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SUMMARY
Combining multiple Parkinson’s disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic

neuron (mDAN) in vitromodels.We differentiated patient-derived induced pluripotent stem cells (iPSCs)with a LRRK2G2019Smutation,

isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we

identified elevated levels of a-synuclein (aSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial

dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs ac-

cording to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or aSyn levels, are

detectable when using ML classification based onmultiple image-based phenotypes. We validated our approach using a second isogenic

patient-derived SNCA gene triplication mDANmodel which overexpresses aSyn. This phenotyping and classification strategy improves

the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.
INTRODUCTION

Parkinson’s disease (PD) is a heterogeneous movement dis-

order with a combination ofmotor and non-motor features

caused by environmental and genetic risk factors or muta-

tions in specific genes. Pathological characteristics of PD

include the progressive loss ofmidbrain dopaminergic neu-

rons (mDANs) and often the appearance of Lewy bodies,

cytoplasmic inclusions containing aggregated a-synuclein

(aSyn) protein (Blesa et al., 2022; Poewe et al., 2017).

Mutations in the leucine-rich repeat kinase 2 gene

(LRRK2) havebeenassociatedwithPD.The glycine to serine

substitution at position 2019 (G2019S) in the LRRK2 kinase

domain increases its activity and is assumed to be one

reason for mDAN loss (Smith et al., 2006; West et al.,

2005; Weykopf et al., 2019). One hypothesis is that

LRRK2 G2019S causes defects in mitochondrial biology.

Increased autophagy markers, but also PINK1/Parkin-, and

Miro1-related defects support the idea that specifically mi-

tophagy-linked processes are disturbed in LRRK2 G2019S

neurons (Bonello et al., 2019; Hsieh et al., 2016; Schwab

et al., 2017). Additionally, LRRK2 G2019S could induce

mDAN loss by increasing the levels of phosphorylated

aSyn, leading to its aggregation, since LRRK2 kinase inhibi-

tion can prevent phosphorylated aSyn from forming pro-

tein inclusions (Daher et al., 2014; Longo et al., 2017; Ober-
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et al., 2017).

An emerging picture of PD is therefore that multiple dis-

ease mechanisms act together or can even exacerbate each

other. Human patient induced pluripotent stem cell (iPSC)-

derived mDANs expressing LRRK2 G2019S constitute a

valuable in vitro model to understand PD. Despite the

apparent value of neuronal models, important challenges

remain: individual in vitro PD pathological features are

often subtle or variablewhen examined across different dif-

ferentiation batches or genotypes. Furthermore, single iso-

lated PD phenotypes do not capture the multifactorial

complexity of PD. Additionally, and despite their relevance

physiologically, iPSC neuronal models are rarely used for

PD-related drug discovery due to throughput feasibility

concerns based on technical complexity as well as genetic

variability (Cobb et al., 2018; Elitt et al., 2018). The goal

of this study was therefore to develop a robust methodol-

ogy able to detect multiple cellular PD-related pathophysi-

ological phenotypes in a physiologically relevant human

mDAN model system. We aimed for sufficient sensitivity

to detect phenotypic variations based on genetic, but also

chemical compound-induced phenotypic changes.

We demonstrate that multiple PD-relevant cellular phe-

notypes can be detected in microscopic images obtained

from human patient LRRK2 G2019S iPSC-derived mDANs
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in 384-well-plate format. We show that machine learning

(ML) can be used to distinctively classify PD from control

mDANs based on multiple image-derived phenotypes.

Finally, we demonstrate that our multi-phenotype classifi-

cation approach is sensitive enough to detect different

small molecules with a PD-relevant mode of action. Our

work outlines a novel strategy to use iPSC-derived mDANs

from LRRK2 or SNCA mutation carriers for imaging-based

disease modeling by computationally combining multiple

disease-relevant phenotypes.
RESULTS

LRRK2 G2019S mDANs display multiple hallmarks

of PD

iPSC lines from a patient with a confirmed LRRK2 G2019S

mutation and an isogenic control line (GS/+ and +/+,

respectively) were differentiated into mDANs expressing

neuronal markers (TUBB3 and MAP2) and dopaminergic

neuron markers, including tyrosine hydroxylase (TH) in

combination with expression of FOXA2, while the glial

marker glial fibrillary acidic protein was only weakly ex-

pressed (Figures S1A and S1B). Immunostaining showed

similar percentages of TH- and MAP2-expressing isogenic

control +/+ and GS/+ neurons indicating comparable dif-

ferentiation potentials in both genotypes (Figure S1C).

To detect image-based hallmarks of PD, we designed an

immunofluorescence-based workflow in 384-well-plate

format. Cryopreserved 30-day-old mDANs were seeded in

384-well plates, cultured for 7 days, fixed, and stained.

Automated microscopy and image segmentation was

used to extract multiple quantitative image features. First,

GS/+ and +/+ mDANs were stained with antibodies against

aSyn, TH, and MAP2. In the TH-positive GS/+ neuronal

population, aSyn levels were increased by 15% (Figure 1A).

