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In brief
Analysis of the immune landscape in the

lung and peripheral blood of COVID

patients across different regions in China

at the single-cell level documents the

presence of viral RNAs in diverse cell

types and highlights the potential

contribution of megakaryocytes and

monocyte subsets to cytokine storms.
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SUMMARY
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme im-
pacting symptoms andmortality, yet a detailed understanding of pertinent immune cells is not complete. We
applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a
comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that
different peripheral immune subtype changes are associated with distinct clinical features, including age,
sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic
changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and
monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe pa-
tients. Our data provide a rich resource for understanding the pathogenesis of and developing effective ther-
apeutic strategies for COVID-19.
INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused

more than 98 million infections and more than 2.1 million deaths
according to the statistics of World Health Organization (WHO)

as of January 24, 2021. Although many COVID-19 patients are

asymptomatic or experience only mild or moderate symptoms,

some patients progress to severe disease or even death. It is

thus important to understand the diseasemechanisms to control
Cell 184, 1895–1913, April 1, 2021 ª 2021 Elsevier Inc. 1895
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the pandemic. Multiple studies have suggested the alterations of

immune responses as one of the key mechanisms for severe

symptoms (Guo et al., 2020; Schulte-Schrepping et al., 2020; Sil-

vin et al., 2020; Wen et al., 2020; Zhang et al., 2020a, 2020b).

While recent studies have offered deeper insights (Blanco-

Melo et al., 2020; Mathew et al., 2020; Su et al., 2020), a detailed

immune landscape of COVID-19 patients in both lung and pe-

ripheral blood is still needed to dissect the potential changes

associated with disease severity and illustrate the potential sour-

ces of the inflammatory storm in COVID-19.
1896 Cell 184, 1895–1913, April 1, 2021
Single-cell RNA sequencing (scRNA-seq) is powerful at dis-

secting the immune responses and has been applied to

COVID-19 studies (Cao et al., 2020; Chua et al., 2020; Fan

et al., 2020; Su et al., 2020; Wen et al., 2020; Xie et al., 2020;

Zhang et al., 2020a, 2020b). While the current single-cell studies

of COVID-19 have provided important cellular and molecular in-

sights, such studies are often limited by the cohort size and thus

the levels of robustness. Here, we obtained scRNA-seq data for

a cohort of 196 individuals, including hospitalized COVID-19 pa-

tients with moderate or severe disease, and patients in the
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convalescent stage, as well as healthy controls. We reveal that

SARS-CoV-2 RNA could be detected in a wide range of cell

types, accompanied by distinct transcriptomic changes be-

tween SARS-CoV-2-RNA-positive and negative cells. We also

observed critical changes to COVID-19 clinical features. Further,

our data provide a resource to reveal the characteristics of

cytokine storms in patients. Our data and findings may

have important implications for understanding and controlling

COVID-19.

RESULTS

Integrated analysis of COVID-19 scRNA-seq data
To characterize the immune properties of COVID-19, we formed

a Single Cell Consortium for COVID-19 in China (SC4), which

consisted of researchers from 39 institutes or hospitals from

different regions of China. SC4 generated a scRNA-seq dataset

for 171 COVID-19 patients, including 22 patients with mild or

moderate symptoms, 54 hospitalized patients with severe symp-

toms, and 95 recovered convalescent persons (57 with mild or

moderate symptoms and 38 with severe symptoms), as well as

25 healthy controls according to the WHO classification (Fig-

ure 1A; Table S1). 186 out of 284 samples were unpublished. Pa-

tients with mild or moderate symptoms were merged as one

group but were further divided into progression (moderate) or

convalescence (moderate) based on the time of sample collec-

tion (Figure 1A; Table S1). Similarly, we merged patients with se-

vere symptoms or in the critical stage into one group (Figure 1A;

Table S1) and focused on analyzing the molecular and cellular

mechanisms underlying distinctions between mild/moderate

and severe/critical symptoms. This cohort covered an age range

from 6 to 92 years (Figure S1A), in which aged patients were en-

riched in the severe groups, consistent with a previous report

(Huang et al., 2020). Additionally, no significant difference was

noted in the sex composition between the moderate and severe

groups (Figure S1B).

