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ABSTRACT

Background. Chronic kidney disease (CKD) patients show an increased burden of atherosclerosis and high risk of
cardiovascular events (CVEs). There are several biomarkers described as being associated with CVEs, but their combined
effectiveness in cardiovascular risk stratification in CKD has not been tested. The objective of this work is to analyse the
combined ability of 19 biomarkers associated with atheromatous disease in predicting CVEs after 4 years of follow-up in a
subcohort of the NEFRONA study in individuals with different stages of CKD without previous CVEs.

Methods. Nineteen putative biomarkers were quantified in 1366 patients (73 CVEs) and their ability to predict CVEs was
ranked by random survival forest (RSF) analysis. The factors associated with CVEs were tested in Fine and Gray (FG)
regression models, with non-cardiovascular death and kidney transplant as competing events.

Results. RSF analysis detected several biomarkers as relevant for predicting CVEs. Inclusion of those biomarkers in an FG
model showed that high levels of osteopontin, osteoprotegerin, matrix metalloproteinase-9 and vascular endothelial
growth factor increased the risk for CVEs, but only marginally improved the discrimination obtained with classical clinical
parameters: concordance index 0.744 (95% confidence interval 0.609–0.878) versus 0.723 (0.592–0.854), respectively. However,
in individuals with diabetes treated with antihypertensives and lipid-lowering drugs, the determination of these
biomarkers could help to improve cardiovascular risk estimates.

Conclusions. We conclude that the determination of four biomarkers in the serum of CKD patients could improve
cardiovascular risk prediction in high-risk individuals.
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INTRODUCTION

Chronic kidney disease (CKD) is a highly prevalent disease
worldwide with a median prevalence of 7.2% in people >30
years of age, but increasing to 23–36% in individuals >64 years
of age [1]. These numbers are expected to increase dramatically
in the next decades, mainly due to the aging of the population
and to the increase of other risk factors such as diabetes, hyper-
tension and obesity [2]. These trends raise significant concern
due to the fact that CKD patients have increased risk of major
cardiovascular events (CVEs), as cardiovascular disease (CVD) is
the leading cause of death in this population [3]. The increased
cardiovascular risk in CKD patients seems to be associated, at
least in part, with their propensity to present atheromatous pla-
ques, as the prevalence of atherosclerotic-related events is very
high [4] and the presence of plaques predicts the incidence of
CVEs [5]. Today, prevention, diagnosis and prognosis of CVD in
CKD patients is difficult, as the standard risk scores underesti-
mate the cardiovascular risk in CKD patients [6, 7].

With the aim of modifying or improving current cardiovas-
cular risk assessment algorithms, there has been an extensive
search for serum biomarkers useful to predict CVEs associated
with atheromatosis [8]. Atherosclerotic plaque is a manifesta-
tion of a systemic disease. Consequently, associated biomarkers
can be the product of the disease itself or derive directly from
the plaque [9]. Thus, published studies have focused on markers
of plaque presence, instability, inflammation, neovasculariza-
tion, calcification, stenosis severity and atheromatous CVEs [10,
11]. However, one of the main problems related with the search
for new biomarkers is that they are usually evaluated in an iso-
lated context and only corrected by the confounding effect of
traditional risk factors in multivariable regression analysis. To
date, no study has evaluated the possible role of a combination
of a large number of biomarkers to predict CVEs in a CKD
population.

Machine learning algorithms are powerful tools to make pre-
dictions based on large amounts of data. Among them, random
forest algorithms build several decision trees. Each tree is built
based on a random subsample and the rest of the sample (out-
of-bag) is used to assess the model performance and the vari-
able importance. For each node, a subset of variables is explored
to determine which variable maximizes the improvement of the
outcome prediction. Finally, by ensembling the results of all
trees, measures of performance can be obtained [concordance
index (C-index), variable importance, etc.]. Therefore, random
forest could be a useful tool to assess the contribution of several
biomarkers on atheromatous disease-related events.

In this context, this study was carried out with the main ob-
jective of evaluating whether 19 biomarkers previously associ-
ated with atherosclerotic disease can increase the capacity of
traditional risk factors for predicting CVEs in patients with dif-
ferent stages of CKD and controls included in the NEFRONA
cohort.

