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Abstract: Angiogenesis, a new vessel formation from the pre-existing ones, is essential for embryonic
development, wound repair and treatment of ischemic heart and limb diseases. However, dysregulated
angiogenesis contributes to various pathologies such as diabetic retinopathy, atherosclerosis and cancer.
Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) as well as mitochondria play an
important role in promoting the angiogenic switch from quiescent endothelial cells (ECs). However,
how highly diffusible ROS produced from different sources and location can communicate with each
other to regulate angiogenesis remains unclear. To detect a localized ROS signal in distinct subcellular
compartments in real time in situ, compartment-specific genetically encoded redox-sensitive
fluorescence biosensors have been developed. Recently, the intercellular communication, “cross-talk”,
between ROS derived from NOX and mitochondria, termed “ROS-induced ROS release”, has
been proposed as a mechanism for ROS amplification at distinct subcellular compartments, which
are essential for activation of redox signaling. This “ROS-induced ROS release” may represent a
feed-forward mechanism of localized ROS production to maintain sustained signaling, which can be
targeted under pathological conditions with oxidative stress or enhanced to promote therapeutic
angiogenesis. In this review, we summarize the recent knowledge regarding the role of the cross-talk
between NOX and mitochondria organizing the sustained ROS signaling involved in VEGF signaling,
neovascularization and tissue repair.

Keywords: NADPH oxidase; mitochondria; reactive oxygen species; angiogenesis; redox signaling;
endothelial cell; vascular endothelial growth factor

1. Introduction

Angiogenesis is the process of a new blood vessel (capillaries) formation from pre-existing
vasculature. It is involved in physiological neovascularization such as embryonic development and
wound healing and is required for vascular restoration in response to ischemia via delivering oxygen
and nutrients in ischemic cardiovascular diseases. Excess and pathological angiogenesis contribute
to cancer, ocular diseases such as diabetic retinopathies and atherosclerosis [1]. Thus, enhancing or
inhibiting angiogenesis has great therapeutic significance. Especially, peripheral arterial disease (PAD),
which is caused by atherosclerotic occlusion in the lower extremities, results in decreased blood
flow and amputation of the foot or leg. Thus, promoting angiogenesis to restore limb perfusion
is an important therapeutic approach for the treatment of PAD. Vascular endothelial growth factor
(VEGF) is a key angiogenic growth factor that stimulates disruption of the endothelial cell (EC)
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junction, EC migration, proliferation and capillary tube formation mainly through VEGF receptor
type2 (VEGFR2/FIk1) [2]. VEGF binding to VEGFR2 on the plasma membrane induces receptor
dimerization and autophosphorylation, which is followed by receptor internalization (endocytosis)
to early endosomal compartments where sustained VEGFR?2 signaling is further activated to drive
angiogenesis [3]. Other growth factors such as fibroblast growth factor (FGF), platelet-derived growth
factor (PDGF) and angiopoietin-1 as well as hypoxia also promote angiogenesis in ECs.

Reactive oxygen species (ROS) (e.g., superoxide anion (O,7) and hydrogen peroxide (H>0O5))
are toxic in excess. However, ROS at the physiological level function is essential for redox signaling
involved in various biological responses including cell proliferation, migration, differentiation and
gene expression [4,5]. Accumulating evidence suggests that angiogenesis can be also stimulated by
ROS derived from ECs and other cell types such as vascular smooth muscle cells, myeloid cells such as
neutrophils and macrophages. There are many sources of ROS including NADPH oxidases (NOX),
the mitochondprial electron transport chain (ETC), xanthine oxidase, uncoupled endothelial nitric oxide
synthase (eNOS), cytochrome P-450 oxygenase and cyclooxygenase. The vascular NOX isoforms
(Nox1, Nox2, Nox4 and Nox5) differ in their activity and cell specificity in response to agonists, growth
factors and hypoxia, and the type of ROS released after activation. In ECs, ROS derived from NOX
(especially Nox2 and Nox4) in plasma membranes or intracellular cytosolic compartments [5-9] as
well as mitochondria [10-12] play a key role in angiogenic response induced by growth factors such as
VEGF [13]. However, the mechanisms by which highly diffusible ROS generated from different sources
(enzymes) and locations can coordinate and communicate to promote a sustained growth-related
angiogenic process are poorly understood.