Among the 284 samples, 249 were from peripheral blood

mononuclear cells (PBMCs) with or without further sorting for B

or T cells, and 35 were from the respiratory system, including

12 bronchoalveolar lavage fluid (BALF) samples, 22 sputum

samples, and 1 sample for pleural fluid mononuclear cells

(PFMCs) (Table S1). Seven patients had matching BALF and

PBMC samples collected. Most samples were subjected to

scRNA-seq based on the 10x Genomics 50 sequencing platform

to generate both the gene expression and T cell receptor (TCR)

or B cell receptor (BCR) data (Table S1). Gene expression data

were obtained by the kallisto and bustools programs (Bray

et al., 2016; Melsted et al., 2019), and TCR and BCR sequences

were obtained by the CellRanger program.
Figure 1. Multi-tissue and multi-stage single-cell atlas of COVID-19 pa

(A) Flowchart depicting the overall experimental design of this study. Cells circled

(B) Overview of the cell clusters in the integrated single-cell transcriptomes of 1,46

named based on the cluster-specific gene expression patterns, in which we use

sponding clusters. Genes without high or low labels were specifically expressed

(C) Tissue preference of each cluster measured by the ratio of observed to rando

(D) Patient group preference of each cluster measured by RO/E.

See also Figure S1 and Tables S1 and S2.
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We applied stringent quality-control criteria to ensure that the

selected data were from single and live cells (Table S1). A total of

1,462,702 high-quality single cells were ultimately obtained, with

an average of 4,835 unique molecular identifiers (UMIs), repre-

senting 1,587 genes (Figures S1C–S1E). 64 cell clusters were

derived, covering diverse cell types in the respiratory system

and peripheral blood (Figure 1B). Such an information-rich

resource (available at http://covid19.cancer-pku.cn/ for quick

browsing) enabled accurate annotation and analysis of these

cell clusters at different resolutions (Figures S1F–S1J; Table S2).

Notable differences could be observed based on the t-distrib-

uted stochastic neighbor embedding (t-SNE) projection (Fig-

ure 1A). The tissue preference of each cluster was illustrated

based on RO/E (Figure 1C), i.e., the ratio of observed to randomly

expected cell numbers used for removing the technical varia-

tions on tissue preference estimation (Zhang et al., 2018).

Notably, various clusters of proliferating CD8+ and CD4+ T and

plasma B cells were more enriched in BALF than PBMCs (Fig-

ure 1C). Similarly, the preference of each cluster in different pa-

tient groups was also illustrated (Figure 1D), with proliferative

and activated B and T cells and macrophages more enriched

in severe COVID-19 patients in the disease progression stage.

Association of patient age, sex, COVID-19 severity, and
stage with PBMC compositions
We first analyzed the compositional changes of the broad cate-

gories of immune cells in PBMC. Notably, the percentages of

megakaryocytes and CD14+ monocytes in PBMCs were

elevated, particularly in severe COVID-19 patients during the dis-

ease progression stage (Figure S2A). While natural killer (NK)

cells did not show significant changes among the different

groups, B cells were significantly increased in severe COVID-

19 patients, but T cells and DCs were decreased (Figure S2A),

consistent with the lymphopenia phenomenon previously re-

ported (Chen and John Wherry, 2020).

