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Single-step generation of metal-
plasma polymer multicore@shell 
nanoparticles from the gas phase
Pavel Solař1, Oleksandr Polonskyi2, Ansgar Olbricht2, Alexander Hinz2, Artem Shelemin1, 
Ondřej Kylián1, Andrei Choukourov   1, Franz Faupel2 & Hynek Biederman1

Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were 
prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane 
mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical 
composition and the thickness of the shells were found to be controlled by the composition of 
the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly 
stoichiometric SiO2 were obtained. The method allows facile fabrication of multicore@shell 
nanoparticles with tailored functional properties, as demonstrated here with the optical response.

Production of metal nanoparticles (NP) by gas aggregation sources (GAS) that utilize magnetron sputtering and 
buffer-gas condensation has become a fast-growing field in nanoscience1–5. Sputtering can supply atomic metal 
vapors from solid targets into a gas phase in a controllable manner. By adjusting the parameters of the discharge, 
the partial pressure of metal vapors can be deliberately increased above the target surface to create the conditions 
of supersaturation. Such far-from-equilibrium conditions can be further enhanced by using a cool buffer gas 
which may trigger spontaneous condensation of metal vapors and the formation of NPs. Typically, a buffer gas 
flow is created in the aggregation zone to transport NPs away from the magnetron and deposit them onto solid 
supports.

Originating in the 1990s, work on the use of magnetron-based GASes for the production of single-metal NPs6–9  
was followed by research on multi-metal NPs. The combination of two (or more) metals at the nanoscale was 
found to provide NPs with unique properties and extra functionality. The state-of-the-art involves using a single 
magnetron with a composite target or multiple magnetrons in a single GAS. It was recognized that multi-metal 
NPs of different morphology can be produced, for example, nanoalloy10–13, core@shell2, 14–18 or Janus NPs19, 20.

Fabrication of composite NPs composed of materials other than metals can significantly broaden the func-
tionality of NPs. Possible applications include protection of metal NPs from oxidation, fine tuning NP plasmonic 
response and functionalization of NPs for controlled drug delivery and biosensing. Composite NPs with metal 
core and dielectric shell were successfully produced using wet chemical methods21–23 or combinations of physical 
and chemical methods24. These, however, usually need multiple production steps and typically suffer from the 
use of toxic precursors, the elimination of the residuals of which represents a substantial challenge. From this 
viewpoint, gas phase methods of fabrication of composite NPs may prove advantageous albeit they have been 
studied much less25.

In this paper, we present a method for the production of metal core@plasma polymer shell NPs that combines 
buffer-gas induced condensation of magnetron-sputtered silver and plasma-enhanced chemical vapor deposition 
(PECVD) of hexamethyldisiloxane (HMDSO). The aim of the research is to investigate the feasibility of such an 
approach and to find tools to tune the morphology and chemical composition of NPs by setting the appropriate 
experimental conditions.

Experimental
Nanoparticles (NPs) were produced using a gas aggregation cluster source (GAS) with a 2-inch magnetron 
equipped with either a graphite or a silver target (both 6 mm thick, 99.99% pure, Kurt J. Lesker). The magnetron 
was placed inside a cylindrical aggregation chamber capped with a conical lid with a circular orifice 3 mm in 
diameter and 0.5 mm in length. The GAS chamber was cooled by water at 20 °C. The magnetron was powered by 
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an RF generator (Dressler Cesar, 13.56 MHz) through a matching box. Constant power of 50 W was chosen for the 
experiments. Argon (99.9999%) was supplied through a flow controller (MKS Instruments) between the powered 
electrode and the magnetron shielding directly to the target, as shown in Fig. 1. Hexamethyldisiloxane (HMDSO, 
98.5% pure, Sigma Aldrich) was supplied to the GAS from a flask via a needle valve. The HMDSO inlet ends in a 
gas ring positioned 15 mm away from the surface of the target. The gas ring had several holes, all directed towards 
the target. The experiments were performed at 190 Pa pressure in the GAS with the flow rate of Ar fixed at 105 
sccm. The concentration of HMDSO was varied by changing its flow rate from 0.02 to 0.45 sccm. In a number of 
the experiments, O2 (99.9999%) was added to the Ar/HMDSO mixture.