Western blotting with a different antibody confirmed the
Figure 1. LRRK2 G2019S mDANs overexpress aSyn and display m
(A) iPSC-derived LRRK2 G2019S mDANs were immunostained against a
as well as a neuronal network complexity was quantified in microscop
(B) Immunofluorescence staining against pS129 aSyn, aSyn, and MA
pS129 aSyn fluorescence intensity.
(C) mDANs were treated with lambda phosphatase before staining wi
(D) Staining with the live cell dye calcein and mitochondrial membrane
and mitochondrial (TMRM) compactness.
(E) Assessment of mitochondrial respiration using the Seahorse XF ana
± SEMs are shown. Imaging experiments shown in panels (B)–(D) wer
Each data point represents one well. All data have been median norm
variances t test was used for significance testing. Notches in boxplot
(F) Multi-electrode array (MEA) recordings of +/+ and GS/+ neuronal
was determined by measuring action potentials per second on single
electrodes in one well (left panel). Synchrony between neurons wa
multiple electrodes (right panel).
increase in aSyn levels across multiple differentiation

batches (Figures S1F–S1I). In addition, MAP2 staining indi-

cated that fewer dendritic branches were present in GS/+

neurons (Figure 1A). Staining with a pS129 aSyn antibody

showed that the surface area occupied by pS129 aSyn and

its fluorescence intensity were increased (Figure 1B).

Together, both observations indicate that accumulation

as well as increased phosphorylation are occurring. To

exclude signal originating fromnon-phosphorylated forms

of aSyn, we treated the fixed cells with lambda phospha-

tase. Lambda phosphatase treatment strongly reduced

pS129 aSyn signal intensity in both GS/+ and +/+ neurons,

indicating that pS129 aSyn levels are indeed increased in

GS/+ mDANs (Figure 1C).

Staining with the live cell dye calcein and the mitochon-

drial membrane potential-sensitive dye tetramethylrhod-

amine (TMRM) indicated that the overall TMRM fluores-

cence in living cells was decreased by 33% in GS/+

mDANs suggesting that the intactness of the mitochon-

drial membrane is compromised in GS/+ mDANs. Addi-

tionally,mitochondria inGS/+mDANsweremore compact

(Figure 1D). We used the mitochondria-targeting toxin

rotenone to validate the TMRM staining (Figure S2). Addi-

tionally, we measured the oxygen consumption rate. The

basal respiration rate did not differ between both geno-

types, while the maximal respiration rate after carbonyl cy-

anide p-(tri-fluromethoxy)phenyl-hydrazone (FCCP) treat-

ment was 2-fold increased in +/+ controls (Figure 1E). To

test the mDANs electrophysiological activity, we generated

multi-electrode array (MEA) recordings from differentia-

tion D30 to D61. We found that the mean action potential

firing rate in GS/+ neurons was less than half compared

with +/+ neurons. Additionally, inter-neuronal synchrony

was less pronounced in GS/+ neurons, indicating potential

synaptic defects (Figure 1F). Taken together, we found that

LRRK2 G2019S mDA neurons show multiple hallmarks of

PD rendering them useful as a disease model.
itochondrial dysfunction
Syn, TH, and MAP2 and aSyn intensity in TH-positive GS/+ neurons
ic images.
P2 and quantification of pS129 aSyn in neurites as well as overall

th a pS129 aSyn antibody.
potential-sensitive dye TMRM and quantification of TMRM intensity

lyzer. Seahorse experiments were performed in triplicate, and means
e performed at least in duplicate with multiple technical replicates.
alized to the respective +/+ condition per plate. Welch’s unequal
s indicate the 95% confidence interval.
population between differentiation D30 and D61. Neuronal activity
electrodes. Inserts show sample D43 activity traces from multiple
s determined by measuring simultaneous action potentials across
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Figure 2. Machine learning (ML) strategy to classify neurons based on image-derived cellular features
(A) Schematic depiction of the generation of image-derived cellular feature data.
(B) Overview of the data processing steps and ML methodology.
(C) Schematic depiction of how ML classification was used to separate different neuronal cell lines (left panel), identify bioactive chemical
compounds (middle panel), and how ‘‘leave-one-out’’ analysis can identify the contribution of individual image-derived cellular features to
ML classification (right panel).
ML classification can distinguish neuronal genotypes

based on image-derived cellular features

We hypothesized that the combination of multiple image-

based phenotypes would give rise to a ‘‘neuronal finger-

print’’ or ‘‘profile’’ and allow the accurate and robust iden-

tification of different cell lines or treatment conditions,

thereby making it a useful tool for iPSC-based disease

modeling or compound screening. We applied different

ML algorithms termed ‘‘classifiers’’ to achieve this task. Spe-

cifically, we used linear discriminant analysis (LDA) (Fisher,
2352 Stem Cell Reports j Vol. 17 j 2349–2364 j October 11, 2022
1936), support vector machine (SVM) (Cortes and Vapnik,

1995), and light gradient boosting machine (LightGBM)

(Ke et al., 2017) algorithms (Figure 2). Quantitative im-

age-derived features were used as input data, and the ML

classifiers were trained to separate two classes from each

other (Tables S1 and S2). Next, additional classes could be

mapped to the pre-trained reference classes. For example,

to estimate the effect of a chemical compound treatment,

compound-treated cells can be classified in comparison to

DMSO-treated mutant and wild-type cells. An increased
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classification proximity indicates a higher phenotypic sim-

ilarity (Figure 2C).

