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A B S T R A C T

The inputs to the outputs of nonlinear systems can be modeled using machine and deep learning approaches,
among which artificial neural networks (ANNs) are a promising option. However, noisy signals affect ANN
modeling negatively; hence, it is important to investigate these signals prior to the modeling. Herein, two
customized and simple approaches, visual inspection and absolute correlation, are proposed to examine the
relationship between the inputs and outputs of a nonlinear system. The system under consideration uses bio-
signals from surface electromyography as inputs and human finger joint angles as outputs, acquired from eight
intact participants performing movements and grasping tasks in dynamic conditions. Furthermore, the results of
these approaches are tested using the standard mutual information measure. Hence, the system dimensionality is
reduced, and the ANN learning (convergence) is accelerated, where the most informative inputs are selected for
the next phase. Subsequently, four ANN types, i.e., feedforward, cascade-forward, radial basis function, and
generalized regression ANNs, are used to perform the modeling. Finally, the performance of the ANNs is
compared with findings from the signal analysis. Results indicate a high level of consistency among all the
aforementioned signal pre-analysis techniques from one side, and they also indicate that these techniques match
the ANN performances from the other side. As an example, for a certain movement set, the ANN models resulted
in the rotation estimation accuracy of the joints in the following descending order: carpometacarpal, meta-
carpophalangeal, proximal interphalangeal, and distal interphalangeal. This information has been indicated in the
signal pre-analysis step. Therefore, this step is crucial in input–output variable selections prior to machine-/deep-
learning-based modeling approaches.
1. Introduction

Electromyography (EMG) is a technique used to record and analyze
myoelectrical signals, called electromyograms, generated by skeletal
muscles. An EMG signal detected noninvasively on the skin surface is
called surface EMG (sEMG). sEMG exhibits stochastic and nonstationary
features [1]. These biosignals represent a muscle activity during a
movement and reflects a person's intention when he/she moves his/her
limbs. In fact, sEMG is nonlinearly related to joint kinematics (angle,
velocity, and acceleration), joint moments, and muscle forces. These
signals have been investigated for many purposes, including the diag-
nosis of neuromusculoskeletal diseases, movement analysis, rehabilita-
tion evaluation, and recently, position- and force-based control of
human–machine interfaces, such as exoskeletons and prostheses.

Many approaches can be used for mapping between sEMG and joint
kinematics and kinetics, such as i) integrated biomechanics and
h).
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multibody dynamics [2] and ii) discrete classification of a person's
intention (motion or force) based on sEMG activity using the signal
analysis and machine learning (ML) methods [3, 4, 5, 6, 7, 8, 9, 10].
However, these methods have drawbacks that limit their usability.
Alternatively, joint variables can be reconstructed from sEMG via
continuous and proportional ML-based estimation approaches [11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], including artificial neural
networks (ANNs), as many of their variables are known as universal
approximators [24, 25, 26]. However, training an ANN to model
multi-input multi-output systems requires sufficient computational re-
sources and is time consuming; additionally, ANNs are sensitive to noisy
signals. Hence, studying the dependencies between the inputs and out-
puts of such complex biosystems is important and facilitates appropriate
input–output selections prior to modeling; hence, optimal solutions with
minimal resources and time can be achieved.
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The selection of the most activated muscles contributing to limb
motions (in terms of sEMG signals and their representing feature/feature
sets) that reduces redundancies can be achieved by different methods,
which can be classified into the following: i) dimensionality reduction
(e.g., principal component analysis (PCA) [27, 28] and linear discrimi-
nant analysis [4]), ii) variables selection (e.g., mutual information (MI)
[12], forward and backward selection [29]), and iii) hybrid approaches
(e.g., integrated PCA and MI [5]). Some of these approaches suffer from
input–output linear dependencies (e.g., PCA), long-time implementa-
tions as they are model-based selections (as in forward and backward
selections), and failure to obtain optimal input variable sets (as in the
forward selection). However, although these methods are powerful,
simpler and customized approaches are preferred in the current study
owing to multiple participants involved and many modeling algorithms
used with an intensive parametric study applied to each one.

This study, which proposes two simple visual and numerical tech-
niques, has three main objectives: 1) to investigate the provided dataset
quality (as it is assumed to be a worldwide benchmark); 2) to investigate
the dependencies between sEMG channels or inputs and kinematics
degree-of-freedom (DOF) readings or outputs, such that the appropriate
input variables can be selected, thereby reducing the ANN learning times;
and 3) to estimate the performance of four types of ANNs prior to the
training phase, in proportional and continuous mappings of sEMG to
hand joint angles using those simple, low-computation techniques.
Hence, data of eight individuals performing two sets of movements were
obtained from a publicly available dataset [9].