During the past several years, the cross-talk between NOX and mitochondria, termed “ROS-
induced ROS release”, has been proposed as a positive feed-forward mechanism of localized ROS
production to organize redox signaling [14,15]. For example, it is shown that H,O, activates
Nox2 or p22phox to produce O~ in fibroblasts and smooth muscle cells [16]; uncoupled eNOS
produces O;7, instead of NO, to enhance mitochondrial ROS (mitoROS) production [17,18];
NOX-derived ROS increase mitochondrial ROS [13,19]; and mitochondrial ROS stimulate NOX
activation [20]. This feed-forward ROS-induced ROS release mechanism can be targeted to inhibit
pathological angiogenesis associated with oxidative stress or promote ROS-dependent physiological
and therapeutic angiogenesis. This review will summarize the recent knowledge regarding the role of
ROS-induced ROS organized by the cross-talk between ROS derived from NOX (plasma membrane
and cytosol) and mitochondria in driving angiogenesis, in particular, focusing on VEGF signaling.
Understanding these mechanisms should provide new insights into therapeutic strategies for various
angiogenesis-dependent cardiovascular diseases and cancer.

2. Role of ROS Signaling in Angiogenesis

The endothelium lines the blood vessel lumen to mediate blood flow homeostasis and tissue
metabolic demands by supplying nutrients and oxygen. Healthy ECs are in quiescence but new vessel
formation (angiogenesis) occurs to revascularize tissues in response to angiogenic growth factors such
as VEGF released by hypoxia, nutrient deprivation or tissue injury [1]. This organized and coordinated
angiogenic phenotype switch from quiescent ECs is impaired in various diseases such as diabetes and
aging with endothelial dysfunction, which results in tissue ischemia, leading to ischemic cardiovascular
diseases including PAD. By contrast, dysregulated and excess angiogenesis stimulates cancer and
diabetic and ocular retinopathy. In adults, ROS at the appropriate level are increased in response
to growth factors (e.g.,VEGF), ischemia or wound injury, which function as signaling molecules to
promote the angiogenic switch from quiescent ECs (Figure 1). Excess ROS contribute to pathological
angiogenesis involved in cancer, atherosclerosis and pathological retinopathy.
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Figure 1. Role of reactive oxygen species (ROS) in angiogenesis in endothelial cells (ECs).

ROS include free radicals such as O, ~, hydroxy radicals (OH) and non-radicals such as H,O5.
The O,~ generated by various ROS enzymes is rapidly scavenged by superoxide dismutases (SODs
including cytosolic SOD1 (Cu/ZnSOD), mitochondrial SOD2 (MnSOD), SOD3 (extracellular SOD,
ecSOD, EC-SOD)) to generate Hy O, (Figure 2). H,O5 is further converted to HyO by catalase, glutathione
peroxidase (GPX) and peroxiredoxins (PRXs) (Figure 2). Oxidative stress (excess ROS) contributes to
pathological angiogenesis, such as tumorigenesis, diabetic retinopathy and developing hypertension,
heat failure and vasculopathy [21-23]. Further, abnormal angiogenesis induced by oxidative stress
plays causative roles to promote atherosclerosis by increasing both macrophage infiltration and the
thickening of the blood vessel wall by oxidized low-density lipoproteins (LDLs) [22,24-26].
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Figure 2. Generation and metabolism of ROS in ECs.