Using these ML classifiers, we tested whether PD-specific

phenotypic neuronal fingerprints might exist. To evaluate

the specificity of a GS/+ phenotypic fingerprint compared

with the +/+ isogenic control line, we differentiated two

additional and genetically unrelated control iPSC lines

(EDi001-A-5 and GIBCO) into mDANs (Figure S3). All

four mDAN cell lines were then stained with Hoechst and

antibodies against aSyn, TH, and MAP2. We derived a total

of 126 quantitative features from the images (Figure 3A,

Table S1). 54 image features were TH+ cell type specific

(43%) and specifically represented mDAN biology. We hy-

pothesized that a weighted combination of all 126 cellular

image features might allow the generation of a unique

phenotypic fingerprint per cell line. Secondly, we hypoth-

esized that the generated phenotypic fingerprint of GS/+

neurons would be significantly different from all control

lines.

To test our hypotheses, we evaluated the two supervised

ML classifiers LDA and SVM. In a first step, we determined

the Pearson correlations of all image features to remove

strongly correlated image features. Both LDA and SVM al-

gorithms were then trained repeatedly on shuffled sets of

80% of the imaging data and tested on 20% of the imaging

data. In total, training and testing were repeated 25 times

on shuffled slices of the dataset in a process referred to as

cross-validation (CV) (Figure 2B). CV is useful to detect

and prevent overfitting and to increase robustness since

theMLmodels are trained onmultiple slightly different da-

tasets. We observed that training variability over all cycles

was generally low, indicating that sufficient training data

were provided to both the LDA and SVM algorithms. Alter-

natively, we used data from one plate for model training,

evaluated the model on two unseen plates, and obtained

similar results (Figure S5A).

Although by eye the four mDAN lines appeared similar

(Figure 3A), both LDA and SVM classification algorithms
Figure 3. Machine learning (ML) classification can identify geno
ferences based on image-derived cellular features in mDANs
(A) Representative images of neurons stained with Hoechst and antib
were extracted from such images.
(B) The two supervised ML classification algorithms linear discriminan
separate the two reference classes GS/+ and +/+ isogenic control mD
reference classes’ feature space.
(C) Leave-one-out cross-validation (LOOCV) to identify individual feat
(D) SVM classification of GS/+ and +/+ isogenic control mDANs and
MLi-2, and PFE-360 to the reference classes’ feature space.
(E) Same experiment as in (D) but instead neurons were stained with
(F) LOOCV to identify individual feature contributions to SVM classifi
iments with multiple technical replicates. Each data point represents
testing. Notches in boxplots indicate the 95% confidence interval.
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distinguishedGS/+ neurons fromcontrol cell lines. Overall,

control cell lines appeared more similar compared to each

other than the GS/+ neurons. Next, we calculated the

Z-factor between the GS/+ and +/+ neuronal classifications

(Zhang et al., 1999). The SVM classification Z-factor was su-

perior to the LDA Z-factor (0.12 versus 0.43) (Figure 3B).

Basedon these results,we focusedmainlyonSVMclassifica-

tion. To obtain a biological meaningful explanation of the

classification results, we applied leave-one-out cross-valida-

tion (LOOCV). During LOOCV, each image feature is left

out once, classification is performed repeatedly on the re-

maining image features, and the resulting Z-factor is calcu-

lated (Figure 2C). LOOCV demonstrated that our SVM re-

sults can most likely be explained by cell line differences

concerning the ratio of MAP2-positive neurons and the

level of aSyn (Figure 3C). To test whether strong, but more

general cellular stress responses such as protein folding or

reactive oxygen species induced stress could mimic the ef-

fects of aG2019Smutation, neuronswere treatedwith tuni-

camycin or sodium arsenite (NaAsO2). Despite the presence

of the stressors, LDA and SVM analysis did not detect any

change in +/+ control neuron classification (Figure S6).

Together these findings demonstrate that iPSC-derived

mDANs can be classified based on a genetic mutation and

image-extracted phenotypes.

ML classification identifies LRRK2 inhibitor-treated

neurons based on image-derived cellular features

Next, we asked whether SVM-driven analysis can detect

chemical compound-induced phenotypic changes. We hy-

pothesized that LRRK2 inhibitor treatment might partially

rescue the previously observed combined feature phenotype

(Figure 3B). Cryopreserved D30 mDANs were seeded in

384-well plates. 6 days after seeding the LRRK2 inhibitors

GNE-7915, PFE-360, and MLi-2 were added for 24 h, and

the neurons were fixed and stained using Hoechst, aSyn,

TH, and MAP2 antibodies. Image-based feature extraction,

data processing, and SVM model training were performed.
type-related and chemical compound-induced phenotypic dif-

odies against TH, aSyn, and MAP2. Image-derived cellular features

t analysis (LDA) and support vector machine (SVM) were trained to
ANs. The additional mDAN control lines were then mapped to the

ure contributions to SVM classification of multiple cell lines in (B).
mapping of neurons treated with the LRRK2 inhibitors GNE-7915,

Hoechst, tetramethylrhodamine (TMRM), and calcein.
cation in (E). All imaging data were generated in duplicate exper-
one well. Mann-Whitney U-testing was performed for significance
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Figure 4. Machine learning (ML) can identify PKC agonist-treated LRRK2 G2019S mDANs in a simulated screening setup
(A) Schematic depiction of experimental design. Single wells spiked with PEP005 or prostratin were randomly distributed over the plate.
Support vector machine (SVM) classification was applied to identify these wells.
(B) and (C) Representative images illustrate PEP005 and prostratin effects on the number of TH-positive cells and aSyn staining intensity.