MATERIALS AND METHODS
Study design

This study included 1366 subjects from the NEFRONA [12, 13]
study of which 813 presented with CKD (380 Stage 3, 304 Stages
4 and 5 and 129 dialysis) and 553 were controls without CKD (es-
timated glomerular filtration rate based on creatinine> 60 mL/
min/1.73 m2). Briefly, NEFRONA is a multi-centre, observational,
prospective study designed to assess the predictive value of

non-invasive imaging techniques and biomarkers for CVEs and
mortality in CKD patients. Patients 18–75 years of age and at dif-
ferent CKD stages were recruited in Spain from 2009 to 2012.
Exclusion criteria were a history of CVEs, significant carotid ste-
nosis, active infections (human immunodeficiency virus and tu-
berculosis), pregnancy, life expectancy <12 months and having
received any organ transplantation or carotid artery surgery. A
4-year follow-up was performed collecting data on CVEs, both
fatal and non-fatal. CVEs were defined according to the
International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). Physicians responsible for the
patients’ recruitment recorded the CVEs. In case of out-of-
hospital death, family members were interviewed to determine
death circumstances. Each local ethics committee approved the
study and all included patients signed an informed consent.

Clinical data and biochemical variables

Anthropometric data [sex, age and body mass index (BMI)], clin-
ical data [systolic and diastolic blood pressure (SBP and DBP),
pulse pressure (PP)], family history of early CVD, cardiovascular
risk factors (smoking, diabetes, hypertension and dyslipidae-
mia) and blood samples were collected by a specifically trained
itinerant team formed by two technicians and a specifically
trained nurse. The diagnoses of diabetes, hypertension and dys-
lipidaemia were obtained directly from the clinical records.
Biochemical parameters were obtained from routine blood tests
3 months before or after an ultrasound was performed.

Collected blood samples were stored at �80�C in the Biobank
of the RedInRen in the University of Alcala de Henares (Madrid)
until biomarker determination, which was performed in a
blinded manner. All biomarkers were measured using
MILLIPLEX MAP kits (EMD Millipore, Burlington, MA, USA). The
list of biomarkers assessed, the minimum detectable level of
each biomarker as well as the information about intra- and
interassay coefficients of variation are shown in the
Supplementary data, Table S1.

We selected biomarkers associated with processes of athero-
sclerosis, focusing on inflammatory chemokines [14], proteins
related to bone metabolism and calcification [15] and proteins
related to plaque inflammation, progression and vasculariza-
tion [10]. The other needed criteria used were the availability of
MILLIPLEX MAP kits for quantification.

Atherosclerosis assessment

Atherosclerosis assessment was performed at baseline as previ-
ously described [16]. Participants underwent a carotid and fem-
oral ultrasound in three territories of both carotid arteries
(internal and common carotid arteries and carotid bulbs) and
two territories of both femoral arteries (common and superficial
femoral arteries). Plaques were defined according to the
American Society of Echocardiography and the Mannheim ca-
rotid intima-media thickness (cIMT) Consensus as cIMT lumen
protrusion �1.5 mm [17, 18]. Plaque presence was defined as
plaque in at least one territory. Detailed protocols for plaque im-
aging, quantification and prevalence in the NEFRONA cohort
have been published previously [19].

Statistical analysis

Qualitative variables were described with frequencies and per-
centages and quantitative variables with medians and 25th and
75th percentiles. Bivariate analysis by occurrence of CVEs was
performed by means of the logrank test.
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To discover new biomarkers for cardiovascular incidence,
we performed random survival forest (RSF) analysis for compet-
ing risks [20]. The competing events to the CVEs were non-
cardiovascular death and kidney transplant. We fitted two mod-
els: one with known risk factors and confounders—without bio-
markers—and the other adding new potential biomarkers.
Previously the same algorithm was used for missing values im-
putation. Additionally, quantitative variables were previously
centred and scaled. No variables were excluded from analysis
by near-zero variance or high pairwise correlation among pre-
dictors. Forests were grown using the modified Gray’s splitting
rule, selecting variables based on their direct effect on the cu-
mulative cardiovascular incidence. Variables were ranked by
the mean decrease in prediction error [measure of variable im-
portance (VIMP)] and the C-index) was obtained as a measure of
model performance. Confidence intervals (CIs) for VIMP were
calculated subsampling the survival forest [21]. Finally, we in-
cluded in a Fine and Gray (FG) competing risk regression model
the variables with the 5th percentile of VIMP > 0, thus ensuring
95% confidence of being relevant to the outcome of interest.
The final model was selected by backward stepwise regression
based on the minimum Akaike information criterion (AIC). We
evaluated the calibration and discrimination of the final mod-
els. Moreover, model assumptions were assessed (linearity and
proportional subhazards). When needed for validating the mod-
els, transformations of variables were used. We also provide
a nomogram of the model predictions in order to simplify its
interpretation.