The remainder of the paper is organized as follows: Section 2 presents
dataset acquisition and processing. Section 3 explains signal pre-
investigation techniques and the ANN models used. Section 4 provides
results of the data pre-investigation phase and ANN modeling. Results
discussion and study limitations are presented in Section 5. Finally, the
conclusions and future studies are presented in Section 6.

2. Material and methods

2.1. Dataset description

The dataset used in this project was obtained from the second version
of the Non-Invasive Adaptive Prosthetics (Ninapro) dataset. It is publicly
available and provides researchers (especially of the biorobotics field)
with a benchmark, where different studies can be performed and
compared among the same datasets to enhance upper-limb myoelectric
control approaches [9, 10]. Owing to long training times required to
achieve the optimal performance of feedforward and cascade-forward
ANNs, extensive parametric studies on each of the four ANN types, and
computing resource limitations, eight intact participants were randomly
selected from this dataset in the current study (six males; two females;
eight right handed; age 26.75 � 2.76 years). This number is within the
average population of many other related studies [12, 13, 14, 18, 19, 20,
23, 28]. sEMG signals of the arm were recorded via 12 Trigno wireless
double-differential electrodes from Delsys, Inc. (www.delsys.com). Two
approaches were adopted for electrode placement (the electrode place-
ment and acquisition protocol are shown in [9]). The first is dense
sampling, where eight of the electrodes are equally spaced around the
forearm beneath the elbow at a fixed distance from the radio-humeral
joint. The second is precise anatomical positioning, where four elec-
trodes are placed on the main activity spots of the flexor digitorum
superficialis, extensor digitorum superficialis, biceps brachii, and triceps
brachii. Synchronously, hand kinematics were measured using the
CyberGlove II dataglove (www.cyberglovesystems.com), which com-
prises of 22 sensors that provide readings proportional to the joint angles
of the hand (fingers, palm, and wrist). It is noteworthy that the glove
requires special calibration procedures to accurately represent the angles,
which was not performed by the dataset team. The sampling rate of the
sEMG and kinematics data were 2 kHz and about 25 Hz, respectively.
Each participant was asked to sit on an adjustable chair with his/her arm
2

comfortably resting on a desk. A laptop placed in front of the participants
acted as a visual stimulus, where they were instructed to imitate the
shown postural, movement, or force pattern movie with their right
hands. Each movement was repeated six times serially, interrupted by a
rest posture. From all the movement sets performed, Table 1 shows nine
wrist and nine grasping movements required in implementing typical
activities of daily living that are considered in the current study. Readers
may refer to [9] for more details.
2.2. Digital signal processing (DSP)

2.2.1. Data processing
In beginning of the DSP phase, the occupied bandwidths of the signals

were obtained to determine the appropriate cutoff frequencies of the
digital filters by finding the power spectral density (PSD) and the single-
sided amplitude spectrum (AS) of each data type (Figure 1). It is well
known that kinematics data have much lower frequency components
than sEMG. It is typical to smooth sEMG and kinematics data with band
pass (BP) and low pass (LP) filters, respectively. In such input–output
mapping problems (i.e., estimation or regression), it is important that the
original input and output data are synchronized after the filtration pro-
cess. Because a delay associated with the filtration exists, a filter with a 0-
phase was applied to each data type by filtering it forward and backward
to eliminate the delay. This delay is specifically inherent in infinite im-
pulse response (IIR) filters, which is the type employed in this study, and
it depends on the frequency [31]. Generally, IIR filters required a much
lower-order parameter, resulting in much smaller delays compared to
finite impulse response filters to satisfy a set of design constraints. Ac-
cording to these observations and plots, referring to the well-known
frequency characteristics of these signals and to be consistent with
related sEMG-based kinematics prediction studies [32,33], the digital
filters were designed as summarized in Table 2. The Butterworth filter is
one of the most frequently used IIR filters, especially for sEMG problems.
Its features include the following: flat passband and stopband regions,
monotonicity in the entire region, no ripples, a nonlinear phase, and a
small rolloff steepness [31]. Data processing was implemented via
MATLAB's Signal Processing Toolbox, and the following data investiga-
tion techniques were performed via the MATLAB package.

