemic region after both transient and permanent mid-

dle cerebral artery occlusion.57–62 In one of these studies,

inhibition of IFN-c signaling prior to middle cerebral

artery occlusion blocked induction of CXCL10 and

reduced infarct volume, T-cell infiltration, and neurode-

generation.59 One experimental hemorrhagic stroke study

found elevated levels of CXCL10 in the ipsilateral hemi-

sphere 12 h after ICH,63 but associations between expres-

sion of this chemokine and outcome after ICH were not

explored. Interestingly, CXCL10 release has been demon-

strated in response to thrombin64 and fibrinogen,65 con-

firming the relevance of this cytokine to ICH pathology.

In humans, CXCL10 was found to be similarly upregu-

lated after ischemic stroke66 and significantly more NK

cells were observed in the ischemic hemisphere than the

nonischemic hemisphere.57 Interestingly, the PRIME study

demonstrated an association between elevated systemic

CXCL10 and risk of ischemic stroke in asymptomatic

males.67 While studies have shown the deleterious effect of

CXCL10 in various systemic inflammatory diseases,68–72 to

our knowledge, no human hemorrhagic stroke studies

have examined an association between CXCL10 and clini-

cal outcome.

Of the fourteen biomarkers examined in our cohort,

no other immune factor at any time point demonstrated

an association with outcome 90 days after ICH once we

controlled for age, gender, ICH volume, IVH, infratento-

rial location, and NIHSS score. In fact, the majority of

factors we attempted to measure were below the limit of

detection of our assay in most patients. The distributions

of most factors were remarkably skewed, with only a sub-

set of patients showing elevations at any time point.

Though it remains unclear whether the concentration of

cytokines and chemokines in the serum is correlated with

that in the CNS after ICH, these results have important

implications for future studies, including trials that aim

to explore biomarkers as either patient selection tools or

intermediate endpoints for immunomodulatory agents.

Given the burgeoning interest in immune biomarkers

after ICH, we provide the distributions for all analytes at

all time points to inform the planning of future studies.

Table 3. Univariate associations between clinical factors and eleva-

tions in inflammatory mediators.

Inflammatory

mediator Clinical factor

Odds

ratio

Confidence

interval P

6 h

IL-10 Initial GCS, per point 0.87 0.76–0.99 0.04

IL-10 Gender (Male) 0.31 0.10–0.96 0.04

IL-10 IVH 4.42 1.50–12.98 <0.01

IL-1b ICH volume, per mL 0.97 0.94–1.00 0.03

IL-4 Age, per year 0.93 0.88–0.99 0.02

TNF NIHSS, per point 1.05 1.00–1.11 0.05

TNF Initial GCS, per point 0.87 0.76–0.99 0.04

24 h

CCL2 Initial GCS, per point 0.88 0.79–0.99 0.04

G-CSF ICH volume, per mL 1.02 1.00–1.04 0.02

G-CSF NIHSS, per point 1.05 1.01–1.10 0.03

G-CSF Initial GCS, per point 0.87 0.78–0.98 0.02

G-CSF Evacuation 3.11 1.07–9.02 0.04

IL-6 Initial GCS, per point 0.87 0.77–0.97 0.02

IL-6 Evacuation 4.50 1.54–13.13 0.01

IL-8 Initial GCS, per point 0.86 0.76–0.97 0.01

IL-8 IVH 2.75 1.07–7.02 0.04

IL-8 Evacuation 3.11 1.07–9.02 0.04

IL-10 Evacuation 5.63 1.92–16.50 0.01

72 h

IL-10 IVH 4.38 1.18–16.18 0.03

G-CSF EVD 9.40 1.86–47.23 0.01

CCL22 Age, per year 0.92 0.87–0.98 0.01

IL-1b NIHSS, per point 0.92 0.85–1.00 0.04

IL-1b Gender (Male) 0.24 0.08–0.72 0.01

IL-4 NIHSS, per point 0.89 0.80–1.00 0.04

IL-4 Gender (Male) 0.20 0.05–0.80 0.02

IL-6 EVD 5.70 1.19–27.35 0.03

IL-8 EVD 6.36 1.31–30.83 0.02

IL-8 Age, per year 0.95 0.90–1.00 0.05

The Odds Ratios for an elevated inflammatory mediator for each pre-

senting clinical factor are listed.
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Although the findings could be due to chance due to

multiple testing in this exploratory analysis, the effect size

was large with these two factors (and nonexistent for the

others), there is biologic plausibility for these factors in

the pathophysiology of the inflammatory response, and

both CCL2 and CXCL10 elevations are consistent with

preclinical studies. However, given the multiple factors

tested in our cohort, the results would be enhanced by

replication in other cohorts with highly sensitive assays.

Summary and Conclusions

In conclusion, after controlling for clinical variables

known to influence outcome, elevated serum CCL2 con-

centration 6 h after ICH and elevated serum CXCL10

concentration 24 and 72 h after ICH were associated with

worse functional outcome at 90 days after ICH onset.

Table 4. Inflammatory mediators significantly associated with poor functional outcome at 90 days after multivariable analyses.

Factor Unadjusted odds ratio 95% CI P Adjusted odds ratio1 95% CI P

6 h

CCL2 1.62 0.67–3.90 0.28 4.07 1.27–13.10 0.02

24 h

CXCL10 2.17 0.89–5.29 0.09 8.08 2.69–24.30 <0.001

72 h

CXCL10 0.80 0.30–2.15 0.66 3.89 1.12–13.49 0.03

1Odds ratios adjusted for age, gender, ICH volume, NIHSS score, infratentorial location, and IVH.

Figure 1. Number of subjects exhibiting each temporal biomarker pattern.

Table 5. Temporal biomarker patterns significantly associated with

poor functional outcome at 90 days after multivariable analyses.

Inflammatory

mediator Pattern

Odds

ratio1
Confidence

interval P

CCL2 2 (increasing

over time)

0.007 0.000–0.604 0.029

CCL2 3 (decreasing

over time)

62.58 4.39–891.37 0.002

1Odds ratios adjusted for age, gender, ICH volume, NIHSS score,

infratentorial location, and IVH.
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These results suggest that serum concentrations of both

CCL2 and CXCL10 may be useful prognostic indicators

at certain time points after ICH and may play a direct

role in the progression of secondary injury. Further

research is needed to explore the possible mechanisms

underlying the described associations and to discern

whether there is therapeutic potential in altering the

expression of these proteins at specific time points after

ICH.
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