The GAS was mounted onto a high vacuum deposition chamber pumped by scroll and turbo-molecular 
pumps to a base pressure below 10–4 Pa. The NPs were deposited on different substrates (quartz glass, TEM 
grids, gold coated silicon substrates) positioned in the deposition chamber 20 cm from the exit orifice of the 
GAS. The samples were analyzed by transmission electron microscopy (TEM, JEM-2100, JEOL, 200 kV, LaB6), 
UV-Vis spectroscopy (Ellipsometer Woollam M2000 UI), X-ray photoelectron spectroscopy (XPS, Omicron 
Nanotechnology GmbH) and Fourier Transform Infrared Spectroscopy (FTIR, Bruker Equinox 55). In the case 
of XPS measurements, all spectra were charge referenced for aliphatic carbon at 285.0 eV.

Results and Discussion
Plasma polymerization of organic precursors often leads to the formation of nano- and micro-scale particles 
in the gas phase. Organic molecules supplied to the plasma zone undergo fragmentation followed by gas-phase 
radical recombination and form nuclei, the process being especially effective if performed under an elevated 
pressure of tens to hundreds of Pa26. Chemical composition of the resultant particles is given by the type of pre-
cursor used and by the energetic conditions of the plasma. Particle structure can typically be represented by a 
highly cross-linked and random carbonaceous network27. Figure 2a shows an example of the NPs prepared by the 
GAS with a mixture of Ar and HMDSO and a graphite target attached to the magnetron. The NPs were produced 
with a mean size of 36 nm and with the XPS elemental composition of C 52%, Si 30%, O 18%, very similar to the 
HMDSO films and NPs reported earlier28, 29. The TEM image in Fig. 2b shows the result of the same experiment 
performed when the graphite target was replaced by a silver one. In this case, heterogeneous NPs are produced 
and consist of distinct multiple cores enveloped by a shell of the plasma polymer. XPS analysis shows the appear-
ance of silver, although the concentration of other elements remains almost the same (Ag 2%, C 52%, Si 25%, O 
21%). Remarkably, the mean size of the multicore@shell NPs does not change when compared to the NPs without 
the multicores. The diffraction pattern characteristic for silver was detected by TEM and is shown in the right 
column of Fig. 2.

Magnetron sputtering of metals is known to result in the supply of an atomic metal vapor into the gas phase. 
The metal vapor may spontaneously condense with the formation of NPs if the conditions of supersaturation 
are fulfilled, and recent years have witnessed the successful application of GASes for the production of beams of 
metal NPs8, 30, 31. Here, the magnetron sputtering of silver is evidently accompanied by plasma polymerization 
processes of HMDSO-derived radicals and the formation of Ag NPs is accompanied by competitive growth of 
HMDSO plasma polymer. It is known that cohesive forces between noble metal atoms greatly exceed the interac-
tion energy between metals and organics, polymers in particular. As a consequence, metals do not form one phase 
with polymers but both tend to segregate into two phases32. Within the framework of low-temperature plasma 
deposition, the phase segregation leads to the generation of metal/plasma polymer nanocomposites, either in the 
common form of thin films33–36 or in the form of core@shell NPs presented here. It is also worth noting that the 
growth does not lead to the formation of individual core@shell NPs, as might be and was originally expected, but 
the groups of several Ag NPs become embedded in a single plasma polymer shell. It seems reasonable to assume 
that individual core@shell NPs are formed in the vicinity of the magnetron target and later coalesce with each 
other on their way through the aggregation chamber, thus generating the multicore@shell structure. A similar 
phenomenon was recently observed for ternary magnetron synthesis of inorganic NPs composed of multiple 
FeAg cores encapsulated by a Si shell37, 38.

Addition of oxygen to HMDSO is known to trigger oxidation processes in the plasma. Reactive oxygen spe-
cies consume carbon with the formation of volatile oxides that do not participate in plasma polymerization. This 
in turn leads to the production of carbon-deficient deposits that are consequently more inorganic. The process 