The large cohort size enabled us to dissect the associations of

age, sex, disease severity, and stage with the compositional

changes of immune cells in PBMCs. We applied analysis of vari-

ance (ANOVA) to interrogate such associations based on 159

PBMC samples each with >1,000 single cells available. We

also incorporated two technical factors in the ANOVA model

for controlling technical variations, i.e, sample type (fresh or

frozen PBMCs) and sample time (days after symptom onset). Af-

ter multiple testing correction, significant associations were

found (Figure 2A). Notably, while most B cell clusters were asso-

ciated with disease recovery status, XBP1+ plasma cells (B_c05-

MZB1-XBP1) showed an association with COVID-19 severity

(Figure 2A). XBP1, POU2AF1, PRDM1, and IRF4 were highly ex-

pressed in B_c05-MZB1-XBP1 (Table S2), confirming this
tients and healthy controls

with dash lines were enriched in samples from the disease progression stage.

2,702 cells derived fromCOVID-19 patients and healthy controls. Clusters were

d ‘‘high’’ or ‘‘low’’ labels to indicate the relative expression levels in the corre-

in the corresponding clusters.

mly expected cell numbers (RO/E) (Zhang et al., 2018).

http://covid19.cancer-pku.cn/
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cluster as plasma cells (Todd et al., 2009). The percentage of

plasma cells in PBMCs could reach 15% in severe COVID-19 pa-

tients, but none of the other individuals could reach 3% (Fig-

ure 2B). This increase was observed irrespective of sample

type (fresh or frozen; Figure 2B), indicating the robustness of

this observation. Similarly, this increase was also irrespective

of sampling time (Figures 2A and S3A). These plasma B cells in

PBMCs highly expressed the genes encoding the constant re-

gions of immunoglobulin A1 (IgA1), IgA2, IgG1, or IgG2 (Fig-

ure 2C), implying their function in the secretion of antigen-spe-

cific antibodies. This observation is consistent with the

previous finding that serum of severe COVID-19 patients had

high titers of SARS-CoV-2-specific antibodies (Ni et al., 2020).

The increase of plasma B cells in PBMCs appeared to be

derived from active proliferation and transitions from memory B

cells based on BCR analysis (Figure S2B). Plasmablast cells

(B_c06_MKI67), characterized by high expression of MKI67 and

thus indicating a proliferative state, were elevated in the periph-

eral blood of severe COVID-19 patients and shared themost clo-

notypes with plasma cells (Figures S2B and S2C). Thememory B

cell cluster (B_c03-CD27-AIM2), expressing relatively high levels

ofCD27,CD80, AIM2,GRIP2, andCOCH, was the secondmajor

source of plasma B cells and shared a large proportion of clono-

typeswithplasmacells andplasmablasts (FigureS2B). Transition

from B_c03-CD27-AIM2 to B_c05-MZB1-XBP1 was supported

by BCRs (Figure S2B) and RNA velocity analysis (Figure S2D).

Similarly, the plasmacytoid dendritic cell cluster DC_c4�LILRA4

was decreased in severe COVID-19 patients in both the progres-

sion and convalescence stages, irrespective of sample process-

ing methods or sampling time (Figures 2A, 2D, and S3B).

Neu_c3�CST7, the largest neutrophil cluster in PBMCs, was

associated with patient age, COVID-19 severity, and stage after

correcting technical covariates (Figures 2A, 2E, and S3C).

For T cells, diverse proliferative T cell subsets, marked by high

levels of MKI67, exhibited distinct associations with COVID-19

severity and stage (Figure 2A). Two proliferative CD4+ T cell clus-

ters were identified, with T_CD4_c13-MKI67-CCL5low character-

ized by high SELL and low CCL5 and T_CD4_c14-MKI67-

CCL5high characterized by low SELL and high CCL5, among

others (Table S2). T_CD4_c13-MKI67-CCL5low cells were

elevated in COVID-19 patients, particularly in those with

severe disease during the disease progression stage (Fig-

ure 2F). Three proliferative CD8+ T cell clusters were identified,

including T_CD8_c10-MKI67-GZMK, T_CD8_c11-MKI67-FOS,

and T_CD8_c12-MKI67-TYROBP. They were increased in

COVID-19 patients but showed different associations with

COVID-19 severity (Figure 2A). T_CD8_c10-MKI67-GZMK, a

proliferative effector memory CD8+ T cell group characterized
Figure 2. Associations of patient age, sex, COVID-19 severity, and sta

(A) Heatmap for q values of ANOVA. Sample type, fresh or frozen; sample time,

(B) Composition comparison for plasma B cells (B_c05-MZB1-XBP1) based on 1

seq data.