By contrast, ROS, especially H,O,, at optimal levels function as signaling molecules to mediate
various biological responses including angiogenesis [4,5], which is required for tissue repair and
remodeling [27-29]. For example, exogenous ROS increase VEGF or VEGFR2 expression [30]
and stimulate EC proliferation and migration [31,32]. During wound healing, ROS induced by
tissue hypoxia induce angiogenesis by stimulating VEGF production from macrophages, fibroblasts,
ECs and keratinocytes [21,33,34]. We reported that endothelium-derived H,O,; is required for
post-ischemic neovascularization in vivo by using EC-specific catalase-overexpressing mice [35].
Furthermore, we reported that VEGF-induced ROS are required for VEGFR?2 tyrosine phosphorylation,
EC migration and proliferation via activation of small GTPase ARF6 localized at caveolae/lipid rafts
in ECs [36]. Furthermore, it is shown that ROS-mediated redox signaling linked to angiogenesis
involves mitogen-activated protein kinases (MAPKs), PI3 kinase, Akt, JAK-STAT, protein tyrosine
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phosphatases (PTPs) such as protein tyrosine phosphatase 1B (PTP1B) and SH2-containing protein
tyrosine phosphatase 2 (SHP2), phosphatase and tensin homolog (PTEN) as well as transcription
factors including HIF-1ot, NFkB and AP-1.

To function as secondary messengers, H,O, promotes signaling by oxidizing hyperactive cysteine
residues on target proteins, which exist as thiolate anions (Cys-S-) at physiological pH. Of note, most
cysteines have a pKa over 8, and therefore they remain protonated at physiological pH. ROS oxidize the
thiolate anion to the sulfenic acid (Cys-OH), which forms a disulfide bond and alters redox signaling.
Under normal conditions, this process is reversible by the disulfide reductases thioredoxin (TRX)
and glutaredoxin (GRX). However, under pathological conditions with excess ROS (oxidative stress)
and reduction of Trx and Grx, irreversible hyperoxidation of Cys residues (sulfinic and sulfonic acid)
can be formed. Using “redox-dead” Cys17Ser PKARIx knock-in mutant mice, Burgoyne et al. [37]
reported that PKARIx oxidation and dimerization-mediated activation is involved in VEGF-, tumor-
and ischemia-induced angiogenesis. By contrast, the cytosolic receptor tyrosine kinase domain of
VEGFR?2 has two oxidation-sensitive Cys residues and is kept in a reduced state by antioxidant
enzyme PRX-2 in quiescent ECs. However, Prx2 deficiency in quiescent ECs increases Cys oxidation
of VEGFR?2, thereby forming disulfide bonds, which in turn inactivates VEGFR2 that cannot respond to
VEGEF [38]. Thus, keeping quiescent ECs at a reduced state is important for driving an ROS-dependent
VEGF-VEGFR2-stimulated angiogenic switch. Recently, we reported that redox-sensitive Cys residues
of mitochondria fission protein Drp1 are kept in a reduced state by ER-localized thiol oxidoreductase
protein disulfide isomerase (PDIA1) in quiescent ECs [39]. Reduction of PDIA1 in diabetes increases
Cys-OH formation of Drpl at the mitochondria-associated membrane (MAM), thereby promoting
mitochondrial fragmentation and excess mitoROS production, which results in EC senescence and
impaired angiogenesis [39]. These results suggest that redox regulation of the ER-mitochondria
cross-talk at MAM by oxidoreductase PDI plays an important role in maintaining quiescent EC integrity.
This might be required for driving efficient angiogenic responses induced by ROS-generating angiogenic
growth factor VEGFE.

3. Role of NOX in Angiogenesis

NOX generates O, or HyO, by catalyzing the transfer of electrons from NADPH to reduce oxygen
via their NOX catalytic subunit. The NOX family consists of seven isoforms including Nox1, Nox2,
Nox3, Nox4, Nox5 and Duox1/Duox2 which localize at distinct subcellular compartments within the
cells [40-42]. Their expression level is organ- and cell type-specific, and the type of ROS released and
regulation of their activity are also different. The transmembrane catalytic subunits Nox1, Nox2, Nox3
and Nox4 interact with the small transmembrane regulatory subunit p22phox, while Nox5, which is
not expressed in rodents, does not require a regulatory subunit for its activation. Duox1 and 2 require
Duoxal and Duoxa?2 as a scaffold for their function [41,43]. Each NOX contains six transmembrane
domains and a cytoplasmic domain that binds NADPH and flavin adenine dinucleotide, and each
isoform has specific cytosolic subunits.