All tests were two-sided at a significance level a¼ 0.05. All
statistical analyses were carried out using R statistical software
(R Foundation for Statistical Computing, Vienna, Austria). The
randomForestSRC package was used for RSF algorithm imple-
mentation, the crrstep and riskRegression packages for FG
modelling and the crskdiag package for model assumptions
validation.

RESULTS
Bivariate analysis to identify biomarkers of CVEs

Over a median follow-up time of 48 months, 73 CVEs were
reported: 13 in the control group, 22 in CKD Stage 3, 27 in CKD
Stages 4 and 5 and 11 in the dialysis group. Higher hazards
of CVEs were found for older patients, for patients with
plaque at baseline and for patients in more advanced CKD
stage. Moreover, patients with or being treated for diabetes,
hypertension and dyslipidaemia or with the presence of
atrial fibrillation showed higher hazards of having a CVE.
Patients with an increased risk of a CVE also showed low
levels of high-density lipoprotein (HDL) cholesterol and 25-
hydroxyvitamin D3 [25(OH)D3], higher levels of triglycerides,
high-sensitivity C-reactive protein (hsCRP), phosphate,
potassium, SBP and PP (Table 1). In addition, cardiovascular
risk was also higher for patients with higher levels of soluble
vascular cell adhesion molecule (sVCAM-1), matrix metallo-
proteinase-9 (MMP-9), osteopontin (OPN), osteocalcin (OC),
vascular endothelial growth factor (VEGF), osteoprotegerin
(OPG) and monocyte chemoattractant protein 1 (MCP-1)
(Table 2).

RSF analysis to identify biomarkers of CVEs

RSF performed without biomarkers showed that the 10 most
important variables for CVE prediction were SBP, PP, diabetes,

being treated for dyslipidaemia, hypertension, DBP, being
treated for diabetes, CKD stage, being treated for hypertension
and HDL cholesterol (Figure 1a). When biomarkers were in-
cluded alongside clinical variables in the RSF analysis, OPN was
the most relevant predictor of the incidence of CVEs, followed
by PP, SBP and diabetes. OPG also appeared as a potential pre-
dictor of cardiovascular risk (Figure 1b). VIMP values for all vari-
ables are shown in the Supplementary data, Table S2. Overall
discrimination without biomarkers was 0.678 (95% CI 0.649–
0.710) and improved when biomarkers were included [0.716
(95% CI 0.689–0.746)].

Table 1. Characteristics of participants according to the occurrence
of CVEs

Variable
No event
(n¼ 1293)

Event
(n¼ 73) P-value

Age (years) 59 (49, 67) 63 (56, 70) <0.001
Sex (female), n (%) 557 (43.1) 27 (37.0) 0.286
BMI (kg/m2) 27.9 (25, 31.3) 29.6 (25.8, 32.4) 0.065
Dyslipidaemia, n (%) 695 (53.8) 55 (75.3) <0.001
Lipid-lowering drugs, n (%) 642 (49.7) 55 (75.3) <0.001
Hypertension, n (%) 871 (67.4) 66 (90.4) <0.001
Antihypertensive drugs, n (%) 850 (65.7) 64 (87.7) <0.001
Diabetes, n (%) 264 (20.4) 32 (43.8) <0.001
Antidiabetic drugs, n (%) 235 (18.2) 30 (41.1) <0.001
Atrial fibrillation, n (%) 16 (1.24) 3 (4.11) 0.030
Heart failure, n (%) 17 (1.31) 1 (1.37) 0.943
Family history of early

CVD, n (%)
147 (11.4) 11 (15.1) 0.303

Smoking status, n (%) 0.136
Non-smoker 545 (42.2) 26 (35.6)
Current smoker 498 (38.5) 26 (35.6)
Former smoker 250 (19.3) 21 (28.8)

