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Abstract
The metapodials of extinct horses have long been regarded as one of the most useful skeletal elements to determine taxonomic 
identity. However, recent research on both extant and extinct horses has revealed the possibility for plasticity in metapodial 
morphology, leading to notable variability within taxa. This calls into question the reliability of metapodials in species 
identification, particularly for species identified from fragmentary remains. Here, we use ten measurements of metapodials 
from 203 specimens of four Pleistocene horse species from eastern Beringia to test whether there are significant differences 
in metapodial morphology that support the presence of multiple species. We then reconstruct the body masses for every 
specimen to assess the range in body size within each species and determine whether species differ significantly from one 
another in mean body mass. We find that that taxonomic groups are based largely on the overall size of the metapodial, and 
that all metapodial measurements are highly autocorrelated. We also find that mean body mass differs significantly among 
most, but not all, species. We suggest that metapodial measurements are unreliable taxonomic indicators for Beringian horses 
given evidence for plasticity in metapodial morphology and their clear reflection of differences in body mass. We recommend 
future studies use more reliable indicators of taxonomy to identify Beringian horse species, particularly from localities from 
which fossils of several species have been recovered.
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Introduction

Morphological characteristics of organisms are the combined 
product of their evolutionary history as well as developmental 
and functional constraints (Wagner and Altenberg 1996; Gould 
2002; Hallgrimsson et al. 2002). Changes in morphology are 
influenced by interactions among different parts of the organism 

(i.e., modularity; Wagner and Altenberg 1996; Hallgrimsson 
et al. 2002) and are shaped by the confluence of development 
and function, some as adaptive responses to the environ-
ment (e.g., Olsen and Miller 1951; Marroig and Cheverud 
2001; Piras et al. 2010; Goswami et al. 2014). The evolution 
of monodactyly in horses (Perissodactyla, Equidae, Equus  
Linnaeus, 1758) is perhaps one of the best-known examples 
of morphological change as an adaptation to the environment 
(Hildebrand 1987; Alexander 1998; Currey 2002; McHorse 
et al. 2017). The ancestral condition for equids is four toes 
on the forelimbs and three toes on the hindlimbs, as exhib-
ited by Hyracotherium Owen, 1841 (MacFadden 1994). The 
evolution of monodactyly in equids began with a shift towards 
unguligrade (more upright) foot posture, involving the elonga-
tion of metapodial III, lengthening of tendons, and a proximal 
concentration of force-generating musculature (Clayton 2016; 
Janis and Bernor 2019). This is thought to have been a response 
to the shift from a forested habitat to grasslands; hard substrates 
may select for long, slim legs to increase speed for predator 
escape (Simpson 1951), decrease the energetic costs of move-
ments by reducing distal limb mass (Janis and Wilhelm 1993), 
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increase efficiency for long-distance travel to find food (Janis 
and Bernor 2019), and enhance stability for rapid, unidirec-
tional movements (Shotwell 1961). The evolution of large body 
mass among horses may also have increased the bending forces 
on limbs, selecting for a single toe because one digit resists 
bending forces better than multiple smaller digits of the same 
overall size (Thomason 1986; Biewener 1998; McHorse et al. 
2017).

The post-cranial skeletal anatomy of Equus may represent 
a strongly integrated system due to phylogenetic constraints, 
resulting in relative morphological homogeneity among spe-
cies (Biewener and Patek 2018; Hanot et al. 2018). As such, 
there may be little evolvability within the post-cranial skel-
eton, and shape changes may be highly restricted. Metapodi-
als have thus been considered one of the most useful skeletal 
elements for identifying ancient species of Equus (Winans 
1989). However, modern domestic horses (Equus caballus 
Linnaeus, 1758) show variability in limb bone morphology 
and structural properties as a result of artificial selection. 
For example, selective breeding of Thoroughbred horses for 
racing has resulted in longer, more slender limb bones com-
pared to other breeds and in limbs that operate on anatomi-
cal and biomechanical extremes (Alexander 1998; Currey 
2002; Goldstein et al. 2021). Further, domestic horses vary 
greatly in size (Brooks et al. 2010), which impacts the shape 
of the limb bones; smaller horses, such as Icelandic horses 
and Shetland ponies have smaller, more slender limb bones, 
while larger horses, such Clydesdales and other draft breeds, 
possess larger, very robust limb bones (Hanot et al. 2018). 
It is therefore possible that, over evolutionary time, natural 
selection also produced variability in distal limb bone mor-
phology of non-domesticated horses.