In ECs, major source of ROS are Nox1, Nox2, Nox4 and Nox5 [41-45]. Nox4 is the most
highly expressed NOX in ECs. Although Nox1, Nox2 and Nox5 are O, -generating enzymes,
Nox4 overexpression increases primarily HyO, [40-42,46] due to an extended extracytosolic loop [47].
Nox5 is activated in a Ca®*-calmodulin-dependent manner [40,41,48] (Figure 3). Prototype Nox2
(gp91phox) was first discovered as a phagocytic oxidase to kill bacteria by generating O, [49]
and consists of membrane-bound catalytic subunit Nox2 and regulatory small subunit p22phox,
and cytosolic subunits p47phox, p67phox and a small G protein Rac to produce O, that is rapidly
dismutated by SODs to generate Hy,O, [50] (Figures 1 and 2). Nox1 and Nox4 catalytic subunits
also couple with p22Ph°%, but Nox1 oxidase activity requires cytosolic NOX activator 1 (NOXAT)
and NOX organizer 1 (NOXO1), which are isoforms of p47P"°% and p67Ph%, respectively (Figure 3).
Nox4 is constitutively active without classical cytosolic subunits but is activated by polymerase
delta-interactive protein 2 (Poldip2) (Figure 3). Poldip2 was originally reported as a cytosolic binding
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partner for the Nox4-p22phox complex in vascular smooth muscle cells (VSMCs) [51]. However,
recent studies show that Poldip2 is a mitochondrial protein that regulates the activity of the TCA
cycle and metabolic reprograming [52] as well as a regulator of the differentiated phenotype in
VSMCs [53]. Using Poldip2-depleted HUVECs and Poldip2*/~ mice, Poldip2 is shown to be involved in
serum-induced EC proliferation and post-ischemic neovascularization [54]. Another Nox4-interacting
protein is calnexin, which may be needed for the proper maturation, processing and function of NOX4
in the endoplasmic reticulum (ER) [55] (Figure 3).

o
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Figure 3. NOX isoforms expressed in endothelial cells.

NOX-derived ROS are required for angiogenic response induced by various growth factors
(e.g., VEGE, angiopoietin, PDGF, TGEp, etc.) and hyperoxia [13,56—63]. Nox4~~ or Nox2~/~ mice,
EC-specific Nox4, dominant-negative Nox4 or EC-specific catalase-overexpressing mice [35,41,64,65]
reveal that Nox2 or Nox4 or their regulators are required for ROS-dependent angiogenic signaling in ECs,
tumor angiogenesis as well as post-ischemic neovascularization using a PAD model [8,36,59,62,65-75].
However, Nox2 and Nox4 also induce EC dysfunction depending on their subcellular localization, extent
and duration of activation [45,76]. Indeed, hyper Nox2 activation which produces overproduction of
ROS contributes to various pathologies such as diabetes, hypertension and ischemic stroke [77-82].

Compartmentalization of the ROS signal is essential for specific activation of redox signaling
after receptor activation. Nox2 and Nox4 exist in diverse subcellular compartments such as
plasma membranes including caveolae/lipid rafts, endosomes, ER and mitochondria [6-9,83,84].
During directional migration, Nox2 translocates to lamellipodia and membrane ruffles via binding
to p47phox with the scaffold proteins TNF receptor associated factor 4 (TRAF4) and WASP family
verprolin homologous protein 1 (WAVE1)/Racl, a cytosolic component of Nox2. Using a cell-permeable
biotin-labeled Cys-OH trapping probe [85], we showed that VEGF stimulation increases Cys-OH
formation of scaffold protein IQGAP1 that binds to active VEGFR2 and Rac1 at the lamellipodial leading
edge, which promotes directional EC migration [66,86,87]. We also found that IQGAP1-deficient mice
show impaired post-ischemic neovascularization using a PAD model [88]. These results suggest that
Nox2 binding to adaptor/scaffold proteins which translocate to the lamellipodial leading edge is required
for localized ROS production and Cys oxidation of ROS targets, thereby promoting EC migration and
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angiogenesis [6-8]. In addition, ROS induce oxidative inactivation of PTPs which are localized at
distinct subcellular compartments. This establishes compartmentalization of ROS-dependent tyrosine
kinase signaling pathways involved in angiogenesis.