CKD stage, n (%) <0.001
Control 540 (41.8) 13 (17.8)
CKD Stage 3 358 (27.7) 22 (30.1)
CKD Stages 4 and 5 277 (21.4) 27 (37)
Dialysis 118 (9.1) 11 (15.1)

Presence of basal plaque, n (%) 811 (62.7) 60 (82.2) 0.001
Total cholesterol (mg/dL) 190 (163, 214) 180 (156, 209) 0.101

Missing values 46 1
HDL cholesterol (mg/dL) 49 (41, 61) 44 (34, 52) <0.001

Missing values 158 12
LDL cholesterol (mg/dL) 112 (90, 136) 111 (75, 133) 0.168

Missing values 179 14
Triglycerides (mg/dL) 112 (81, 162) 138 (94, 181) 0.008

Missing values 72 4
SBP (mmHg) 136 (124, 151) 149 (134, 168) <0.001
DBP (mmHg) 80 (73, 87) 85 (76, 89) 0.071
PP (mmHg) 55 (46, 67) 68 (53, 79) <0.001
Potassium (mEq/L) 4.65 (4.31, 5) 4.8 (4.49, 5.3) 0.001

Missing values 88 2
Phosphate (mg/dL) 3.7 (3.2, 4.2) 3.85 (3.4, 4.4) <0.001

Missing values 250 5
Calcium (mg/dL) 9.4 (9.1, 9.7) 9.4 (9, 9.8) 0.851

Missing values 203 5
hsCRP (mg/L) 1.93 (0.95, 4.13) 2.25 (1.02, 6.68) 0.004

Missing values 15 3
25(OH)D3 (ng/L) 17.3 (12.7, 21.9) 14.7 (9.5, 20.2) 0.003

Missing values 11 2

Italic numbers are frequencies of missing data.

Values are shown as medians and 25th and 75th percentiles unless stated other-

wise. P-values correspond to the logrank test.

LDL, low-density lipoprotein.
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With the most promising variables (those with 95% of VIMP
values >0), we performed a multivariate FG competing risks
model for cardiovascular incidence (Table 3). Of the traditional
risk factors considered, being treated with lipid-lowering drugs
and having lower levels of HDL cholesterol showed a signifi-
cantly increased risk for CVEs. Regarding biomarkers, higher
values of OPG, MMP-9, VEGF and OPN were statistically signifi-
cant predictors of increased cardiovascular risk. Other predic-
tors [interferon gamma (IFN-c), diabetes, being treated for
hypertension, total cholesterol and age] were kept in the model
as their inclusion improved the AIC. In order to meet the model
assumptions, base-2 logarithm transformations for OPG and
OPN were used.

The discrimination ability of the competing risks model
without biomarkers at 48 months was moderately high [0.723

(95% CI 0.592–0.854)]. As shown in Figure 2, the inclusion of bio-
markers slightly increased the C-index [0.744 (95% CI 0.609–
0.878)]. Figure 3 shows the adjusted cumulative cardiovascular
incidence, according to the FG model with biomarkers, corre-
sponding to four risk groups defined by the presence or absence
of diabetes and being or not treated with both lipid-lowering
and antihypertensive drugs. Significant biomarkers—OPN, OPG,
MMP-9 and VEGF—were set to their 25th and 75th percentiles.
The patients with diabetes and treated with both drugs are
those suffering major impacts on absolute cardiovascular risk
of higher levels of biomarkers.

Finally, to better visualize our model predictions, we
obtained a nomogram illustrating a representative patient of
our cohort (Figure 4). The cumulative incidence estimate of
CVEs at 48 months for this representative patient was 0.041.

DISCUSSION

In this study we explored the role of 19 serum biomarkers previ-
ously shown to be associated with atheromatosis in improving
CVE prediction in a cohort mainly composed of CKD patients.
The main result of our analysis is that the addition of bio-
markers marginally improved the discrimination ability
obtained with only traditional risk factors in CKD. Despite this,
OPN was the most relevant predictor of CVEs in RSF analysis.
Thus when biomarkers were not included in RSF, clinical
parameters with higher prediction ability were PP and SBP, data
that agree with previous results [22], and the third most rele-
vant clinical parameter was diabetes, also linked to CVEs in the
CKD population [23]. Moreover, when the most promising varia-
bles in the RSF analysis were included in an FG regression,
higher levels of OPN, OPG, VEGF and MMP-9 were significantly
associated with a higher incidence of CVEs, along with tradi-
tional factors such as HDL cholesterol and being treated for
dyslipidaemia.