Many extinct species of Equus have been named based 
on morphological characteristics such as metapodial mor-
phology, some having been named based solely on fragmen-
tary fossil remains (e.g., Equus occidentalis in Leidy 1865; 
Equus semplicatus in Cope 1893; Equus giganteus in Gidley 
1901; ‘Equus’ francisci in Hay 1915). Several horse species 
(n = 6) have been named from Beringia (present-day Sibe-
ria, Alaska, and Yukon), but the validity of these species 
has recently been questioned (e.g., Weinstock et al. 2005; 
Barrón-Ortiz et al. 2017; Heintzman et al. 2017; Vershinina 
et al. 2021). Weinstock et al. (2005) suggested that there 
existed only two lineages of horses in North America dur-
ing the late Pleistocene, the caballine (or stout-legged 
horses) belonging to the genus Equus and the stilt-legged 
horses belonging to the genus Haringtonhippus Heintzman 
et al., 2017 (although this genus is debated), and that each 
lineage may have been comprised of a single, wide-ranging 
species. Vershinina et al. (2021) stated that, based on recent 
genomic evidence, there is insufficient support for distinct 
taxonomic groups and that some of the named Beringian 
horse species are likely nomina nuda (empty names) despite 

their correctly formed nomenclature. Further, Guthrie (2003) 
suggested that horses underwent a reduction in body mass 
to cope with the warming climate of the Late Pleistocene 
(~ 37–12.5 ka), thus it is not out of the question that changes 
in body mass created a scenario where multiple invalid spe-
cies were named.

Here, we analyze the third metapodials (metatarsals) 
from four Pleistocene horse species that were proposed to 
have coexisted in Beringia to test whether there were sig-
nificant differences in metapodial morphology that would 
support the existence of multiple species. We hypothesize 
that, based on the findings of Heintzman et al. (2017) there 
will be two distinct groups, each most likely comprised of a  
single species: the caballine (stout-legged) Equus group, 
and the stilt-legged Haringtonhippus group. If we can 
quantitatively distinguish between metapodials pertaining 
to Equus and Haringtonhippus but not those assigned to 
species within Equus, then it is most likely that there is 
indeed only one species belonging to each genus. Alter-
natively, if we find that metapodials can be separated into 
distinct groups pertaining to the assigned species, then 
there exists the possibility for the co-existence of multiple 
horse species.

Materials and methods

In total, 203 hind-leg metapodials (metatarsals) were 
obtained from the Quaternary Zoology collections at the 
Canadian Museum of Nature. The selected metapodials are 
not associated with any other skeletal material and are pre-
sumed to represent individual animals. We relied on the pre-
vious species identifications for this study and did not per-
form any identifications ourselves. The selected metapodials 
represent four identified species: Equus lambei Hay, 1917 
(n = 103), Equus scotti Gidley, 1900 (n = 8), Equus verae 
Sher, 1971 (n = 18), and Haringtonhippus francisci (cata-
logued as Equus (Asinus) cf. kiang Moorcroft, 1841; n = 7), 
as well as metapodials that were not identified to the spe-
cies level, referred to as Equus sp. (n = 67). All metapodials 
were collected from the Yukon Territory (largely from the 
Dawson and Old Crow regions), which was part of east-
ern Beringia during the Late Pleistocene (> 54 –11.7 ka). 
Specimens were selected based on the completeness of the 
metapodial; small breaks were acceptable, but metapodials 
that were severely broken or fragmented were excluded.

Ten measurements, all of which are as described by 
Eisenmann (1986) and seven of which are described by 
Winans (1989), were taken for each metapodial using digital 
calipers (accuracy 0.01 mm). All measurements reported are 
in millimeters (Online Resource 1). We took the following 
measurements on each specimen, unless the specimen was 
broken at a given location (numbers in brackets refer to the 
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corresponding measurements used by Eisenmann (1986) and 
Winans (1989), respectively): MT1, greatest length (1,1); 
MT2, smallest/mid-shaft width (3, 6); MT3, depth of dia-
physis (level of three; 4, -); MT4, proximal articular breadth 
(5, 2); MT5, proximal articular depth (6, 3?); MT6, distal 
maximal supra-articular breadth (10, 8); MT7, distal maxi-
mal articular breadth (11, 9), MT8, distal maximal depth of 
keel (12, -); MT9, distal maximal depth of medial condyle 
(14, 10); and MT10, distal minimal depth of medial condyle 
(13, -) (Fig. 1). Orientation (left or right) for each metapo-
dial was also noted.