From preliminary investigations of the dataglove readings, it was
discovered that these data were extremely noisy and the range of motion
(ROM) varied significantly from one DOF to another. This was expected
as they were never calibrated. Owing to the specific features of sEMG
signals, it is important to normalize them before further analysis. sEMG
signals can be normalized by different methods, from which maximum
voluntary contraction techniques are standard methods used for this
purpose and typically performed at the time of data acquisition [34].
However, this step was not performed for the Ninapro dataset. Alterna-
tively, one of the normalization methods frequently used in studying
EMG-kinematics/kinetics relations is the zero-score (z-score, aka stan-
dard score) (e.g., [32, 35, 36]), where new signals have zero mean and
unit standard deviation. It can be computed using the following formula:

z¼ x� X
S

; (1)

where z is the z-scored value of data point x, X is the sample mean, and S
is the sample standard deviation. This standardization was applied for
both the sEMG and the kinematics readings.

2.2.2. Feature extraction
Owing to its characteristics, sEMG does not provide much valuable

information to represent muscle activities. Therefore, a suitable feature
or feature set is extracted from these signals to represent informative
observations from sEMG more efficiently. Additionally, feature extrac-
tion reduces the number of samples used in modeling, resulting in less
computation time with improved performance.

http://www.delsys.com
http://www.cyberglovesystems.com


Table 1. The selected movement sets considered in this study. Readers may refer to [9] for more details.

Wrist movements

Wrist supination about the middle finger Wrist pronation about the little finger Wrist radial deviation

Wrist pronation about the middle finger Wrist flexion Wrist ulnar deviation

Wrist supination about the little finger Wrist extension Wrist extension with closed hand

Grasping types

Power sphere grasp Tripod grasp Quadpod grasp

Three-finger sphere grasp Prismatic pinch grasp Lateral grasp

Precision sphere grasp Tip pinch grasp Parallel extension grasp
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First, most of the sEMG features used previously, from the domains of
time, frequency, and time–frequency, were investigated in terms of their
representations of muscle activity and computation complexity. Owing to
its popularity in utilization (e.g., [12, 13, 32, 33, 37]), computation
simplicity, and suitability for real-time applications, as well as after
preliminary studies on ANN modeling with different features and feature
sets, the root-mean squared (RMS), as shown in Eq. (2), was selected to
represent the sEMG feature:

RMSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

�
sEMGjðkÞ

�2
;

vuut (2)

where sEMGjðkÞ is the sEMG value of thejth muscle at the kth sample, and
N is the total number of samples in the processing window (length).
Similarly, the mean value (mean) within the processing window was
selected to represent the dataglove readings (Figure 2). A sliding window
of length N ¼ 150 ms with a 50% overlap was selected. These values are
consistent with those in related studies ([32, 33, 38]). It is noteworthy
that obtaining the best feature(s) from different domains is out of the
scope of the current study.

3. Data pre-investigation and ANN modeling

When investigating filtered, z-scored dataglove readings, in many
cases, some problems in their quality are unexpectedly exhibited. As an
example, the low repeatability and high jitteriness of the dataglove
values are shown in Figure 3. This motivated us to investigate those
processed data carefully before the modeling. It is noteworthy that to
reduce the computational time required in ANN modeling, 15 DOFs (as
shown in Table 3) was included, whereas the others were excluded
because those 15 DOFs contributed to the majority of hand motions. The
system considered in this study has 12 sEMG inputs and 15 DOF outputs.
It is well known that ANNs are sensitive to noisy signals. Hence, it is
important to exclude the noisiest signals, which consequently reduces the
system size, reduces the ANN training times, and accelerates its conver-
gence. The goal of the studies described in Subsections 3.1 and 3.2 are to
propose simple techniques to i) obtain the most activated muscles via
sEMG readings, thereby contributing to the considered motions; and ii)
investigate the quality of the selected DOF. In other words, it was hy-
pothesized that the aforementioned techniques could predict the ANN
modeling accuracy early.

3.1. Visual inspection

From the experimental protocol, it is assumed that the motion of each
joint during each task is repeated six times, interrupted with the rest
posture. Therefore, the behaviors of sEMG channel(s) and DOF during a
single movement and the full set of movements are visualized in stacked
plots herein. For example, all sEMG channels with a single DOF for a
single movement are plotted together and shown in Figure 4, whereas
Figure 5 presents a single sEMG channel plotted throughout an entire
movement set (wrist or grasp). This type of figures indicates muscles that
are more active (contributing) during the movements. Meanwhile,
3

Figures 6 and 7 show the behavior of a certain DOF during all considered
tasks. These figures capture the quality of a DOF during an entire
movement set. It should be noted that, in such figures, six distinguished
repetitions should appear during a movement for almost all the sEMG
and DOF readings. Otherwise, the readings can be considered of low
quality. Figures 4, 5, 6, and 7 present the z-scored, filtered reading for
both the inputs (sEMG) and outputs (hand DOF).
3.2. Numerical inspection

Although the visual inspection of the data can indicate their quality
and relations in some cases, it can be misleading in others as distinct
criteria do not exist. Therefore, a numerical measure is necessitated to
perform this objective. One such measure, absolute correlation (AC), is
proposed and compared with the MI.