ROS production is also localized via NOX interaction with signaling platforms associated
with lipid rafts and caveolae as well as endosomes [6,8]. We demonstrated that ecSOD-derived
H,0O, induces Cys oxidation/inactivation of PTP1B and density-enhanced phosphatase 1 (DEP1) in
caveolae/lipid rafts, thus enhancing VEGFR?2 signaling and angiogenesis in ECs, which is required for
restoring neovascularization induced by tissue ischemia [89]. There is also evidence that Nox4 is found
in the nucleus, indicating its involvement in redox-responsive gene expression [83]. Thus, targeting
NOX or its binding partners to discrete subcellular compartments is a mechanism of localizing
ROS production and its downstream redox signaling events involved in angiogenesis and other
biological responses.

4. Role of Mitochondria-Derived ROS in Angiogenesis

Not only NOX but also mitochondria-derived ROS function as a tightly regulated redox
signal that transmits information from the organelle to the cell. Mitochondria are redox-active
organelles and transfer more than 90% of the electron to O, to generate O, as the terminal electron
acceptor [90]. The mitochondrial inner membrane contains five multiprotein complexes such as
Complex I (NADH-quinone oxidoreductase), Complex II (succinate dehydrogenase), which transfers
electrons into the chain from succinate, Complex III (coenzyme Q: cytochrome C oxidoreductase),
Complex IV (cytochrome C oxidase) and Complex V (ATP synthase). During cellular respiration,
the electrons released from the electron transport chain (ETC) react with O, to produce O,~ [91].
Complexes I and III are the main sites of electron transfer to O, to produce O,~ which is released into
the intermembrane space (IMS) or matrix and is involved in redox signaling [92], because it has easier
access to the cytosol. Since O, is a charged species, it cannot diffuse across mitochondrial membranes.
Thus, the voltage-dependent mitochondrial anion channel (VDAC) seems to help in releasing the
intermembrane mitochondrial O, to the cytosol [93]. In addition, O,~ produced in the mitochondrial
matrix or IMS is rapidly converted to HyO, by SOD2, or SOD1, respectively, and this H,O, can diffuse
through both inner and outer mitochondrial membranes to the cytosol to activate redox signaling.
H,0; is also further converted to H,O by GPX or PRX or catalase.

Mitochondria function as an O, sensor and transmit a hypoxic signal by releasing ROS to the
cytosol [94]. Hypoxia stimulates mitoROS production such as HyO, from mitochondrial complex III
and the ROS trigger HIF1-o stabilization [94-96], which in turn increases the transcription of angiogenic
genes such as VEGF [97]. Thus, mitochondria regulate angiogenic responses by controlling cellular
metabolism linked to mitoROS. In ECs, not only Nox2 and Nox4 but also mitoROS play an important
role in VEGF- and angiopoietin 1-induced angiogenic responses [13,98,99]. In addition, mitochondrial
respiratory chain complex III (QPC) is shown to be necessary for EC proliferation involved in retinal and
tumor angiogenesis [100]. MitoROS also promote ligand-independent H,O,-induced transactivation
of VEGFR2 [101]. By contrast, mitoROS generated in hyperglycemia induce ligand-independent but
Src-dependent phosphorylation of VEGFR2, which reduces the amount of VEGER2 at the cell surface
required for VEGF binding, thereby attenuating VEGF-induced pro-angiogenic effects in diabetes with
oxidative stress [102]. These results suggest that mitoROS produced in physiological and pathological
conditions have an opposite impact on VEGFR2 signaling and angiogenesis.