Specimens that were missing one or more measurement 
value (n = 21) were excluded from statistical analyses. All 
R code used in this study is available in Online Resource 
2. We log transformed the metapodial measurements and 
applied a principal component analysis (PCA) in the R soft-
ware environment using the factoextra package (Kassambara 

and Mundt 2020; R Core Team 2021) to reduce the dimen-
sionality of the dataset and to visualize how individuals are 
distributed in the morphometric space (i.e., to determine 
whether there are any trends, clusters, or outliers in the data). 
We also performed a linear discriminate analysis (LDA) in R 
using the MASS, calibrate, ggforce, and concaveman pack-
ages (Gombin et al. 2020; Graffelman 2020; Pedersen 2021; 
R Core Team 2021; Ripley et al. 2022) on the metapodial 
measurements from specimens that were previously assigned 
to a species to test the given species classifications. We then 
used the LDA results and Bayesian inference to assign the 
unknown (E. sp.) specimens to one of the four identified 
species groups using equally weighted priors (Ripley et al. 
2022).

Finally, we reconstructed the body mass of every 
specimen using linear regressions from Scott (1990) and 
Alberdi et al. (1995) that correspond to our metapodial 

Fig. 1   Metapodial measurements illustrated on the left metatarsal of 
CMNFV 46548 (Equus sp.). Measurements are: MT1, greatest length; 
MT2, smallest mid-shaft width; MT3, depth of diaphysis; MT4, proxi-
mal articular breadth; MT5, proximal articular depth; MT6, distal max-

imal supra-articular breadth; MT7, distal maximal articular breadth; 
MT8, distal maximal depth of keel; MT9, distal maximal depth of 
medial condyle; MT10, distal minimal depth of medial condyle. Scale 
bars each represent 1 cm
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measurements. We used six of the seven regressions from 
Scott (1990) and nine of the fourteen regressions from 
Alberdi et al. (1995). The body masses that were recon-
structed using the regression that was the best predictor of 
body mass (i.e., the regression with the highest R2 value)  
from each paper were used to conduct one-way ANOVAs 
in R using the dplyr and ggpubr packages (Kassambara 
2020; R Core Team 2021; Wickham et al. 2022) to deter-
mine whether mean body mass differed among the four 
identified species groups and the specimens without a 
confirmed species identification. Measurement  MT7 
(distal maximal supra-articular breadth; R2 = 0.8526) 
was used from Scott (1990; Eq. 1; referred to as MT4 
in Scott 1990), and MT8 (distal maximal depth of keel; 
R2 = 0.9467) was used from Alberdi et al. (1995; Eq. 2; 
referred to as MT12 in Alberdi et al. 1995) (Fig. 1).

Following the ANOVAs, Tukey’s HSD tests were performed 
to determine (if there were significant differences among 
groups) which groups differed significantly from one another.

Results

Much of the proportion of variance in the metapodial data-
set was explained by PC1 (85.34% ± 2.92) (Fig. 2; Online 
Resource 3). In contrast, PC2 explained a small proportion 

(1)
Log

10
(Body Mass) =

[

2.4247 × Log
10
(MT7)

]

+ 0.8911

(2)LN(Body Mass) = [2.768 × LN(MT8)] + (−4.061)

of the variance (4.05% ± 0.64), and PC3 explained even less 
of the variance (2.84% ± 0.53) (Online Resource 3). Due to 
the very small contribution of PC3 to the cumulative vari-
ance, we do not consider it to be of notable importance and 
do not discuss it further. PC1 loads most heavily on the 
distal maximal articular breadth; however, all the variables 
are strongly positively correlated with one another (Online 
Resource 4). Thus, we consider PC1 to represent variation  
associated with overall metapodial size. We observe discern-
ible grouping between the four identified species groups, 
although there is gradation in morphospace along PC1  
(Fig. 2). Of the four defined species groups, the speci-
mens attributed to E. lambei exhibited the greatest range in  
metapodial measurements and shared the morphospace with 
all but one species group (E. verae), with the majority of 
specimens falling slightly to the left of the midpoint of PC1, 
indicating that they overall tended to have smaller meta-
podials (Fig. 2). The E. scotti group was fairly centralized 
on PC1 but exhibited notable overlap with the E. lambei 
group, indicating that specimens from the E. scotti group 
have comparable but typically somewhat larger metapodials 
than those assigned to E. lambei (Fig. 2). The E. verae group 
overlaps the least with the other defined species groups, only 
slightly sharing the morphospace of PC1 with the larger end 
of the E. scotti group (Fig. 2). The stilt-legged horse group, 
H. francisci, exhibited some of the smallest metapodials but 
also shared the morphospace with E. lambei and, to a lesser 
extent, E. scotti. When considering the indeterminate species 
group (E. sp.), we observe overlap in morphospace with all 
other species groups, representing some of the smallest and 
largest individuals within the entire dataset (Fig. 2).