3.2.1. Absolute correlation
In this study, the Pearson correlation coefficient (R), defined by Eq.

(3) [39], was computed to examine the association between i) an sEMG
channel and all DOFs, and ii) a DOF and all sEMG channels.

RXY ¼ σXY

σXσY
; (3)

where RXY is the Pearson correlation coefficient between random vari-
ables X and Y ; which has a range of [-1 þ1]; σXY is the covariance be-
tween X and Y; σX and σY are the standard deviations of X and Y,
respectively.

In the first case, the absolute value of R between each sEMG channel
(in terms of RMS value) and all DOFs (mean value) was obtained sepa-
rately for each participant and each movement. Subsequently, the
average values were computed among the wrist, grasp, and both move-
ment sets over all participants, as shown in Figure 8 (a). This indicates the
contribution of each sEMG channel in the rotations of all DOFs. By
contrast, Figure 8 (b) presents the absolute value of R between a single
DOF and all sEMG channels, which facilitates in distinguishing the DOF
that has the highest relation to the overall sEMG channels.

3.2.2. MI
The methodology presented in Subsection 3.2.1. primarily assumes a

linear dependency between the inputs (sEMG) and outputs (kinematics),
which is not the case and may result in inaccurate inferences. Alterna-
tively, information theory (Shannon entropy [40])-based measures, such
as MI, can quantify nonlinear or chaotic dependencies. It can be calcu-
lated based on the following equation [41]:

IðX; YÞ¼
ZZ

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dxdy; (4)

where I is the MI between input variable X and output variable Y ; pðx; yÞ
is the joint probability density function between X and Y; and pðxÞ and
pðyÞ are the marginal probability density functions of X and Y , respec-
tively. The MI was calculated for the two cases described in Subsection
3.2.1, as shown in Figures. 8 (c) and (d).



Figure 1. (a) PSD and (b) single-sided AS of sEMG channel #1 for repetition #2 of the wrist flexion movement for a participant.
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3.3. ANN modeling

An ANN is a circuit containing highly interconnected processing el-
ements (neurons) through connections of certain strengths (weights)
4

with certain arrangements (architecture), which can learn from its inputs
and outputs to perform a certain function. These neurons operate in
parallel. The network's architecture, neurons, and learning algorithm
specify the functionality of the network [42]. In the current study, four



Table 2. Characteristics of the filters applied to raw data. fco: cutoff frequency. BP/LP: Band pass/low pass. IIR: infinite impulse response.

Data type Pass type fco (Hz) Design category Design method Phase Order

sEMG BP [10 400] IIR Butterworth 0 4th

Dataglove LP 10 IIR Butterworth 0 4th

Figure 2. Visualization of features extracted during the wrist flexion movement for a participant: (a) and (b) represent the RMS of the sEMG channel #1 and the mean
of I-MCP, respectively. The values shown were filtered and z-scored.
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ANN types used in continuous input–output mapping were train-
ed/designed and tested to proportionally estimate the hand kinematics
(outputs) from sEMG (inputs), i.e., feedforward [24], cascade-forward
[43], radial basis function [25], and generalized regression [26] ANNs.
For the feedforward and cascade-forward ANNs, single and two hidden
layers were used with hyperbolic tangent sigmoid neurons, whereas the
output layer was linear. Their training parameters (weights, and biases)
were adjusted using the Levenberg–Marquardt-based back propagation
algorithm. The number of hidden neurons ranged from 5 to 50. The radial
basis function ANN comprises a radial basis hidden layer with Gaussian
neurons and a linear output layer. It can be trained by the orthogonal
least squares, as described by [44]. The optimal number of Gaussian
neurons and the spread, which relates to the hidden neuron bias, were
the parameters investigated in this study. Similarly, the generalized
regression ANN has a radial basis hidden layer and a normalized linear
output layer; however, it can be designed by only a one-pass iteration
depending on the input/target values. It was subjected to a spread
parametric study to obtain the optimal performance. For all ANN types,
the accuracy measure was based on the R values, as shown in Eq. (3),
among the test data subset. The details of the ANN modeling and testing
are presented in [45]. MATLAB's Neural Network Toolbox was used to
conduct the ANN modeling and evaluation.
5