5. ROS-Induced ROS Release

It remains unknown how ROS derived from distinct compartments communicate and affect
cell function differentially [22]. Zorov et al. reported that the photodynamically produced initial
phase of mitoROS caused the mitochondrial permeability transition (MPT) with a delayed amplified
phase of mitoROS generation in cardiac myocytes (termed mitochondrial “ROS-induced ROS
release”) [14]. Chung et al. showed that sodium salicylate-induced ROS stimulate ROS as well
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as mitochondrial membrane potential collapse, which leads to cytochrome c release and caspase
activation [103]. In cardiac cells, mitochondrial permeability transition pore (mPTP)-dependent and
independent ROS-induced ROS are observed: Increased ROS induce mPTP-dependent mitochondrial
depolarization, resulting in a short-lived ROS production derived from mitochondrial ETC. By contrast,
mPTP-independent ROS stimulate the opening of the inner mitochondrial membrane anion channel,
which in turn stimulates ETC-derived ROS release to the cytosol. This ROS-induced ROS release creates
a positive feedback mechanism for enhanced ROS production among neighboring mitochondria,
leading to mitochondrial and cellular injury [104]. The organelle excitability function for electrical
and Ca?* signals of mitochondria further amplify ROS signaling [105,106]. It is proposed that
H,0; induces cysteine oxidation of mitochondrial proteins including ETC proteins to enhance
mitochondrial O, ~ production [107], which is rapidly converted to H,O, by SOD1 at IMS or SOD2 at the
mitochondrial matrix, thereby further increasing mitochondrial ROS production. Thus, ROS-induced
ROS release amplifies the ROS signal among each subcellular compartment [13-15].

There are several reports showing the role of ROS-induced ROS release involved in cardiovascular
diseases (CAD). Li et al. [16]. demonstrate that exogenous exposure of VSMCs and fibroblasts to
H,0; induces O,~ production via non-phagocytic oxidase Nox2, thereby amplifying the vascular
injury process. Zinkevich et al. reported that flow-induced H,O, production and dilation in
microvessels from CAD patients involves Nox2-derived ROS-induced mitochondrial ROS release [23].
In addition, Angiotensin II (Ang II)-induced Nox1 activation stimulates mitochondrial ROS, resulting
in mitochondrial dysfunction and vascular senescence [108,109]. It is also reported that Nox2 stimulates
mitoROS by activating reverse electron transfer and phosphorylation of cSrc in human aortic ECs, which
contributes to Ang II-induced hypertension [110]. On the other hand, it is shown that mitochondrial
ROS can stimulate NOX-derived ROS. For example, mitoROS induce activation of Nox in phagocytes
and cardiovascular tissues, which in turn results in immune cell activation and development of Ang
II-induced hypertension [20,111,112]. Thus, cross-talks between mitochondria and NOX in pathological
conditions may represent a feed-forward vicious cycle to amplify excess ROS leading to oxidative
stress, which can be a therapeutic target [19] (Table 1).

Table 1. Role of ROS-induced ROS release in angiogenesis and vascular disease.

Cell Type ROS-Induced ROS Release ~ Response or Function Reference
1 VSMC(/fibroblast H202-p22phox(NOX2)-ROS  Cell injury and damage [16]
2 adipose arterioles Nox2-mitoROS Flow-induced dilation [23]
3 VSMCs Nox1-mitoROS Angll-induced [108]
senescence
. Angll-induced
4 leukocytes or aorta  p47phox (NOX2)-mitoROS hypertension [111]
5 VSMC MitoROS-Nox1-ROS Ang Il-induced NOX [112]
activation
6 EC Nox2-mitoROS Angll-induced [110]
hypertension
7 EC Nox4-Nox2-ROS EC migration [65]
(angiogenesis)
8 EC Racl (NOX2)-mitoROS EC migration [98]
(angiogenesis)
9 EC Nox4-Nox2-mtROS Angiogenesis [13]