Fig. 2   Morphospace of Bering-
ian horse metapodials based on 
principal component analysis 
and grouped by species, with 
95% confidence ellipses
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Although the variation explained by PC2 is small, it is 
still notable because it loads strongly on the depth of dia-
physis (i.e., anterior–posterior width) and produces two 
somewhat discernible groupings: the stilt-legged horse (H. 
francisci) and the stout-legged horses (all Equus groups) 
(Fig. 2). However, much like PC1, there exists considerable 
overlap between species groups, most notably between the 
H. francisci and E. lambei groups. Although most E. lambei 
specimens plot close to 0 and within close proximity to the 
other stout-legged horse species groups (Fig. 2), several E. 
lambei specimens plot more closely to stilt-legged group 
along PC2, indicating that these E. lambei specimens exhibit 
more slender metapodials similar to those of H. francisci; 
interestingly, there are also specimens at the opposite end of 
the axis, suggesting that these individuals had more robust 
metapodials. Intriguingly, although most of the E. scotti 
specimens plot around 0 on PC2, the overall E. scotti mor-
phospace is considerably larger along PC2 than either of the 
other two discrete Equus groups, with individuals tending 
towards the more stout-legged morphology (Fig. 2). This 
could simply be the result of a smaller sample size, but we 
do not discount the potential for this to be the result of plas-
ticity of metapodial morphology in the genus Equus as a 
whole. Most of the E. verae specimens also plotted close to 
0, similar to the other stout-legged horses, although there 
were a few individuals that deviated from this trend (Fig. 2). 
Much like PC1, the E. sp. specimens plot throughout the 
entire morphospace of PC2 (Fig. 2), alongside stilt-legged 
and stout-legged horse groups alike.

The LDA correctly classified species based on the  
metapodial measurements 95.09% of the time (misidenti-
fication rate was 4.91%; full loadings available in Online 
Resource 5). Both H. francisci and E. verae specimens  
were correctly identified 100% of the time, E. lambei speci-
mens were correctly identified 95.74% of the time, while 
E. scotti specimens were correctly identified 71.43% of the 
time (Table 1). The specimens that were designated E. sp. 
were all re-classified into one of the four identified species 
groups; 27 specimens were assigned to E. lambei (44.26%),  
20 specimens were assigned to E. verae (32.79%), 12 speci-
mens were assigned to E. scotti (19.67%), and two specimens 
were assigned to H. francisci (3.28%; Table 1). Most of the  
E. sp. specimens being separated into either the E. lambei 

or E. verae group was unsurprising, considering that they 
not only appear to be more common in the fossil record but  
also are clearly distinct from one another within the  
PCA morphospace. We consider it interesting that the LDA 
assigned comparatively few E. sp. specimens to E. scotti 
(Table 1). This could be an artifact of the small sample size 
of E. scotti in our dataset, but we argue that this is more 
likely due to the intermediate metapodial size exhibited by 
E. scotti, which falls between two well-represented and dis-
tinct species groups (E. lambei and E. verae). It is difficult to  
differentiate E. scotti from either of these species groups, 
particularly E. lambei, due to the high variation exhibited 
in the metapodial size of E. lambei group. The low assign-
ment of E. sp. specimens to the H. francisci group was 
also unexpected, considering that H. francisci is the only 
stilt-legged horse represented in our dataset and present in 
eastern Beringia. This finding could simply be due to the 
relative abundance of H. francisci specimens compared to 
other species, as it is possible that stilt-legged horses were 
less common than their stout-legged counterparts and left 
behind fewer fossil remains, thus limiting our sample size. 
It is also possible that, due to the suggested plasticity of 
stilt-legged horse metapodials (Barrón-Ortiz et al. 2017) 
and the extensive overlap in metapodial size with the well-
represented E. lambei that we are unable to properly distin-
guish between stilt-legged horses and smaller, more gracile 
morphs of stout-legged horses.