Our group has previously identified predictors of CVEs in the
NEFRONA cohort. First, we focused on clinical variables and
routine clinical analytics to find predictors of CVEs. Sex, CKD,
25(OH)-vitamin D3, cholesterol and subclinical atheromatosis
were identified as the main predictors [5]. The inclusion of bio-
markers in this analysis overruled the effect of all of them,
maybe reflecting that the biomarkers selected have a strong re-
lationship with the atherosclerotic process. Moreover, we can-
not rule out that the inclusion of medications also reduced the
effect of some clinical variables. In a second work [11] we identi-
fied OPN and OPG as factors significantly associated with CVEs.
soluble tumor necrosis factor-like weak inducer of apoptosis
(sTWEAK) also showed an independent association, but was not
included in this work as it was missed in 50% of our samples. In
the mentioned study, since we only tried to identify whether
they were independently associated with the events, we did not
test the improvement of prediction added by the biomarkers or
rank the variables as we did in the present work. Furthermore,
in this study we identified that patients with diabetes and
treated for dyslipidaemia and hypertension could benefit from
the determination of biomarkers, as these patients are suffering
major impacts on absolute cardiovascular risk of higher bio-
marker levels. It should be noted that being treated for dyslipi-
daemia or hypertension can be considered similar to presenting
with these comorbidities.

The search for serum biomarkers with potential prognostic
ability for CVEs is a very active field of study. However, although
results sometimes are confirmed in independent cohorts, a very
small number make it to the clinic [24]. This fact could be due to

Table 2. Biomarker levels according to the occurrence of CVEs

Variable No event (n¼ 1293) Event (n¼ 73) P-value

Eotaxin (pg/mL) 122 (84, 170) 122 (77, 168) 0.780
Missing values 54 4

FGF-2 (pg/mL) 60 (33, 100) 65 (39, 114) 0.456
Missing values 50 4

Fractalkine (pg/mL) 83 (48, 133) 77 (51, 124) 0.929
Missing values 53 4

GM-CSF (pg/mL) 8.6 (4.2, 16.5) 8.5 (2.7, 16.2) 0.538
Missing values 53 4

IFN-c (pg/mL) 5.2 (2.9, 10.6) 5.4 (1.9, 12.3) 0.557
Missing values 53 4

IP-10 (pg/mL) 446 (309, 689) 451 (323, 704) 0.271
Missing values 53 4

Leptin (pg/mL) 15 627 (6822, 33 667) 16 601 (8523, 38 389) 0.754
Missing values 37 3

MCP-1 (pg/mL) 357 (232, 534) 358 (256, 535) 0.028
Missing values 54 4

MDC (pg/mL) 941 (709, 1220) 903 (721, 1107) 0.463
Missing values 54 4

MIP-1b (pg/mL) 32.4 (20.6, 47.9) 30.2 (21.3, 47.1) 0.685
Missing values 53 4

MMP-9 (pg/mL) 71 (46, 1354) 798 (58, 2071) 0.001
Missing values 38 3

MPO (ng/mL) 27.1 (0.37, 55.8) 4.6 (0.30, 37.3) 0.746
Missing values 43 3

OC (pg/mL) 11 501 (8226, 17 022) 14 660 (8915, 22 649) <0.001
Missing values 37 4

OPG (pg/mL) 473 (320, 601) 538 (370, 699) <0.001
Missing values 37 3

OPN (pg/mL) 13 209 (6049, 23 539)24 530 (11 471, 43 840)<0.001
Missing values 38 3

PAI-1 (pg/mL) 80 (29, 521) 262 (36, 773) 0.074
Missing values 37 3

sICAM-1 (pg/mL) 147 (107, 624) 293 (108, 758) 0.243
Missing values 38 3

sVCAM-1 (pg/mL) 27 (17, 8889) 7449 (20, 10 747) 0.002
Missing values 37 3

VEGF (pg/mL) 81 (38, 153) 88 (45, 161) 0.046
Missing values 52 4

Italic numbers are frequencies of missing data.