6. The Crosstalk between NOX and Mitochondria (ROS-Induced ROS Release) in Angiogenesis

The role of ROS-induced ROS release in VEGF signaling and angiogenesis remains elusive.
To address this question, we performed real-time imaging by using cytosol- and mitochondria-targeted
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ratiometric redox-sensitive green fluorescent proteins (RoGFP) biosensors in human ECs [113].
This method allows us to determine the temporal-spatial relationship for VEGF-induced ROS
production from the different subcellular compartments. We found that VEGF stimulation in human
ECs rapidly increases NOX-derived H,O; in the cytosol as shown by the PEG-catalase-inhibitable
cytosolic RoGFP oxidation (first phase), followed by sustained mitoH,O, production as shown by the
mitochondrial RoGFP oxidation [13] (second phase) (Figure 4). With other data using gain and loss of
function approaches for Nox4 or Nox2, we demonstrated that Nox4-derived H,O, stimulates Nox2 to
increase mitoROS, which promotes sustained VEGFR2-mediated angiogenic responses in ECs [13].
An alternative method to monitor intracellular H,O, in different compartments includes a redox-active
biosensor, Hyper, but the signal can be affected by pH changes and is insensitive to reducing stimuli.
Recently, an improved version of Hypers has been reported to overcome these problems [114-116].
Consistent with our report, Evangelista et al. [65] also reported that Nox4-derived H,O, can activate
Nox2, which contributes to VEGF-induced S-glutathiolation of the sarco(endo)plasmic reticulum
Ca?*-ATPase (SERCA) and EC migration likely at MAM [117,118]. Thus, these finding suggest that
ROS-induced ROS release orchestrated by Nox4, Nox2 and mitochondria plays an important role in
driving angiogenic phenotypes from quiescent ECs (Table 1).
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Figure 4. Real-time imaging for cytosolic and mitochondrial redox status in single cell in response
to VGEFE.

It remains unclear how VEGF rapidly activates Nox4 to induce H,O; in ECs. It is reported that
insulin-like growth factor 1 (IGF-I) induces rapid Nox4 Tyr*’! phosphorylation, which promotes rapid
and localized ROS production via Nox4 binding to the adaptor protein growth factor receptor bound
protein 2 (Grb2), which is in a multifunctional transmembrane glycoprotein, SH2 domain-containing
protein tyrosine phosphatase substrate 1 (SHPS-1) complex. Thus, similar mechanisms may be
involved in VEGF-induced rapid Nox4-mediated H,O, production in ECs. It also remains unclear
how Nox4-derived H,O; can activate Nox2. Based on the literature, it is possible that HyO, produced
by Nox4 activation may activate Nox2 via phosphorylation of Nox2 or its cytosolic organizers such
as p47phox and Racl [41,98,119]. To support this, it is shown that HyO,-induced activation of
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redox-sensitive kinase cSrc can phosphorylate p47phox [41] and Racl guanine nucleotide exchange
factor Vav2 [120] that activates Rac1 in ECs [121], which in turn leads to activation of NOX2.

7. The Role of p66Shc in Crosstalk between NOX and Mitochondria Promoting Angiogenesis

The mechanism by which Nox4/Nox2-derived ROS stimulate mitoROS production remains unclear.
In addition to ETC, one of key regulators of mitoROS is an adaptor protein, p66Shc. Once p66shc is
phosphorylated at the Serine (Ser) 36 residue in the cytosol, it translocates to mitochondria where it
oxidizes cytochrome c to generate HyO, (Figure 5) [122,123].

Nox4/Nox2 | p66shc

H,0, —=+PKC, ERKIJNK—Pl

Outer membrane

Mitochondria
z

Inner membrane

e \, [FADH FAD*
NADPH 2 -2

NAD+ o] 02-

0, H,0

Figure 5. Mitochondrial HyO, production via the Nox4/Nox2/p-p66Shc axis.