The regression from Alberdi et al. (1995) (Fig. 3b) pro-
duced slightly larger body mass estimates than the estimates 
obtained using the equation from Scott (1990) (Fig. 3a), and 
full body mass estimates are available in the Supplementary 
Information (Online Resource 6, 7). Based on our body mass 
reconstructions, H. francisci is the smallest, E. lambei and E. 
scotti are mid-sized, and E. verae is the largest by a consid-
erable margin (> 100 kg) (Fig. 3; Table 2). The specimens 
catalogued as E. sp. had the overall widest range of body 
mass estimates, which is unsurprising considering that they 
likely belong to any one of the four identified species groups 
(Fig. 3; Table 2). There was a significant difference in body 
mass among the groups for both the masses reconstructed 
from Scott (1990) (ANOVA, F = 61.49, df = 4, SS = 703,248, 
p < 0.001) and Alberdi et al. (1995) (ANOVA, F = 60.97, 
df = 4, SS = 993,767, p < 0.001). The only groups that are 

Table 1   Classification table of 
Beringian horse species from 
the LDA

Haringtonhippus 
francisci (n = 6)

Equus lambei 
(n = 94)

Equus scotti 
(n = 7)

Equus verae 
(n = 15)

Equus sp. 
(n = 61)

Haringtonhippus 
francisci

6 3 0 0 2

Equus lambei 0 90 2 0 27
Equus scotti 0 1 5 0 12
Equus verae 0 0 0 15 20
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not significantly different from one another are the E. scotti 
and E. sp. groups, and the E. lambei and H. francisci groups, 
respectively (Table 3).

Discussion

The size and morphology of equid metapodials have been 
used in multiple studies to infer taxonomic identity (e.g., 
Winans 1989; Baskin and Mosqueda 2002; Bernor et al. 
2003; Weinstock et al. 2005; Alberdi et al. 2014; Barrón-
Ortiz et al. 2017; Heintzman et al. 2017; Marín-Leyva et al. 

2019; Sun et al. 2022). Here we show that, based on the 
results of our PCA, there is extensive overlap among the 
species groups along both axes, with individuals from the 
indeterminate species group plotting with all four named 
species groups. We also provide novel body mass estimates 
for Beringian equids that demonstrate that there is a continu-
ous gradation in body mass among the named horse species, 
both including and excluding the E. sp. specimens. Although 
the LDA appears to distinguish among identified species 
groups, due to continuous variation in body size and, there-
fore, metapodial size among the groups (including E. sp.), 
we do not consider metapodial measurements to be ideal 

Fig. 3   Estimated body masses 
of Beringian horses. a. Calcu-
lated from MT4 using the equa-
tion from Scott et al. (1990); 
b. Calculated from MT8 using 
the equation from Alberdi et al. 
(1995)
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taxonomic indicators for Beringian equids and suggest that 
the results of the LDA are based entirely on metapodial size. 
Due to the possibility for plasticity in the morphology of 
equid metapodials, the defined species groups could simply 
reflect different size morphs of Beringian horses that may 
only encompass one or two species, as previous work has 
suggested (Weinstock et al. 2005; Heintzman et al. 2017; 
Vershinina et al. 2021).

Effectively, much of the variation that is present within 
our dataset is likely explained by the continuous variation 
in metapodial size, and therefore the continuous variation in 
body mass. Even when the E. sp. specimens are not consid-
ered, there is a clear overlap among named species groups 
in the PCA morphospace (especially along PC1) that appear 
to reflect a gradation of metapodial size among Beringian 
horse species (Fig. 2). For example, we observe that H. 
francisci have the smallest and most slender metapodials, 
whereas E. verae have larger, generally robust metapodials; 
E. lambei and E. scotti are more intermediate in metapodial 
size, although E. lambei tends towards the smaller size and 
E. scotti towards the larger (Online Resource 1). When we 
consider the E. sp. specimens, we see this same trend of 
continuous variation in metapodial size is also represented, 
with E. sp. specimens falling within the morphospaces of all 
species groups (Fig. 2). Since metapodials are reliable pre-
dictors of body mass (Scott 1990; Alberdi 1995; Mendoza 
et al. 2005) and overall metapodial size loads strongly on 

PC1 (Fig. 2), the gradation in metapodial size appears to be 
strongly related to body mass.