(legend continued on next page)
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The SVM classifier successfully distinguished +/+ and GS/+

mDANs treated with DMSO with a Z-factor of 0.13 (Fig-

ure 3D). Next, LRRK2 inhibitor-treated GS/+ mDANs were

classified relative to the DMSO controls. GNE-7915 did not

lead to phenotypic changes detectable in our assays and

resembled the DMSO control classification. PFE-360 and

MLi-2 induced subtle phenotypic differences detected by

Hoechst/aSyn/TH/MAP2 staining and were classified as

significantlydifferent fromDMSO-treatedneurons.Theshift

toward the+/+ isogenic controlwas strongest for thePFE-360

treated GS/+ mDANs (Figure 3D). Additionally, we tested all

three inhibitors in a second patient-derived PD mDAN

model containing an SNCA gene triplication (Devine et al.,

2011; Gwinn et al., 2011). We observed only modest GNE-

7915 phenotypic effects and no detectable response to PFE-

360 or MLi-2 (Figure S4). LRRK2 kinase inhibitors therefore

seem to induce stronger phenotypic changes in LRRK2

mutated neurons than in SNCA triplication neurons.

Next,we testedwhether LRRK2 inhibitor treatmentwould

also lead to SVM-detectable changes on the mitochondrial

level. Neurons were cultured and treated as before and

stainedwithHoechst, the live cell dye calcein, and themito-

chondria-specific dye TMRM. 96 image features were calcu-

lated based on these three stainings (Table S2), and an SVM

model was trained to distinguish +/+ from GS/+ mDANs.

We then applied the SVMmodel to sets ofmitochondrial im-

age features fromLRRK2 inhibitor-treatedmDANs. Similar to

the previous results obtained with the Hoechst/aSyn/TH/

MAP2 staining, we detected only a weak effect of GNE-

7915 on the measured mitochondrial phenotypes, while

PFE-360 andMLi-2 treatment of GS/+mDANs led to a classi-

fication shift toward+/+ controlmDANs (Figure3E). To iden-

tify the mitochondrial features most responsible for the

observed classification result, we performed LOOCV anal-

ysis. We found that mitochondrial shape (i.e., compactness

and form factor) as well as TMRM intensity contributed the

most to the classification result (Figure 3F).

Detection protein kinase C (PKC) agonist-treated

single wells using multiple image-derived cellular

features in LRRK2 G2019S neurons

Recently, Laperle et al. demonstrated that lysosomal activa-

tion by phorbol esters, such as PEP005 and prostratin,
(D) SVM classification of GS/+ and +/+ isogenic control mDANs based
MAP2 staining. PEP005- and prostratin-treated wells were then mappe
datapoints (wells) that are at a distance of more than three standard
(E) Quantification of the fraction of wells more than three SDs from t
(F) Representative images illustrate LAMP1 staining and differences
(G) SVM classification of treated and untreated GS/+ and +/+ isogen
Hoechst, aSyn, LAMP1, and MAP2 staining. All imaging data were gen
Each data point represents one well. Mann-Whitney U-testing was perfo
confidence interval.
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reduced aSyn levels in iPSC-derived mDANs (Laperle

et al., 2020). Given the established connection between

LRRK2 and lysosomal biology, we hypothesized that

PEP005 and prostratin might also be able to lower the

elevated aSyn levels in our LRRK2 G2019S model and

thereby shift multiple cellular phenotypes toward a control

phenotype (Hockey et al., 2015; Obergasteiger et al., 2020).

To demonstrate that ML classification can detect a chemi-

cal modulation in mDANs, we treated six randomly

selected wells per plate with PEP005 or prostratin for 72 h

(Figure 4A).

Next, cells were fixed and stained with Hoechst and aSyn,

TH, and MAP2 antibodies, and 126 image features were ex-

tracted (Table S1). Verification of individual image features,

such as the number of TH+ cells, showed that PEP005 and

prostratin compound treatments were not toxic for either

GS/+ nor +/+ neurons (Figure 4B). PEP005 and prostratin

treatments led to a decrease in aSyn levels, specifically in

GS/+ neurons, but not control +/+ neurons, confirming the

initial results of Laperle et al. obtained in different PD

mDAN lines (Figure 4C). Next, we trained an SVM model

to distinguish +/+ fromGS/+mDANs using image-based fea-

tures as input.Consistentwithour previous results, SVMwas

able to separate both DMSO-treated control classes +/+ and

GS/+ with high accuracy (0.98 ± SEM 0.02) and a Z-factor

of 0.72 (Figure 4D). We then applied the SVMmodel to sets

of image features originating from PEP005- and prostratin-

treated wells. Compound-treated GS/+ neurons classified

differently than the DMSO-treated GS/+ neurons. Although

thiseffectwas small forPEP005,mostprostratin-treatedwells

shifted toward the +/+ isogenic control neurons. Addition-

ally, we observed that +/+ control neurons responded less

to PEP005 and prostratin treatment (Figure 4D).