(C) Classes of heavy chains for B_c05-MZB1-XBP1.

(D–G) Composition comparison for DC_c4�LILRA4, Neu_c3�CST7, T_CD4_c13

(H) Associations between age and T_CD8_c01�LEF1 (Spearman’s correlation).

(I) Sex differences of T_CD4_c08�GZMK�FOShigh. Adjusted p values < 0.05 are

See also Figure S2 and Table S3.
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by high STMN1, HMGB2, MKI67, and GZMK, was increased in

severe COVID-19 patients, particularly in the convalescence

stage (Figure 2G). The variations of proliferative CD8+ T cell clus-

ters in different severity and stages may indicate the complexity

of T cell responses induced by SARS-CoV-2 infection.

Unlike the B cell cluster B_c03-CD27-AIM2, which increased

in peripheral blood (Figure S2E), T_CD4_c04�ANXA2, a major

source of proliferative CD4+ T cells, was decreased in COVID-

19 patients, particularly in those with severe disease during the

disease progression stage (Figures S2F and S2G). This increase

in proliferative CD4 T cells and decrease in their precursor cells in

severe COVID-19 patientsmay partially explain the dichotomous

and incomplete adaptive immunity previously observed (Gao

et al., 2020). Interestingly, naive CD8+ T cells (T_CD8_c01�LEF1)

exhibited the most significant association with patient age

among T cells (Figures 2A and 2H), providing a plausible expla-

nation for the epidemiological observation of age biases.

Furthermore, sex-associated T cell subsets were also observed,

including T_CD4_c04�ANXA2, T_CD4_c08�GZMK�FOShigh,

and T_CD8_c02�GPR183 (Figures S2H, 2A, and 2I).

In contrast to proliferative T cells that were elevated in PBMCs,

most T cell clusters decreased in COVID-19 patients and varied

in terms of association with disease severity. The significantly

decreased T cell clusters included gdT cells (T_c14_gdT-

TRDV2) and mucosal-associated invariant T (MAIT) cells

(T_CD8_c09-SLC4A10); a CD8+ T cell cluster highly expressing

TYROBP, KLRF1, CD247, and IL2RB (T_CD8_c08-IL2RB); and

three CD4+ T cell clusters showing effector memory characteris-

tics (Figure 2A). Accordingly, decreases of gdT cells and MAIT

cells in the peripheral blood of severe COVID-19 patients (Fig-

ures S2I and S2J) have been supported by flow-cytometry-

based analyses (Jouan et al., 2020).

Association of patient age, sex, COVID-19 severity, and
stage with the diversity of B and T cell repertoires
Our scRNA-seq data also contained TCR and BCR sequence

data and thus provided a rich resource to investigate the TCR/

BCR usage of COVID-19 patients. ANOVA revealed that the di-

versity of B and T cell subsets in PBMC had heterogeneous as-

sociations with the various clinical features (Figure 3A; Table S3).

A diverse set of B and T cell subsets showed associations with

COVID-19 severity (Figure 3A). As exemplified by T_CD4_c02�
AQP3 (Figure 3B), T_CD4_c08�GZMK�FOShigh (Figure 3C),

T_CD8_c01�LEF1 (Figure 3D), and T_CD8_c02�GPR183 (Fig-

ure 3E), the TCR diversity of these T cell subsets tended to be

smaller in severe COVID-19 patients than those with moderate

disease, particularly in the disease progression stage. Among

these clusters, certain T cell subsets also showed sex- and
ge with cellular compositions in PBMCs

days after symptom onset.