Body mass alone exerts one of the strongest, if not the 
strongest, control on limb bone morphology (Hildebrand 
1982; Biewener 1989; Polly 2008). Bending and com-
pression forces increase in proportion to an animal’s mass 
(Etienne et al. 2020) and the limb bones must withstand 
these stresses. The ability of bones to resist such forces 
depends on their cross-sectional area (Biewener 1989). The 
evolution of unguligrade posture and monodactyly in horses 
were key adaptations that allowed for increased in body mass 
throughout their evolutionary history (McHorse et al. 2017). 
However, above a certain mass (~ 300 kg; Biewener 1989, 
2005) there exists a threshold where it becomes challenging 
for the limb bones to become any more upright in their posi-
tion. To compensate for the increase in forces, the shape of 
the limb bones will often undergo more extreme changes in 
morphology (Biewener 1989; Bertram and Biewener 1990; 
Christiansen 1999). Typically, the most obvious change in 
limb bone morphology as body mass increases is an increase 
in overall robustness (i.e., an increase in diameter relative to 
the length; Schmidt-Nielsen 1984).

Modern domestic horses, which vary more than twofold 
in body size (Brooks et al. 2010), exhibit considerable phe-
notypic variability. For example, draft horses such as Shires 
and Clydesdales have very large, robust limb bones to sup-
port their heavy body mass, whereas smaller horses such as 

Table 2   Estimated body 
masses (in kg) of each species 
reconstructed from MT6 (Scott 
1990) and MT8 (Alberdi et al. 
1995)

(Scott 1990) (Alberdi et al. 1995)

Taxa Range Mean Range Mean

Haringtonhippus 
francisci

175.53 – 229.27 210.44 ± 16.94 201.93 – 278.40 227.72 ± 25.63

Equus lambei 202.30 – 395.93 295.01 ± 39.72 181.95 – 483.04 326.01 ± 53.44
Equus scotti 294.34 – 436.19 374.16 ± 47.86 342.07 – 466.04 422.57 ± 40.96
Equus verae 407.23 – 573.32 492.59 ± 45.15 495.04 – 694.15 573.49 ± 56.34
Equus sp. 197.10 – 565.33 365.31 ± 89.13 239.37 – 631.06 416.83 ± 101.02

Table 3   Results of the Tukey’s 
HSD post-hoc tests conducted 
on the estimated body masses

(Scott 1990) (Alberdi et al. 1995)

Mean difference p-value Mean difference p-value

lambei – francisci 37.543 0.378 51.768 0.234
scotti – francisci 112.390  < 0.001* 141.105  < 0.001*
sp. – francisci 110.063  < 0.001* 134.980  < 0.001*
verae – francisci 229.619  < 0.001* 280.717  < 0.001*
scotti – lambei 74.847  < 0.005* 89.337  < 0.005*
sp. – lambei 72.521  < 0.001* 83.212  < 0.001*
verae – lambei 192.077  < 0.001* 228.949  < 0.001*
sp. – scotti –2.326 1.000 –6.125 0.999
verae – scotti 117.229  < 0.001* 139.612  < 0.001*
verae – sp. 119.556  < 0.001* 145.737  < 0.001*
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Icelandic horses and Shetland ponies possess smaller, more 
gracile limb bones (Hanot et al. 2018). Even horse breeds 
that are used to perform similar tasks can differ greatly from 
one another in their limb morphology; Thoroughbreds have 
much longer and more slender metapodials than Quarter 
Horses, though both breeds are frequently used in racing 
(Goldstein et al. 2021). Guthrie (2003) and Barrón-Ortiz 
et al (2017) proposed that the metapodial morphology of 
extinct horses were also plastic, highlighting variation in 
metapodial shape for E. lambei and H. francisci, respec-
tively. Our findings of continuous variation in both meta-
podial size and body mass support the hypothesis that there 
was notable metapodial plasticity exhibited by Beringian 
equids. The possibility for plasticity in metapodial and body 
size, coupled with the influence of body mass on metapodial 
morphology, thus limits the utility of metapodials as taxo-
nomic indicators for Beringian horses. Taxonomic quality 
varies with body mass, with large-bodied mammals tend-
ing to be severely overspilt relative to smaller mammals, a 
problem that is particularly evident in perissodactyls (Alroy 
2003). While we do not make any claims regarding the valid-
ity of specific taxa here, we do encourage the use of other 
techniques to identify Equus species (e.g., palaeogenom-
ics), and to determine features that are more clearly dis-
tinguishable between stilt- and stout-legged horses, as the 
phylogenetic relationship between these groups is among 
the most contentious and poorly resolved (Weinstock et al. 
2005; Eisenmann et al. 2008; Barrón-Ortiz et al. 2017, 2019; 
Heintzman et al. 2017; Priego-Vargas et al. 2017; Jiménez-
Hidalgo and Díaz-Sibaja 2020).