To assess whether single PEP005- or prostratin-treated

wells could be detected in a typical screen setup using

only a small number of replicates, we determined a 3x stan-

dard deviation (SD) threshold around the median of the

DMSO-treated GS/+ neurons.We calculated the percentage

of compound-treated wells beyond the threshold that

could be regarded as a hit. For GS/+ neurons treated with

DMSO, less than 1% of wells were more than 3 SDs away

from the median, while this was 11% of PEP005- and

43% of prostratin-treated wells (Figure 4E). To estimate
on cellular image features extracted from Hoechst, aSyn, TH, and
d to the reference classes’ feature space. The broken square includes
deviations (SDs) from the GS/+ DMSO-treated median.
he GS/+ DMSO-treated class median.
in surface area.
ic control mDANs based on cellular image features extracted from
erated in triplicate experiments with multiple technical replicates.
rmed for significance testing. Notches in boxplots indicate the 95%
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Figure 5. Machine learning (ML) can identify protein kinase C (PKC) agonist-treated SNCA triplication mDANs in a simulated
screening setup
(A) Schematic depiction of experimental design. Single wells spiked with PEP005 or prostratin were randomly distributed over the plate.
Support vector machine (SVM) classification was applied to identify these wells.
(B) Representative images of neurons stained with Hoechst and TH, aSyn, and MAP2 antibodies after 37 days of differentiation and treated
with either DMSO, PEP005, or prostratin. Red arrows indicate aSyn staining in neurites.
(C) Quantification of aSyn staining intensity across all treatment conditions.
(D) SVM classification of SNCA triplication and isogenic control mDANs based on cellular image features extracted from Hoechst, aSyn, TH,
and MAP2 staining. PEP005- and prostratin-treated wells were then mapped to the reference classes’ feature space. The broken square
includes datapoints (wells) that are at a distance of more than three standard deviations (SDs) from the SNCA triplication DMSO-treated
median.

(legend continued on next page)

Stem Cell Reports j Vol. 17 j 2349–2364 j October 11, 2022 2357



the minimum number of wells required to determine

whether a compound is active in a screening setup using

neuronal profiles, we performed a calculation based on a

typical GS/+ (DMSO) data distribution and measured how

many replicate wells would be needed to detect at least

one hit at least 3 SDs from the median. The calculation

was repeated with different anticipated effect sizes and

desired statistical power thresholds (Figures S5B–S5C). For

example, given an effect size of 2 and a desired power of

0.85 to detect a deviation from the null hypothesis requires

at least four replicates.

Since both LRRK2 as well as PEP005 and prostratin have

been linked to lysosomal biology, we additionally investi-

gated whether our assay would show improved compound

detection using a lysosome-specific stain. A lysosome-associ-

ated membrane protein 1 (LAMP1) antibody was used to

detect lysosomal image features. Several were altered in GS/

+ neurons, such as decreased LAMP1 signal surface (Fig-

ure 4F). Treatment with PEP005 and prostratin and using

multiple LAMP1 image features during SVMclassification re-

sulted in a larger shift of compound-treated GS/+ neuron-

containing wells toward +/+ control neurons compared

with lysosome-unspecific staining (Figures 4D and 4G).
Detection PKC agonist-treated single wells using

multiple image-derived cellular features in SNCA

triplication neurons

To generalize our neuronal profiling approach, we estab-

lished a second PDmDANmodel based on SNCA gene trip-

lication-carrying donor iPSCs expressing four copies of

SNCA and an isogenic control (Figure S3). Using both cell

lines, we performed a similar experiment as described in

Figure 4A with the aim to detect individual wells treated

with PEP005 or prostratin using SVM classification (Fig-

ure 5A). SNCA triplication mDANs showed signs of aSyn

accumulation in dendrites and a reduced dendritic network

(Figure 5B). Image feature quantification confirmed that

indeed aSyn levels were increased in SNCA triplication

mDANs. Additionally, we observed aSyn lowering of 15%

by PEP005 and 25% by prostratin (Figure 5C). Next, we

trained an SVM classifier to separate isogenic control

from SNCA triplication mDANs. Similar to the LRRK2

model, the SVM algorithm was able to separate isogenic

control from SNCA triplicationmDANswith high accuracy

(0.97 ± SEM 0.03) resulting in a Z-factor of 0.73 (Figure 5D).

SVM classification of SNCA triplication mDANs treated

with PEP005 or prostratin showed a shift toward isogenic
(E) Quantification of the fraction of wells at a distance of more than
(F) Leave-one-out cross-validation (LOOCV) to identify individual feat
generated in triplicate experiments with multiple technical replicates
performed for significance testing. Notches in boxplots indicate the
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control mDANs. Isogenic control neurons treated with

both compounds had a similar image feature-based profile

and were statistically indistinguishable from DMSO-

treated control neurons, suggesting a specific effect of

PEP005 and prostratin in SNCA triplication neurons

(Figure 5D).