We reported that VEGF induces rapid Racl activation by interaction with the non-phosphorylated
form of p6éshc, leading to Nox2-dependent ROS production, which contributes to VEGFR2
phosphorylation at caveolae/lipid rafts and subsequent angiogenic responses in ECs [124]. It is
also shown that p66shc regulates cytosolic Nox organizer p47phox expression, which in turn regulates
ROS generation [22,125]. We also reported that VEGF increases phosphorylation of p66Shc at Ser36 [124]
by protein kinase C (PKC) and extracellular signal regulated kinase (ERK)/Jun N-terminal kinase (JNK),
which are activated by Nox-derived H,O. This in turn increases mitoROS production that promotes
sustained ROS-dependent VEGFR?2 signaling and angiogenic responses [13]. This may represent a
novel feed-forward mechanism of ROS-induced ROS release mediated through NOX-mitochondria
cross-talk orchestrated by p-p66shc, which drives sustained growth-related angiogenic signaling
programs in ECs [13,113] (Figure 6).

Furthermore, using binary (Tet-ON/OFF) conditional EC-specific Nox2 transgenic mice,
Shafique et al. reported that the duration of the increase in NOX2-derived ROS determines the level
of mitoROS and their paradoxical effects (beneficial vs. harmful) on the coronary endothelium [126].
They showed that short-term (eight weeks) increases in NOX2-ROS induce the AMP-activated protein
kinase (AMPK)-eNOS-NO axis with low mitoROS, thereby promoting angiogenesis. However,
long-term (20 weeks) increases in cytosolic NOX2-ROS result in nitro-Tyrosine-mediated inactivation
of MnSOD, leading to a sustained mitoROS increase that induces the loss of mitochondrial
membrane potential, which in turn inhibits angiogenesis. These results suggest that the Nox2-derived
ROS duration can regulate mitoROS levels and their fate in ECs. However, it remains unknown whether
short-term and long-term increased NOX2-ROS mice models may reflect endogenous physiological
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and pathological (i.e., diabetes or aging) conditions, respectively, or levels of p-p66Shc at different
extents or durations.

VEGF NADPH

! oxidase VEGF
ox4
'Nox2 22'
VEGFR2
oo H202
. [ pSer- pGBShc
fggds 'ﬁ'a‘.'fk ' ROS targets
loop cSre, MAPKs, PTPs, | R€dOX

SERCA, HIF1,1QGAP1, |signaling
m|tochondrla PRX, NFKB, AP-1 etc

------ o]

EC migration and proliferation/
Capillary tube formation
(Angiogenesis)

|

Neovascularization

Figure 6. NOX-mitochondria cross-talk in VGEF signaling and angiogenesis.
8. Summary and Future Perspectives

From this review, it is clear that ROS-induced ROS release by the cross-talk between NOX- and
mitochondria-derived ROS is essential for sustained angiogenic signaling, reparative angiogenesis and
homeostatic maintenance of healthy vasculature. On the other hand, it can be toxic by amplifying
ROS in excess, which will ultimately contribute to pathological angiogenesis and tissue damages
in CAD, diabetes and aging. Multifaced ROS targets such as sulfenylated proteins or S-glutathionylated
proteins or other cysteine-oxidized proteins in ROS-induced physiological or pathological angiogenesis
are still poorly understood. Therefore, the systemic approach and measurement of ROS using
compartment-specific redox-sensitive fluorescence biosensors in real time may need to understand
the temporal and spatial modulation of ROS production and signaling involved in angiogenesis and
vascular repair. In addition, using ROS or ROS-generating/blocking agents for therapy does not
work always efficiently due to the lack of technology or information for their delivery to the distinct
subcellular compartments. Thus, developing a new therapeutic strategy which specifically targets the
ROS-induced ROS release mechanisms using specific inhibitors of NOX or mitochondria is important
for treatment of various angiogenesis-dependent diseases such as ischemic heart and limb diseases,
diabetic retinopathy and cancer.
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