Although identifying drivers of variation in metapodial 
morphology among Beringian horses is outside the scope 
of this study, we provide some suggestions regarding pos-
sible drivers and encourage further investigation. There is 
increasing evidence that global climate changes affect animal 
body mass (Gardner et al. 2011; Sheridan and Bickford 2011; 
Secord et al. 2012; Martin et al. 2018), although species can 
differ in the direction, rate, and extent of body mass change 
(Lovegrove and Mowoe 2013). Large mammals, in particu-
lar, show rapid declines in body mass as temperatures rise 
(Evans et al. 2012), in line with Bergmann’s rule (Bergmann 
1847; Ashton et al. 2000; Freckleton et al. 2003; Rodríguez 
et al. 2008). A number of large mammals similarly under-
went changes in body size in response to climatic shifts, spe-
cifically glacial to interglacial cycles, during the Pleistocene 
(Guthrie 1982; Noguéz-Bravo et al. 2008; Van Asperen 2010; 
Zimov et al. 2012; Raghavan et al. 2014; Rasmussen et al. 
2014; Martin et al. 2018; Pineda-Munoz et al. 2021). For 
example, the size of E. lambei appears to vary in response 
to climatic changes. Guthrie (2003) demonstrated that, in 
Alaska, E. lambei underwent a drastic reduction in body 
size (~ 15%) as a response to the warming climate following 
the Last Glacial Maximum and into the Holocene, before 

ultimately going extinct in North America ~ 12.5 ka. Given 
that the Equus taxa here likely lived during several climate 
changes, it is possible that metapodial morphology reflects 
body mass changes through time rather than interspecific 
morphological differences. Furthermore, our present analysis 
lacks temporal context. We are thus unable to investigate the 
potential relationship between climate change and metapodial 
size, and subsequently body mass, but we encourage future 
studies to pursue this relationship with the inclusion of novel 
radiocarbon dates.

In addition to climate, metapodial morphology is influenced  
by species ecology. Metapodial morphology has been linked 
with habitat preference in bovids (Köhler 1993; Plummer 
and Bishop 1994; Mendoza and Palmqvist 2006) and equids 
(Schellhorn and Pfretzschner 2015; Li et al. 2021). The pres-
ence of a single metapodial is generally thought to be an 
adaptation to more open habitats, such as grasslands or tun-
dra (Köhler 1993; Scott 1985; McHorse et al. 2017). Bering-
ian horses inhabited the mammoth steppe, a megacontinental 
ecosystem characterized by the presence of megafauna that 
persisted from ~ 115–11.7 ka (Guthrie 1982; Drucker 2022). 
The northern Yukon Territory was part of the mammoth 
steppe and acted as a glacial refugium for a multitude of 
northern North American species because the climate was 
too dry to permit extensive glaciation (Zazula et al. 2006; 
Froese et al. 2009; Zimov et al. 2012). The mammoth steppe 
was a predominantly treeless, steppe-tundra landscape domi-
nated by grasslands composed of cold- and dry-adapted veg-
etation (Hibbert 1982; Schweger 1982; Zimov et al. 1995;  
Zazula et al. 2003). Eventually, the arid mammoth steppe 
was progressively replaced by boreal forest during the Late 
Pleistocene–Holocene transition (~ 11.7 ka), which could 
potentially explain the gradation observed in metapodial 
size of Beringian horses; more closed habitats tend to select 
for smaller body mass and, by association, smaller meta-
podials (Köhler 1993; Schellhorn and Pfretzschner 2015). 
Unfortunately, due the lack of radiocarbon dates, we cannot 
determine whether the continuous variation in our dataset 
represents a change in size within a species over time.