In SNCA triplication neurons treated with DMSO, less

than 1% of wells were more than 3 SDs away from the me-

dian, while this was 81% of PEP005- and 91% of prostratin-

treated wells (Figure 5E). The single most important image

feature distinguishing SNCA cell lines was the aSyn stain-

ing intensity, a proxy for cellular aSyn content explaining

0.2 points of the observed 0.73 Z-factor (Figure 5F). We

confirmed the contribution of aSyn content and other fea-

tures by using LightGBM, a different classification algo-

rithm. These findings in a second PD-relevant disease

model indicate that bioactive molecules such as PEP005

and prostratin can be detected using neuronal profiles

and a small number of technical replicates.

mDAN characterization at differentiation D50 reveals

altered image feature profiles compared with D37

neurons

To test whether multi-feature neuronal profiling could be

applied to more mature neurons, we repeated classification

experiments with 50-day-old SNCA and LRRK2 neurons

and compared the results to 37-day-old neurons

(Figures 6A and 6B). Levels of aSyn or TH were increased in

D50 neurons, indicating increased maturity (Figure 6C). To

test whether neuronal profiles were different between both

time points, we classified D50 data using an SVM classifica-

tion model developed with D37 data and found no signifi-

cant differences, although some shifts were visible (Fig-

ure 6D). Unsupervised classification using principal

component analysis (PCA) or PaCMAP (Wang et al., 2021)

was able to separate all timepoints and genotypes from

each other highlighting that detectable phenotypic alter-

ations of neuronal profiles exist after prolongedmaturation

(Figure 6E).
DISCUSSION

In this study, we demonstrate that image-derived pheno-

types in human iPSC-derived mDANs can be used for cell

line stratification and the identification of chemical com-

pound-treated neurons by ML classification approaches.

iPSC-derived neurons are only rarely used in drug discovery
three SDs from the SNCA triplication DMSO-treated class median.
ure contributions to SVM classification in (D). All imaging data were
. Each data point represents one well. Mann-Whitney U-testing was
95% confidence interval.



A

C

E

D

B

Figure 6. Imaging-based LRRK2 G2019S and SNCA triplication mDAN characterization at differentiation D50 reveals altered image
feature profiles compared with D37 neurons
(A) Schematic depiction of experimental design.
(B) Representative images of neuronal cultures at differentiation D37 and D50. Arrows indicate clusters of aSyn staining signal.
(C) Quantification of the TH and aSyn staining signal at D37 and D50.

(legend continued on next page)
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due to complex cell culture protocols, long culture dura-

tion, and genetic or clonal heterogeneity (Cobb et al.,

2018; Elitt et al., 2018). We applied multiple strategies to

improve the reproducibility of our iPSC-derived neuron

models. First, we worked with large, cryopreserved batches

to reduce the number of required differentiations and

used isogenic controls to reduce sources of inter-donor

genetic variability. Additionally, we developed a compact

and automated 7-day experimental protocol in 384-well-

plate format to reduce intervention steps and technical

variability.

The functions of LRRK2 are not fully understood, but it

has become clear that LRRK2 can trigger autophosphoryla-

tion at Ser1292 and phosphorylate a subset of Rab small

GTPases (Rab8A and Rab10) (Rocha et al., 2022; Sheng

et al., 2012; Steger et al., 2016). A direct readout of these tar-

gets was not present in our panel of stains. This is likely the

reason why one of the three tested LRRK2 inhibitors

showed only little effects in our experimental setup. Simi-

larly, the used phorbol esters PEP005 and prostratin have

specific phosphorylation-inducing effects on PKC subunits

a and d (Hampson et al., 2005; Laperle et al., 2020;Mischak

et al., 1993), which we did not examine directly in our

phenotypic characterization. We observed PEP005 and

prostratin effects in both the LRRK2, but especially the

SNCA triplication model, likely because both molecules

have aSyn-lowering capabilities in mDANs (Laperle et al.,

2020). Additionally, we show that both compounds can

be identified with higher confidence if a LAMP1 stain is

used to extract lysosome-related image features. Using a

multi-phenotype strategy to characterize or detect chemi-

cal compounds therefore requires a compromise between

the identification and reversal of general PD hallmarks or

the focus on a specific mode of action related to a class of

compounds.

Two previous studies described compound screening in

iPSC-derived mDANs using resistance to rotenone-induced

apoptosis and neurite outgrowth (Tabata et al., 2018) or

resistance to carbonyl cyanide m-chlorophenylhydra-

zone-induced apoptosis and rescued mitophagy as read-

outs (Yamaguchi et al., 2020). In contrast to previous

work, we used ML classification to bundle multiple pheno-

types, which offers certain advantages: the used cellular

stainings allow the extraction of many PD-relevant image

features and thereby create a more biologically diverse rep-

resentation of mDANs amendable to chemical interven-
(D) Support vector machine (SVM) classification of SNCA triplication
tracted from Hoechst, aSyn, TH, and MAP2 staining.
(E) Unsupervised classification of neuronal image feature profiles by p
approximation (PaCMAP). Imaging data were generated in triplicate e
point represents one well. Mann-Whitney U-testing was performed fo
fidence interval.

2360 Stem Cell Reports j Vol. 17 j 2349–2364 j October 11, 2022
tions. Second, the combination of multiple, including sub-

tle, phenotypes is statistically more robust than single

phenotypic approaches. Additionally, ourML classification

approach allows us to determine which phenotypic fea-

tures contributed to the overall phenotypic differences be-

tween healthy and disease mDANs andmight therefore aid

the target deconvolution process.