59 unsorted PBMC samples with at least 1,000 cells available in the scRNA-

-MKI67-CCL5 low, and T_CD8_c10-MKI67-GZMK.

indicated (two-sided unpaired Wilcoxon tests).
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age-associated variations (Figure 3A), as exemplified by

T_CD4_c08�GZMK�FOShigh (Figure 3F), T_CD8_c01�LEF1

(Figure 3G), T_CD8_c05�ZNF683 (Figure 3H), and T_CD8_

c09�SLC4A10 (Figure 3I). In general, the diversity of these

T cell subsets was higher in females than inmales and in younger

than older individuals. While the diversity of certain B and T cell

subsets was affected by technical variations, including sample

processing methods and sampling time, ANOVA dissected the

effects of clinical features from such technical considerations

and identified associations robust to technical interference (Fig-

ures 3A and S3D–S3K).

We further examined whether identical TCRs or BCRs could

be identified across COVID-19 patients but found very limited

sharing (four BCR clonotypes in two patients). Only one non-

clonal BCR had an identical CDR3 amino acid sequence in its

heavy chain with a comprehensive compendium containing

1,505 SARS-CoV-2-specific antibodies (Raybould et al., 2020).

Such scarcity of common BCRs was in contrast with previous

studies on patients with severe disease who had recovered

from enterovirus A71 infection and influenza vaccination (Chen

et al., 2017; Jiang et al., 2013), suggesting that SARS-CoV-2

infection might not impose dramatic selective pressure on the

somatic evolution of BCRs.

Although no identical BCRs were found, we noticed that the

BCR repertoire of COVID-19 patients exhibited biased VDJ us-

age compared with that of healthy controls. We trained a random

forest classifier with the VDJ usage frequencies to discriminate

COVID-19 patients with moderate or severe symptoms from

healthy controls and found that the classification accuracy

measured by the values of area under curve was as high as

0.85. Among the top 20 VDJ combinations important to discrim-

inate severe COVID-19 patients from healthy controls selected

by random forests, 14 had identical VDJ usage with experimen-

tally verified neutralizing antibodies (Figure 3J). Of note, the VDJ

usage of the currently known SARS-CoV-2-neutralizing anti-

bodies was biased toward IGHV3 and IGHV1 (Figure 3J). In

particular, more than 40 neutralizing antibodies used IGHV3�53.

Such observations and the data may be important for identifying

new neutralizing antibodies.

SARS-CoV-2 RNAs detected in multiple epithelial and
immune cell types
From the six BALF and two sputum samples of severe COVID-19

patients in thediseaseprogression stage,wedetected viral RNAs

of SARS-CoV-2 in 3,085 cells from ciliated, secretory, and squa-

mous epithelial cells and a diverse set of immune cells, including

neutrophils, macrophages, plasma B cells, T cells, and NK cells
Figure 3. Associations of patient age, sex, COVID-19 severity, and sta

(A) Heatmap for q values of ANOVA. Sample type, fresh or frozen; sample time,

(B–E) Comparison for T_CD4_c02�AQP3, T_CD4_c08�GZMK�FOShigh, T_CD8

(F) Sex differences for T_CD4_c08�GZMK�FOShigh.

(G–I) Age associations of the TCR diversity of T_CD8_c01�LEF1, T_CD8_c05-ZN

(J) V gene usage of published SARS-CoV-2 neutralized antibodies and their relatio

used to quantify the skewness of the V gene usage of the published SARS-CoV-2

COVID-19 patients comparedwith healthy controls and their intersections are sho

published SARS-CoV-2 antibodies. Adjusted p values < 0.05 are indicated (two-

See also Figure S3 and Table S3.
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(Figure 4A; Table S4). Fewer cells were obtained in BALF from

moderate COVID-19 patients, and no SARS-CoV-2 RNAwas de-

tected. The identity of these SARS-CoV-2-RNA-positive cells

was confirmed by the corresponding marker genes (Figure 4B).