4. Results

Data visualization can facilitate in determining the dataset quality
and some input–output relations. It is noteworthy that the plots shown in
Figures 4, 5, 6, and 7 present the z-scored, filtered readings for both the
sEMG and DOF. As shown in Figure 4, as the sEMG values changed, the
DOF generally changed either proportionally or inversely, i.e., concur-
rent relation. The exceptions were clear for sEMG channels 11 and 12 in
many cases, where the change was much lower. This was observed in
plots such as those presented in Figure 5, where the behavior of each
sEMG channel was tracked throughout all movements. In addition, plots
such as those in Figure 5 indicate fair to good distinguished repetitions of
most sEMG channels and poor repetitions for channels 11 and 12 during
the motions. However, for most cases, the kinematics readings suffered
from jitteriness and low repeatability, as shown in Figures 6 and 7, where
the pattern of six distinct repetitions were assumed to appear for each
wrist motion or grasp type, which did not occur for many DOFs.
Furthermore, the repeatability of the DIP joints was the worst among all
joints, and it was better in the wrist tasks than in the grasping ones for all
DOFs. It is noteworthy that these visual investigation techniques can be
misleading in some cases as no distinct and numerical threshold exists to



Figure 3. Low repeatability and high jitteriness in dataglove readings during the six repetitions of (a) and (b) wrist flexion movement; (c) and (d) prismatic pinch
grasp. The data of (a)/(c) and (b)/(d) represent T-IP and M-MCP, respectively.

Table 3. DOF considered for each finger. CMC: Carpometacarpal, MCP: Metacarpophalangeal, PIP: Proximal Interphalangeal, DIP: Distal Interphalangeal, and IP:
Interphalangeal.

Thumb (T) Index (I) Middle (M) Ring (R) little (L)

CMC MCP MCP MCP MCP

MCP PIP PIP PIP PIP

IP DIP DIP DIP DIP

W. Batayneh et al. Heliyon 6 (2020) e03669
evaluate the signal quality, which necessitates more appropriate nu-
merical measures.

Figure 8 summarizes the average results over all participants and each
movement set of the numerical-based approaches: i) AC, as shown in
plots (a) and (b); and ii) MI, plots (c) and (d). The following are reflected
from these plots:

I) Figures. 8 (a) and (c) show that the mean AC and the MI values,
between an RMS value of a sEMG channel and all DOFs, are
minimum for channels 11 and 12. This indicates that the muscles
under channels 11 and 12, biceps brachii and triceps brachii, were
less activated than the others during the hand motions. Hence, the
contributions of sEMG channels 11 and 12 in the rotations of all
DOFs were significantly less than those of the others.

II) The patterns of AC and MI between a DOF and all sEMG channels,
as shown in Figures. 8 (b) and (d), are almost consistent. For
example, the values of AC between a DOF and all sEMG signals, for
the wrist set, were ordered in a descendingmanner as follows: PIP,
CMC, MCP, and DIP; and for the MI, they were CMC, PIP, MCP,
and DIP. For more clarity, Table 4 introduces the descending
patterns of the AC and MI (and that of the ANN which will be
explained later) for the wrist and grasp tasks.
6

III) In most of the cases, the DIP joints exhibited the least sensitivity to
the muscle activities, as shown in Figures. 8 (b) and (d). This may
indicate 1) that the selected muscles/muscle regions in the
experimental setup exhibited weak responsibility in moving the
DIP joints; 2) the dependency of DIP rotations on the PIP within
the same finger; 3) the less accuracy associated with the sensors
measuring these joints; and/or 4) the less ROMs required in per-
forming the aforementioned tasks.

Therefore, a significant agreement occurred between the findings of
the visual and numerical investigation techniques. This motivated us to
exclude sEMG channels 11 and 12 from the next phase in the ANN
modeling. This reduced the system dimensionality and would facilitate
the ANN in achieving the optimal performance, where only the most
informative inputs would be selected for the next phase. Hence, the
system under consideration became one comprising 10 inputs (sEMG)
and 15 outputs (dataglove DOF).

The ANN modeling performances, as well as the AC and MI findings,
are summarized in Tables 5 and 6 for the wrist and grasp sets, respec-
tively. (Note: therein, the performances of the four ANN types were
averaged for simplicity because they were similar, with similar finding
trends). Remarkably, the findings of the ANN matched the pattern of AC
(see Figure 8 (b)) and agreed in most cases with the MI results (see



Figure 4. Behavior of all sEMG channels and a DOF through (a) wrist pronation about the middle and (b) three-finger sphere grasp movements; y-axes represent the
RMS for sEMG and the mean for dataglove readings. ch: channel.