Figure 1.  Schematics of the gas aggregation cluster source and the gas inlet system.
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can be optimized to produce stoichiometric SiO2 in the form of thin films or nanoparticles29. Figure 2c shows 
the result of such optimization performed in the GAS with the silver target. The addition of 4% of O2 to the Ar/
HMDSO mixture leads to the fabrication of NPs with embedded multiple Ag inclusions with 5 nm average size. 
The XPS composition shows Ag 4%, C 3%, Si 32%, O 61%, which indicates that the shell consists of nearly sto-
ichiometric SiO2. No diffraction pattern characteristic of crystalline silicon dioxide was detected, which points 
to an amorphous state of the shell. The formation of SiO2 is also corroborated by high-resolution XPS, which 
shows a higher binding energy shift in the position of the Si 2p peak from 101.6 eV for the Ar/HMDSO mixture 
without O2 to 103.1 eV for the mixture with O2 (Fig. 3a). Furthermore, the FTIR-RAS spectra of both types of 
NPs also reveal the chemical changes from the organic to the predominantly inorganic SiO2 character (Fig. 3b). 
The addition of O2 leads to the disappearance of the bands associated with vibrations of the hydrocarbon and 
organosilicon groups (see, for example, CHx stretching at 2960–2870 cm−1 and Si-(CH3)x rocking at 850 cm−1). 

Figure 2.  TEM images with lower (left column) and higher (middle column) magnification of the NPs 
prepared by GAS: (a) from the Ar/HMDSO mixture with graphite target and (b) from the Ar/HMDSO mixture 
with Ag target (in both cases the HMDSO flow rate is 0.45 sccm); (c) from the Ar/HMDSO/O2 mixture with 
Ag target (0.15% HMDSO, 3.8% O2, Ar flow rate 105sccm, pressure 190 Pa). The right column shows the 
corresponding diffraction patterns.

Figure 3.  Chemical analysis of the NPs prepared by GAS from the Ar/HMDSO mixture with or without the 
addition of O2: (a) high-resolution Si 2p XPS; (b) FTIR-RAS.
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Simultaneously, a siloxane rocking band develops at 485 cm−1, whereas the corresponding stretching vibration 
shifts from 1050 to 1210 cm−1, which also reflects the disappearance of an organic bonding environment33, 39.

Another set of experiments was performed without the addition of O2 but with different concentrations of 
HMDSO in Ar. All other parameters were held constant. The size of the Ag inclusions was found to decrease and 
the thickness of the plasma polymer envelope to increase, with the HMDSO concentration increasing from 0.02% 
to 0.44% (Fig. 4). The phenomenon is accompanied by the narrowing of the Ag NP size distribution, as can be 
seen from the corresponding histograms. The XPS analysis supports these findings by showing the decrease of 
the silver content from 27 at. % to 2 at. % with the increasing thickness of the plasma polymer shell (increasing 
concentration of HMDSO).

The UV-Vis measurements of the multicore@shell NPs provide spectra with a strong absorption band from 
localized surface plasmon resonance (LSPR) (Fig. 5). At the lowest HMDSO concentration, the band occupies a 
region between 400 and 600 nm, a large width of which is caused by the large dispersity in Ag NP size. Also, note 
the presence of two shoulders in this band that likely originate from the bimodal size distribution of the Ag NPs 
detected in the sample (Fig. 4). In further agreement with the TEM observations, the increase of HMDSO con-
centration leads to a narrowing of the LSPR absorption band, and corresponds to a narrower Ag NP size distri-
bution. The position of the band at 445 nm is red-shifted with respect to <400 nm typically obtained for similarly 
sized bare Ag NPs31. The red-shift of the LSPR band has been well documented in the literature, the shift being 
larger for embedding dielectric media with greater refractive index40. Here, the shift is readily attributed to the 
influence of the HMDSO plasma polymer matrix separating the Ag NPs as compared to bare Ag NPs separated by 
air voids. It also confirms that the Ag NPs are completely embedded within the plasma polymer shell.

Conclusion
An effective single-step method for the gas-phase production of metal@plasma polymer nanoparticles was devel-
oped and is based on the use of a gas aggregation cluster source for simultaneous rf magnetron sputtering of a 
metal target and PECVD of an organic precursor. Silver NPs were successfully embedded in an organosilicon 
plasma polymer shell. Advantageously, the method also involves the formation of multicore@shell instead of 
a single-core@shell morphology of NPs. The concentration of HMDSO is found to be an important parameter 
influencing the size distribution of the Ag inclusions as well as the optical activity of the resultant multicore@shell 

Figure 4.  TEM images and the core size distributions of the multicore-shell NPs prepared by GAS at different 
concentrations of HMDSO: (a) 0.02%, (b) 0.15%, (c) 0.44%.
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NPs. Adding oxygen to the Ar/HMDSO mixture permits tuning of the chemical composition of the shell from 
organosilicon plasma polymer to stoichiometric SiO2. The facile, single-step method presented here should lend 
itself to the controlled fabrication of other complex functional nanoparticles.
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