Interestingly, immune cells harbored even more viral RNA se-

quences than epithelial cells (Figure 4C). Because ACE2 and

TMPRSS2 play critical roles in mediating SARS-CoV-2 entry

(Hoffmann et al., 2020; Zhou et al., 2020), we examined their

expression levels in these cells (Figure 4D). We found that

ACE2 and TMPRSS2were expressed in a subset of these epithe-

lial cells. However, immune cells did not express ACE2 or

TMPRSS2. We then examined host factors recently reported to

be relevant to SARS-CoV-2 entry in our data (Cantuti-Castelvetri

et al., 2020; Daly et al., 2020; Singh et al., 2020; Tang et al., 2020)

and found that BSG and TFRC demonstrated correlations with

the abundance of viral RNA in different cell types (Figures 4E

and S4A). Consistently, independent scRNA-seq studies of

COVID-19 patients also identified SARS-CoV-2 RNAs in neutro-

phils and macrophages (Bost et al., 2020; Chua et al., 2020). In

BALF or sputum samples from patients with moderate symp-

toms,wedid not detect SARS-CoV-2RNAbased on scRNA-seq.

Since interferon-stimulated genes (ISGs) are typically associ-

ated with viral RNA sensing (Schoggins and Rice, 2011), we

next examined the expression of ISGs in these cells (Figures

4F and S4B; Table S4). Compared with matched cell types in

PBMCs, which were negative for SARS-CoV-2 RNA, ISG genes

exhibited elevated expression in these viral-RNA-positive

immune cells (Figure S4B; Table S5). Compared with viral-

RNA-negative immune cells of the same types in the BALF,

SARS-CoV-2-RNA-positive epithelial cells, including ciliated,

secretory, and squamous cells, as well as virus-RNA-positive

neutrophils, exhibited higher levels of ISG expression (Table

S5). Positive correlations between the abundance of viral RNAs

and ISG expression levels were observed for most cell types af-

ter removing potential dropouts in scRNA-seq (Figure S4C).

We then examined the detection rates of different SARS-CoV-

2 genes in these cells (Figure 4G). In our cohort, SARS-CoV-2-

RNA-positive immune cells were detected in different research

centers based on either 10x Genomics 50 or 30 sequencing plat-

forms. Since coronaviruses are characterized by subgenomic

transcription and the genome of SARS-CoV-2 is a single and

positive RNA strand, genes close to the 30 end of the genome

were expected to have higher detection rates than those close

to the 50 end if subgenomic transcription occurred. In fact,

both 10x 50 and 30 sequencing data demonstrated a 30-enriched
detection pattern along the SARS-CoV-2 genome in viral-RNA-

positive cells, reminiscent of subgenomic transcription, in
ge with the diversity of B and T cell repertoires in PBMCs

days after symptom onset.

_c01�LEF1, and T_CD8_c02�GPR183.

F683, and T_CD8_c09-SLC4A10 (Spearman’s correlation).

nship with those differentially used IGHV genes in our dataset. Gini-index was

neutralized antibodies. IGHV genes differentially used by moderate or severe

wnwith different colors. Venn diagram is used to show their overlaps with those

sided unpaired Wilcoxon test).
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contrast to those cells without detectable SARS-CoV-2 RNA

(Figures 4G and S4D). Since both 50 and 30 sequencing platforms

detected consistent patterns along the genome, the positive and

negative strands of the SARS-CoV-2 genome (at least the sub-

genomes) likely both exist in these cell types, implicating active

viral replication and transcription. We further validated the pres-

ence of a viral signal in lymphocytes with immunohistochemical

(IHC) staining of the viral spike protein in lung tissue from a se-

vere COVID-19 patient (Figures 4H and S4E).