W. Batayneh et al. Heliyon 6 (2020) e03669
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Figure 5. Behavior of sEMG channel #12 through (a) the wrist movement set for participant #2 and (b) the grasp movement set for participant #8. y-axis represents
RMS of the sEMG signals. mov: movement.

W. Batayneh et al. Heliyon 6 (2020) e03669
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Figure 6. Behavior of I-PIP through (a) wrist and (b) grasp movement sets. y-axis represents the mean of the I-PIP readings.

W. Batayneh et al. Heliyon 6 (2020) e03669
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Figure 7. Behavior of I-DIP through (a) wrist and (b) grasp movement sets. y-axis represents the mean of the I-DIP readings.

W. Batayneh et al. Heliyon 6 (2020) e03669
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Figure 8. Numerical inspection over wrist (W), grasp (G), and both sets: (a)/(c) Mean AC/MI between RMS value of an sEMG channel and all DOF; and (b)/(d) Mean
AC/MI between a DOF and all sEMG channels. The values were averaged among all participants.

Table 4. Descending accuracy patterns of results achieved using numerical inspection techniques, AC and MI, calculated between a DOF and all sEMG channels, and the
ANN (RNN). Order 1 means the highest accuracy and 4 means the lowest. The T's IP joint was averaged with the DIP joints as it was similar to the DIP joints in the fingers.

Measure Order

1 2 3 4

Wrist set

AC PIP CMC MCP DIP

MI CMC PIP MCP DIP

RNN PIP CMC MCP DIP

Grasp set

AC CMC MCP PIP DIP

MI CMC MCP DIP PIP

RNN CMC MCP PIP DIP
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Figure 8 (d)). For example, for the grasp set, the values of AC between a
DOF and all sEMG signals were ordered in a descending manner as fol-
lows: CMC, MCP, PIP, and DIP. This pattern was also observed from the
ANN modeling, as expected. The reader can refer to Table 4 for more
examples. The ANN performance was much better for the wrist case
compared with the grasp case, as predicted by both the visual and nu-
merical inspection approaches. This may be owing to the nature of the
neutral positions in which the joints were bent, and that the grasping
motions were more complicated, compared with those of the wrist,
resulting in more motion artifact noise in the readings. The ANN accu-
racies for the CMC, MCP, PIP, and DIP of the wrist/grasp sets were as
11
follows: 0.8746/0.7628, 0.7752/0.6427, 0.8873/0.5373, and 0.6925/
0.4966, respectively.

Interestingly, the techniques conducted, both visually and numeri-
cally, matched the ANN findings significantly. Hence, those techniques
are important for estimating the ANN performance prior to spending long
periods in training those networks with the possibility of poor
performance.

5. Discussion

sEMG signals are nonlinearly related to joint angles of the human
limbs. The traditional mapping approaches require comprehensive



Table 5. Mean numerical investigations (AC and MI) between a DOF and all sEMG channels, and the
mean performance over all ANNs (RNN) in estimating the DOF throughout the wrist dataset.

DOF
Finger CMC MCP PIP DIP (IP 

for T)

Mean
among
finger

T
AC 0.6143 0.4393 0.4526 0.5021
MI 0.3203 0.1225 0.1435 0.1954
RNN 0.8746 0.5978 0.6352 0.7025

I
AC 0.6010 0.6638 0.4495 0.5714
MI 0.2701 0.2932 0.1379 0.2337
RNN 0.8385 0.8894 0.6583 0.7954

M
AC 0.5993 0.6620 0.5605 0.6073
MI 0.2683 0.2889 0.2596 0.2723
RNN 0.8320 0.8879 0.7839 0.8346

R
AC 0.5676 0.6603 0.5491 0.5923
MI 0.2450 0.2845 0.2457 0.2584
RNN 0.8015 0.8886 0.7929 0.8277

L
AC 0.5750 0.6555 0.4204 0.5503
MI 0.2452 0.2889 0.1171 0.2171
RNN 0.8063 0.8833 0.5923 0.7606

Mean
among 

DOF

AC 0.6143 0.5564 0.6604 0.4864

MI 0.3203 0.2302 0.2889 0.1808

RNN 0.8746 0.7752 0.8873 0.6925

Table 6. Mean numerical investigations (AC and MI) between a DOF and all sEMG channels, and the
mean performance over all ANNs (RNN) in estimating the DOF throughout the grasp dataset.