Values are shown as medians and 25th and 75th percentiles. P-values corre-

spond to the logrank test.

FGF-2, fibroblast growth factor 2; GM-CSF, granulocyte-macrophage colony-

stimulating factor; IP-10, IFN-c inducible protein 10; MDC, macrophage-derived

chemokine; MIP-1b, macrophage inflammatory protein-1beta; MPO, myeloper-

oxidase; PAI-1, plasminogen activator inhibitor-1; sICAM-1, soluble intercellular

adhesion molecule-1.
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the very high level of heterogeneity of the populations and to
the existence of many confounding factors that are not taken
into account in the data collection [25]. Furthermore, many bio-
markers might be related between them due to biological inter-
actions in the signalling pathways that cannot be identified
when analysed in an independent manner.

By applying RSF, we found a marginal improvement in accu-
racy when adding potential biomarkers to the traditional risk
factors. However, our data show that OPN has high prediction
ability for CVE incidence, even higher than well-described clini-
cal variables such as SBP and diabetes [3, 26, 27]. OPN is an ex-
tracellular matrix glycoprotein that participates in cell-to-cell
contact mechanisms; its levels increase in different models of
atherosclerosis [28] and it has been found to be associated with
cardiovascular risk in CKD patients [29]. The other biomarker

with good performance in prognosis, when considered together
with clinical variables, is OPG. The glycoprotein OPG is a mem-
ber of the tumour necrosis factor–related family, and part of the
receptor activator of nuclear factor-kappaB (RANK)–RANK
ligand (RANKL)–OPG network. Higher levels of OPG have been
associated with coronary atherosclerosis in several studies [30,
31] and in CKD, dialysis and kidney transplant patients it has
been further associated with adverse events [32–34]. These
associations were also found with the FG analysis, so both OPN
and OPG were predictors included in the final model for cardio-
vascular risk.

The final FG competing risk model also included MMP-9 and
VEGF. MMP-9 has been associated with plaque instability and
CVEs [35], and its serum levels have been found to be correlated
to carotid atherosclerosis in CKD patients [36]. VEGF is an angio-
genic molecule crucial for endothelial integrity and it also con-
tributes to plaque formation and destabilization [26], its levels
are increased in CKD [27] and it has been identified in haemor-
rhagic arterial plaques of CKD patients [37]. We also plotted a
nomogram to visualize our model predictions, allowing us to
quickly predict the cumulative risk of CVEs at 48 months for any
patient by knowing only the 12 selected variables.

One strength of this study is the large sample size, including
participants without previous CVEs of a prospective observa-
tional study, and the consideration of 19 different biomarkers
together with clinical variables. Thus, including the most prom-
ising features in cardiovascular risk assessment could improve
the prediction ability of current risk scales. Random forest is a
versatile analysis method that usually provides good results
when compared with alternative algorithms, such as support
vector machines, neural networks or some boosting algorithm,
which also usually take much longer to build and tune. The ran-
dom forest also has the advantage of offering greater interpret-
ability. Thus we believe that the RSF algorithm used in this
study is useful and appropriate. We would like to point out that
the mean decrease in prediction error was chosen as a measure
of variable importance in order to rank variables in RSF since

C-index (95% CI) = 0.678 (0.649– 0.710)

HDL
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FIGURE 1: Variable importance from the RSF analysis for cardiovascular risk: the top 10 features ranked by mean decrease in prediction error. (a) RSF including only

clinical variables and (b) the top 10 features considering clinical variables and biomarkers.

Table 3. Multivariate FG competing risks model for cardiovascular
incidence

Variable Hazard ratioa (95% CI) P-value

log2 OPG 12.3 (3.39–44.6) <0.001
MMP-9 1.24 (1.07–1.42) 0.003
VEGF 1.27 (1.06–1.53) 0.010
log2 OPN 1.33 (1.07–1.66) 0.011
HDL cholesterol 0.69 (0.50–0.96) 0.026
Lipid-lowering drugs 1.90 (1.07–3.35) 0.028
SBP 1.25 (0.99–1.58) 0.059
IFN-c 0.86 (0.73–1.01) 0.072
Diabetes 1.65 (0.95–2.88) 0.075
Antihypertensive drugs 1.74 (0.88–3.44) 0.110
Total cholesterol 1.19 (0.93–1.53) 0.160
Age 1.20 (0.90–1.60) 0.200

aHazard ratio corresponds to an increase of 1 standard deviation (SD) for contin-

uous predictors (except OPG and OPN). For OPG and OPN, hazard ratio corre-

sponds to an increase of 2-fold difference in their scaled values. Variable (SD):

MMP-9 (1360), VEGF (361), HDL cholesterol (15.5), SBP (20.3), IFN-c (159), total cho-

lesterol (38.8), age (12.2), OPG (414), OPN (28 657).