Future researchwill need to evaluate whether only effects

of monogenetic alterations, such as the mutations in

LRRK2 or SNCA genes tested here, lead to distinguishable

phenotypes or whether also idiopathic forms of PD, in

which no single disease cause is known, have unique

phenotypic profiles. Recent work using fibroblasts from

91 PD patients among which were 32 idiopathic PD cases

indeed point into the direction that global phenotypic

PD profiles might exist (Schiff et al., 2022). We anticipate

that image-based multidimensional readouts capturing

multiple PD-relevant phenotypes might increase the

chance to detect active chemical compounds that rescue

not only an isolated phenotype, but an ensemble of dis-

ease-relevant phenotypes.
EXPERIMENTAL PROCEDURES

Generation of iPSC lines and differentiation into

mDANs
All iPSC lines were generated by third parties and are deposited in

the European Bank for Induced Pluripotent Stem Cells (EBiSC,

https://cells.ebisc.org/) and listed in the Human Pluripotent

Stem Cell Registry (hPSCreg, https://hpscreg.eu/) (Table S3). The

original generators have obtained the informed consent from the

donors. iPSCs were cultivated on Geltrex-coated (Thermo Fisher

Scientific) dishes in StemMACS iPS-Brew XF (Miltenyi Biotech).

The medium was changed daily, and cells were passaged twice a

week using 0.5 mM EDTA in PBS (Thermo Fisher Scientific). Myco-

plasma testing was performed twice per month.

mDANs were differentiated using a modified protocol based on

Kriks et al. (Kriks et al., 2011; Ryan et al., 2013; Weykopf et al.,

2019). Briefly, iPSCs were seeded onto Geltrex-coated six-

well plates or T75 flasks at a density of 2 3 105 cells/cm2 in

StemMACS iPS-Brew XF containing 10 mM Y-27632 (Hiss). The

next day,mediumwas switched to KnockOutDMEMmediumcon-

taining KnockOut serum replacement (both Thermo Fisher Scien-

tific) supplementedwith 200nMLDN19318 (AxonMedchem) and

10 mMSB431542 (Biozol) for dual SMAD-inhibition. On day 2, also

100 ng/mL Shh C24II (Miltenyi Biotech), 2 mM Purmorphamine

(Miltenyi Biotec), 100 ng/mL FGF8 (Peprotech), and 3 mM
and isogenic control mDANs based on cellular image features ex-

rincipal component analysis (PCA) and pairwise controlled manifold
xperiments with multiple technical replicates per plate. Each data
r significance testing. Notches in boxplots indicate the 95% con-

https://cells.ebisc.org/
https://hpscreg.eu/


CHIR99021 (Miltenyi Biotec) were added to the medium. After

5 days, medium was gradually shifted to Neurobasal medium

(Thermo Fisher Scientific), and SB431542 was omitted from the

medium. Starting at day 7, cells were grown only in the presence

of LDN19318 and CHIR99021. On day 11, cells were switched to

Neurobasal/B27/L-glutamine medium supplemented with

CHIR99021 only. On day 13, cells were replated onto Geltrex-

coated dishes in Neurobasal/B27/L-glutamine medium supple-

mented with 20 ng/mL BDNF, 20 ng/mL GDNF (both Cell Guid-

ance Sys.), 221 mM L-ascorbic-acid (Sigma-Aldrich), 10 mM DAPT

(Axon Medchem), 1 ng/mL TGF-bIII (Peprotech), 0.5 mM dibu-

tyryl-cAMP (Enzo Life Sciences), and 10 mM Y-27632 (Hiss). Cells

were maintained in the same medium but without Y-27632.

Around day 23–25, cells were dissociated using StemPro Accutase

(Thermo Fisher Scientific) and plated at a density of 1.4 x 105

cells/cm2 onto Geltrex-coated dishes. To eliminate non-neuronal

cells, cultures were treated with 1 mg/mL Mitomycin C for 2 h on

day 26. At day 30, neuronal cultures were dissociated using

StemPro Accutase supplemented with 10 mM Y-27632 and singu-

larized. Cells were counted and cryopreserved at 2.5 3 106 cells/

vial in CryoStor CS 10 (Sigma-Aldrich).
Neuronal culture and compound treatment
30DIV (days in vitro)-oldneuronswere thawed andcentrifuged (400

g, 5 min, RT) in basal medium (Table S3) supplemented with ROCK

inhibitor (Tocris #1254). Cell pellets were resuspended in differenti-

ation medium (Table S3) supplemented with ROCK inhibitor.

384-well plates (Perkin Elmer, #6007558) were coated with

15mg/mLpoly-L-ornithine for1hat37�Cfollowedby10mg/ml lam-

ininovernight at4�C.Using trypanblue (Sigma, #T8154-20ML) and

a Countess automated cell counter (Invitrogen), 103 103 cells/well

were seeded in 384-well plates. Edge wells were avoided for seeding

and filled with PBS. Typically, thawed cells were incubated at 37�C
and 5% CO2 for 7 days until 37 DIV with differentiation medium

changes every other day. Plate coating, cell seeding, and medium

changes were automated using an Agilent Bravo pipetting robot

(Agilent) and EL406 plate washer and dispenser (Biotek). Com-

pound treatment with 1 mMPEP005 (Tocris, #4054) and 5 mMpros-

tratin (Tocris, # 5739)was performed at 34DIV for 72huntil 37DIV.