DOF
Finger CMC MCP PIP DIP (IP 

for T)

Mean
among
finger

T
AC 0.4659 0.4525 0.4003 0.4396
MI 0.1693 0.1642 0.1301 0.1545
RNN 0.7628 0.6644 0.5600 0.6624

I
AC 0.3995 0.3643 0.3041 0.3560
MI 0.1222 0.0935 0.0951 0.1036
RNN 0.6408 0.5437 0.4499 0.5448

M
AC 0.4065 0.3636 0.3187 0.3629
MI 0.1203 0.0970 0.0959 0.1044
RNN 0.6269 0.4951 0.5114 0.5444

R
AC 0.4094 0.3988 0.3284 0.3789
MI 0.1235 0.0915 0.0982 0.1044
RNN 0.6340 0.5946 0.4841 0.5709

L
AC 0.4345 0.3852 0.3466 0.3888
MI 0.1237 0.0823 0.0845 0.0968
RNN 0.6475 0.5157 0.4775 0.5469

Mean
among 

DOF

AC 0.4659 0.4205 0.3780 0.3396

MI 0.1693 0.1308 0.0911 0.1008

RNN 0.7628 0.6427 0.5373 0.4966
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Table 7. Normalized values for the AC and MI measures between a sEMG channel and all DOF. W: wrist set; G: grasp set.

sEMG
ch #

Normalized AC Normalized MI

W G Mean of
W and G

W G Mean of
W and G

1 0.9656 1.0000 0.9919 0.8315 0.8740 0.8940

2 0.8654 0.9415 0.9074 0.5813 1.0000 0.7501

3 0.9542 0.7876 0.8980 1.0000 0.8164 1.0000

4 0.8837 0.8352 0.8750 0.8276 0.9075 0.9019

5 0.9180 0.8719 0.9107 0.8020 0.7041 0.8179

6 0.9070 0.9159 0.9221 0.5667 0.6493 0.6265

7 0.9261 0.9607 0.9520 0.7423 0.9082 0.8394

8 1.0000 0.9692 1.0000 0.9690 0.8116 0.9754

9 0.8906 0.9070 0.9085 0.8658 0.9055 0.9296

10 0.8697 0.9577 0.9167 0.7119 0.9425 0.8275

11 0.6294 0.6539 0.6474 0.4056 0.6363 0.5037

12 0.5122 0.5736 0.5438 0.1208 0.1116 0.1249
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knowledge of the human anatomy and physiology, and they often yield
results that deviate significantly from the correct mapping. However,
black-box systems, such as ANNs, can capture this relationship using only
data pairs of inputs and outputs. Meanwhile, ANN and other ML algo-
rithms are sensitive to noisy or irrelevant observations, where signal pre-
investigation techniques should be conducted prior to the training phase.

Initially, the sEMG and kinematics readings were visualized via
different types of plots. It was discovered that both data types, even after
filtration, z-scoring, and feature extraction, presented some problems in
terms of large irregular behaviors and jitteriness along repetitions, and
for the kinematics signals, small ROMs were produced (before z-scoring).
These findings, and others described in Section 4, were observed from the
proposed AC technique as well (Subsection 3.2.1). Both the visual in-
spection and the AC techniques agreed with the standard MI approach
(Subsection 3.2.2). Furthermore, these techniques successfully predicted
the ANN performance before the models were trained and tested. This
enabled a reduction in the long periods required for trainingML and deep
learning (DL) models on a dataset, which have similar drawbacks by
deciding whether to or not to use it or at least select the most appropriate
signals it involves. Additionally, such signal pre-investigation steps can
enhance the ML/DL modeling accuracy when applied to classification
and regression problems. It should be noted that although the AC and MI
techniques predicted the ANN performance well, they cannot be used to
create sEMG-kinematics mappings. The reasons for the problems in sEMG
readings may be the absence of induced forces during the tasks, as the
participants were instructed to imitate the movements without exerting
large forces, in addition to the dynamic environment associated with the
acquisition protocol. The effects of the missed calibration procedure for
the dataglove DOF appear to be the main reason for the issues concerning
the data. After contacting Cyber Glove Systems LLC and referring to the
Cyberglove II manual [46], it was discovered that the readings for each
participant must be calibrated individually for each DOF (total of 22) at
the time of acquisition via a special software. The team of the Ninapro
dataset did not perform this step as it would be time consuming (a large
number of participants and DOFs), and they thought that it would not
pose a problem as most ML approaches employed in EMG-kinematics
mappings are insensitive to the linear scaling of data [9]. By contrast,
it is believed in this study that the missed calibration procedure is crucial
owing to the following reasons: I) Based on the CyberGlove II manual, the
calibration formula is not pure scaling, i.e., it has an offset factor, which is
expressed as Eq. (5):