We cannot directly assess the validity of the various named 
Beringian horse species here but have uncovered evidence that 
there is separation by body mass that could be unrelated to phy-
logenetic position, though we cannot yet reject the coexistence 
of multiple species. In fact, the mammoth steppe ecosystem is 
considered to have been a highly productive environment capa-
ble of supporting many species of large herbivores (Guthrie 
1982, 2001; Zimov et al. 2012; Willerslev et al. 2014; Zhu et al. 
2018), including species with overlapping niches (Bocherens 
2003; Pires et al. 2015; Davis 2017), not unlike the African 
savannah. There are several species of modern equids that co-
exist in Africa with many other species of large herbivores (i.e., 
elephants, wildebeasts, antelope) by niche partitioning (e.g., 
Voeten and Prins 1999; Cromsigt and Olff 2006; Schulz and 
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Kaiser 2013; Kartzinel et al. 2015; Mandlate et al. 2019) that 
is driven in part by differences in body mass among species 
(Kleynhans et al. 2011). Beringian equids would have simi-
larly co-existed with other megaherbivores such as mammoths, 
bison, and muskox (Harington and Clulow 1973; Harington 
1980, 1990, 2011; Hughes et al. 1981; Weber et al. 1981; Porter 
1986), likely by some degree of niche partitioning behaviours 
(e.g., Guthrie 2001; Fox-Dobbs et al. 2008; Schwartz-Narbonne 
et al. 2019; Drucker 2022). Although palaeoecological research 
on Beringian equids is limited, they are thought to have been 
primarily grazers that occasionally consumed some browse 
vegetation (Guthrie 2001; Fox-Dobbs et al. 2008; Semprebon 
et al. 2016; Kelly et al. 2021). In other regions, ancient equids 
are believed to have partitioned resources based on their sizes; 
larger horses consumed tall, coarse grasses and more browse 
vegetation, while the smaller horses were predominantly graz-
ing on shorter, softer grasses (Van Asperen 2010; Wolf et al. 
2010; Saarinen et al. 2021). We therefore cannot reject the pos-
sibility that multiple species of Beringian horse did co-exist, 
doing so via partitioning dietary resources. Based on the find-
ings of previous research on size-based niche partitioning in 
horses (Van Asperen 2010; Wolf et al. 2010; Saarinen et al. 
2021), we suggest that the smaller morphs (i.e., H. francisci 
and E. lambei) would likely have been primarily grazers, while 
the larger morphs (i.e., E. scotti and E. verae) were probably 
mixed feeders and incorporated both grass and browse in their 
diets. However, this is purely speculative as we do not incorpo-
rate any dietary indicators (i.e., stable isotope analysis, dental 
microwear/mesowear) or ecological niche modelling in the pre-
sent study, but we encourage future studies to investigate the 
dietary ecology of Beringian horses to elucidate whether niche 
partitioning may have been a mechanism by which multiple 
species could have co-existed.

Conclusion

The metapodials of extinct horses have long been used as 
sources of taxonomic data. Here, we analyzed the metapo-
dials of 203 fossil horse specimens from Beringia to deter-
mine the reliability of these skeletal elements as taxonomic 
indicators. We find that the four identified horse species are 
distinguished from one another based almost entirely on 
overall metapodial size, which is an unreliable indicator of 
taxonomy because there exists variability in size both within 
and among species that can be influenced by environmen-
tal changes. Mean body mass for several of the included 
species differ significantly, but there remains considerable 
overlap in body mass estimates among several species (E. 
lambei and H. francisci, E. scotti and E. sp.). The continu-
ous variation in metapodial size and robusticity exhibited 
by the E. sp. specimens further highlights that metapodial 

morphology was likely plastic in ancient horses, and that 
metapodials are not reliable indicators of taxonomy taken on 
their own. Metapodial morphology in Beringian horses may 
also have changed over time as a result of climate change, 
but we do not possess the requisite radiocarbon dates to 
test this hypothesis. We therefore suggest that metapodial 
morphology cannot differentiate between a single species 
with considerable body size variation, several species that 
differ along a body mass spectrum but did not coexist tem-
porally, and several differently-sized species that did coexist 
via dietary niche partitioning. Regardless, the unresolved 
identity and true number of Beringian horse species inhibits 
our understanding of ecosystem dynamics of the mammoth 
steppe, and reconciling the taxonomy is key to furthering 
our understanding of the extinction cause for the different 
Beringian horse species at the end of the Pleistocene. We 
encourage future studies aimed at resolving the taxonomy 
of these horses to avoid the use of metapodials and instead 
to use more reliable indicators of taxonomy, such as cheek 
tooth morphology or palaeogenomics, alongside accurate 
radiocarbon dates to uncover the phylogenetic relationships 
among and the true number of Beringian horse species.
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