Compound treatment with 0.1 mM GNE-7915 (MedChemExpress,

#HY-18163), 0.1 mM MLi-2 (MedChemExpress, #HY-100411),

0.1 mMPFE-360 (MedChemExpress, #HY-120085), and 0.1 mM rote-

none (Sigma,#R8875)wasperformedat36DIVfor24huntil37DIV.

Treatmentwith 2 mMtunicamycin (MedChemExpress, #HY-A0098)

and 50 mM sodium arsenite (Sigma, #1062771000) was performed

for 3 h on DIV 37. For western blotting experiments, 5 mM AraC

(Sigma, #C6645)was added for 24hbefore cell lysis onDIV37or 44.
In situ cytochemistry
Fixation was performed in 4% PFA (EMS Euromedex, #15710) for

20 min, followed by two PBS (Gibco, #14190) washes and perme-

abilization and blocking with 10% FBS (Gibco, #10270-106) and

0.1% Triton X-100 (Sigma, #T9284) dissolved in PBS for 1 h. Pri-

mary antibodies (Table S3) were prepared in antibody dilution

buffer (PBS supplemented with 5% FBS and 0.1% Triton X-100)

and incubated with the cells overnight at 4�C, followed by three

PBS washes. Secondary antibodies and Hoechst (Table S3) in anti-
body dilution buffer were added to the cells for 1 h at RT, followed

by three PBSwashes.Mitochondrial imagingwas performed in live

cells. All dyes (Table S3) were prepared in differentiation medium

and incubated with the cells for 30 min at 37�C and 5% CO2, fol-

lowed by a wash with differentiation medium. Cells were imaged

in a preheated microscope chamber at 37�C and 5% CO2. In situ

cytochemistry was automated using an Agilent Bravo pipetting

robot (Agilent) and EL406 plate washer and dispenser (Biotek).

Imaging and image analysis
Imaging was performed on a Yokogawa CV7000 microscope in

scanning confocal mode using a dual Nipkow disk. 384-well plates

(Perkin Elmer, #6007558) were mounted on a motorized stage and

images were acquired in a row-wise ‘‘zigzag’’ fashion at RT for fixed

cells and 37�C and 5% CO2 for living cells. The system’s

CellVoyager software and 405/488/561/640-nm solid laser lines

were used to acquire single Z-plane 16-bit TIFF images through a

dry 403 objective lens using a cooled sCMOS camera with

2,560 3 2,160 pixels and a pixel size of 6.5 mm without pixel

binning. Nine images in a 3 3 3 orientation were acquired from

the center of eachwell. Image segmentation and feature extraction

was performed with an in-house software written in C++. Except

for the detection of mitochondrial structures, image segmentation

was performed on illumination-corrected raw images based on

fluorescent channel intensity thresholds empirically determined

per plate. Multiple quantitative image features were calculated

(Tables S1 and S2). Mitochondrial structures and features were de-

tected in rolling-ball background-subtracted and top-hat filtered

images similar to a protocol described previously (Iannetti et al.,

2016).

ML analysis
To support the reproducibility of theMLmethod of this study, the

ML summary table is included in the supplemental information

per data, optimization, model, and evaluation (DOME) recom-

mendations (Walsh et al., 2021) (Table S4). Multiple datasets

were generated differing in terms of the used mDANs, chemical

compound treatment, and fluorescent staining (Table S5). Input

data were normalized, outliers were removed, and the number

of input features was reduced by removing strongly correlated fea-

tures (Figure 2, Table S4). We applied the Python-written ML li-

brary scikit-learn to train and test all models (Pedregosa et al.,

2011). We primarily used supervised binary classification algo-

rithms. Figure 2B summarizes the overall ML workflow. All

models’ hyperparameters were optimized using scikit-learn’s

GridSearchCV module and evaluated using k-fold cross-valida-

tion. Performance was checked using accuracy. All raw data are

listed in Table S5 and are available together with the correspond-

ing Jupyter notebook ML pipelines on GitHub (https://github.

com/johanneswilbertz/mDA-neuron-classification).

Statistics
All data were generated at least in duplicate with neurons from a

single differentiation batch. All data are represented as boxplots.

The notches of the box represent the 95% confidence interval of

the median obtained by bootstrapping with parameter value

1,000. Each data point represents the mean of a single well of a
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384-well plate comprised of nine images. Data fromdifferent plates

were median normalized to allow comparison across plates ac-

quired on different days. Data processing and plotting were carried

out with Python packages Pandas (McKinney, 2010), Matplotlib

(Hunter, 2007), and Seaborn (Waskom, 2021). Null hypothesis sig-

nificance testing was performed with the freely available Python

package Statannot (Weber, 2022). For data not displaying a normal

distribution, the non-parametrical Mann-Whitney U-test was per-

formed. For normally distributed data, Welch’s t test was applied.

Statistical significance is presented in the figures as *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (ns =

p > 0.05).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2022.09.001.
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