θact ¼ a0ðθmeas � a1Þ; (5)

where θact is the actual DOF angle (o); θmeas is the measured DOF value
proportional to the DOF angle (V); a0 and a1 are the gain and offset co-
efficients, (o/V) and (V), respectively. Therefore, the values provided in
13
the dataset repository are in units of V. Consequently, this renders it
difficult for an MLmodel (or ANN) to adapt to 30 factors, as in in our case
(15 DOFs� 2 factor/DOF), as an additional function would be added for
the model to search for the optimal calibrated joint angles in addition to
its original complex nonlinear mapping. II) Owing to its fabrication na-
ture, CyberGlove II suffers from cross coupling, in which neighboring
MCP flexion/extension and abduction/adduction motions are affected by
each other [47]. In fact, the calibration of the dataglove, specifically of
CyberGlove types, has been investigated in many studies [47, 48, 49],
which aim to simplify and improve this process. Whether an accurate
calibration is required depends on where the glove would be applied. For
example, for studies concerning joint angle predictions from EMG signals
to control exoskeletons and prostheses worn by disabled people, it is clear
that calibration is crucial. Meanwhile, employing a dataglove for
virtual-reality-based rehabilitation purposes does not require extremely
precise calibrations. Hence, higher-quality, calibrated datasets are rec-
ommended for studies concerning the mapping of EMG to human joint
kinematics and kinetics, as well as muscle forces.

It is noteworthy that repetition reproducibility within a certain
movement cannot be tested numerically either for sEMG or kinematics
signals owing to their different repetition lengths, i.e., each movement
could not be partitioned to six equal periods, one per each repetition.
However, if this was possible, then another testing approach would be
required where, for each movement, a good-quality signal must exhibit a
high AC/MI between periods, and this applies to both types of signals.

The good performances of the ANN and the pre-inspection techniques
in predicting the CMC, MCP, and PIP rotations compared with the DIP
may be owing to: i) the joint's neutral positions, where these joints can be
bent to larger ROMs in performing the required motions compared with
the DIP joints; and ii) the additional noise in the DIP measurements.
Estimating the wrist movements was more accurate than estimating the
grasp; this could be attributed to the noisier DOF readings during the
grasp tasks in addition to the nature of the neutral positions in which the
joints were bent.

Limitations regarding this study involve the exclusion of the least-
informative sEMG channels (inputs) based on the pure values of the
numerical measures, i.e., the AC andMI between a DOF and all sEMG, not
the normalized ones. It was speculated that normalizing these measures
by dividing them by their maximum values, as an example, and then
discarding those that have values lower than the appropriate thresholds
would be more accurate for excluding the most irrelevant sEMG chan-
nels. For our case, Table 7 shows the normalized values of AC and MI for
the wrist and grasp sets. If the threshold for the MI was set to 0.5, then
sEMG channel 11 would be included in the ANN modeling whereas
channel 12 would not. Another issue was that the AC and MI did not
consider redundancy and complementariness among the input variable



W. Batayneh et al. Heliyon 6 (2020) e03669
sets [50]. For example, conducting a few FFNN trials while maintaining
all the 12 sEMG channels occasionally resulted in slightly better perfor-
mances than excluding channels 11 and 12; meanwhile, in other trials,
lower performances were yielded, each with the same hidden and output
neurons. Nevertheless, other approaches considered issues of input (or
feature) redundancy and/or relevancy, such as joint mutual information
[51], conditional mutual-information-based feature selection [52], and
more recently, conditional mutual-information-based feature selection
considering interactions [53], andMI combinedwith themeasurement of
kernel canonical correlation analysis [54].

6. Conclusion

In this study, a dataset, including sEMG and hand kinematics signals,
was carefully investigated using different visual and numerical methods
from different aspects. The findings of these methods were consistent
with those of MI. Moreover, all of them successfully predicted the ANN
performance. This indicated the importance of signal pre-investigation
techniques when selecting the inputs or features used in training ANN
and ML models. In the future, more advanced input variable ranking
techniques will be applied on different ML algorithms in datasets whose
kinematics readings are well calibrated, less noisy, and have clearer
movement periodicities. Additionally, they should be tested on various
features that encompass domains of time, frequency, and time-
–frequency. Finally, based on observations of this study, “if–then”-based
intelligent models, such as fuzzy Logic, should be used for modeling
purposes.
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