Biomarkers for cardiovascular events in CKD | 635



that is the most common measure used for this purpose.
Nevertheless, other measures have been proposed in RSF analy-
sis [38], so different rankings could have been obtained if other
measures had been used. Also, there are alternatives to select-
ing the FG regression model. Other possible criteria could have
resulted in models with different predictors. Finally, we want to
point out that the prediction ability of the clinical factors and
the biomarkers included in this study could vary with different
follow-up times.

Our study has several limitations. First, the small number of
CVEs may have limited the capacity to more clearly identify pre-
dictors of cardiovascular risk and therefore limit the conclu-
sions of this study. Machine learning algorithms, like random
forest used in this analysis, help to partly overcome this limita-
tion and allow identification of strong predictors in problems

with bad signal:noise ratios. Second, detection of the bio-
markers was performed by multiplex analysis. Although the
method is very useful to detect multiple analytes in small
amounts of sample, it should be validated with individual en-
zyme-linked immunosorbent assay (ELISA) kits. A third limita-
tion is that, as a consequence of the NEFRONA study design,
subjects that received a kidney transplant during the follow-up
were not followed for CVE assessment, but this limitation was
overcome by performing cumulative incidence analysis with a
competing risks approach. Furthermore, only a portion of the
cohort had samples available to perform the multiplex analysis,
so the subsample could not be representative of the whole co-
hort. Another important limitation is the lack of data on coro-
nary calcium scores, which have shown great power in CVE
prediction in the CKD population [39]. Other variables such as

C-index (95% CI) at 48 months

Without biomarkers: 0.723 (0.592–0.854)

With biomarkers: 0.744 (0.609–0.878)

P-value = 0.244

FIGURE 2: ROC curve for prognostic values from both FG regression models, without and with biomarkers.

FIGURE 3: Adjusted cumulative cardiovascular incidence obtained with the FG regression model with biomarkers (Table 3). Population was stratified according to dia-

betes and being treated with lipid-lowering and antihypertensive drugs. Quantitative variables (except significant biomarkers) were set at their median value: HDL cho-

lesterol¼�0.104, SBP¼�0.119, IFN-c¼�0.084, total cholesterol¼�0.024, age¼0.178. Significant biomarkers at their 25th percentile (solid line) and 75th percentile

(dashed line): OPG¼�0.471 and 0.195, MMP-9¼�0.618 and 0.371, VEGF¼�0.323 and 0.039, OPN¼�0.552 and 0.095.
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changes in medication or poor BP control may affect the out-
come and were not recorded. In addition, a single measurement
of biomarkers may not be representative and may not directly
predict the outcome. Finally, we would like to mention that out-
of-hospital death causes were based on family interviews,
which could introduce some bias in our study.

In summary, our study confirmed previous results
obtained about clinical risk factors with the capacity to pre-
dict CVEs in CKD patients. Although a deep and flexible
analysis by RSF found no relevant improvement in discrimi-
nation ability added by the potential biomarkers assessed in
this study, OPN was identified as the best biomarker for possi-
ble use in future scales or algorithms to predict CVEs in CKD
patients. The parametric competing risks modelling deter-
mined that, among all the biomarkers studied, OPN, OPG,
VEGF and MMP-9 could be used in combination to predict
CVEs in CKD patients. Individuals with diabetes, dyslipidae-
mia and hypertension could benefit from interventions lower-
ing levels of these biomarkers to decrease cardiovascular risk.
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Madrid); José Emilio Sánchez (Hospital Universitario Central de
Asturias, Oviedo); Ramon Sans Lorman (Hospital de Figueres,
Girona); Ramon Saracho (Hospital de Santiago, Vitoria); Maria
Sarrias, Daniel Serón (Hospital Universitari Vall d’Hebron,
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