Although type II alveolar (AT2) cells are vulnerable to SARS-

CoV-2 infection (Hou et al., 2020), our study revealed few AT2

cells in the BALF and no detectable SARS-CoV-2 RNA in AT2

cells, consistent with the notion that lower respiratory tract cells

are less likely to be infected with SARS-CoV-2 than those from

the nasal and upper respiratory tract (Hou et al., 2020; Sungnak

et al., 2020). The detection of SARS-CoV-2 RNA in epithelial and

immune cells was independent of sample processing methods

(all fresh samples) or sampling days (8–18 days after symptom

onset) in our dataset.

Transcriptomic differences between SARS-CoV-2-RNA-
positive and negative epithelial cells and the potential
impact on cell-cell interactions
The presence of SARS-CoV-2 RNA in different epithelial cells

seemed to be associated with additional transcriptomic

changes. For squamous epithelial cells, SARS-CoV-2-RNA-pos-

itive cells exhibited elevated expression of a diverse set of genes,

such as NT5E, CLCA4, and SULT2B1 (Figure 5A). These genes

were enriched in pathways such as ‘‘response to virus,’’

‘‘response to type I interferon,’’ and ‘‘response to hypoxia’’ (Fig-

ure 5B). By contrast, the number of differential genes between

SARS-CoV-2-RNA-positive and negative ciliated epithelial cells

was much smaller, and few genes showed consistent changes

in all the three epithelial cell types (Figure 5C).

We next explored the potential impact of the above transcrip-

tomic changes. Annexin A1 (ANXA1), upregulated in SARS-CoV-

2 RNA-positive squamous epithelial cells (Figure S5A), is known

to regulate the functions of neutrophils in inflammation via its in-

teractions with formyl peptide receptors (Sugimoto et al., 2016).

This prompted us to investigate the potential cellular interaction

differences between SARS-CoV-2-RNA-positive and negative

cells. Based on CSOmap, a bioinformatics tool used to estimate

cell-cell interactions in three-dimensional space via ligand-re-

ceptor-mediated cell self-organization and competition (Ren

et al., 2020), we estimated the cellular interaction potentials in
Figure 4. Cell types with SARS-Cov-2 RNA detected

(A) 3,085 cells with SARS-CoV-2 RNA detected (UMI > 0) from BALF (6/12) and sp

CoV-2 positive.

(B) Markers used to determine cell types. Goblet and basal cells were merged a

(C) Viral load in each cell quantified by log(CPM).

(D) Expression levels of host factors reported to associate with SARS-CoV-2 infe

(E) Pearson’s correlations of host factor expression with viral load (zero-expre

dropouts).

(F) Expression levels of ISGs in cells with viral RNA detected.

(G) Detection rates of SARS-CoV-2 genes in different cell types on both 10x Geno

the ratio of the number of gv
+ cells to the total viral-RNA-positive cells of the specifi

(H) IHC staining of CD3 and SARS-CoV-2 spike protein in pulmonary tissue. Sca

See also Figure S4 and Tables S4 and S5.
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a computationally constructed pseudo-space. We found that

SARS-CoV-2-RNA-positive ciliated, secretory, and squamous

epithelial cells exhibited distinct interaction potentials between

the severe and moderate groups (Figure 5D).

SARS-CoV-2-RNA-positive ciliated epithelial cells exhibited

lower interaction potentials with themselves and dispersed in

the outer compartment of the pseudo-space topologically equiv-

alent to the airway tract (Figures 5E, S5B, and S5C), similar to the

pathological phenomenon of epithelial denudation of coronavi-

rus infection in respiratory tract (Lee et al., 2003; Nicholls et al.,

2003). By contrast, SARS-CoV-2 RNA-positive squamous

epithelial cells showed enhanced interacting potentials with

themselves compared with squamous cells without viral RNA

detected (Figure S5D). Such changes were consistent across

COVID-19 patients (Figure 5E). Comparison across ciliated,

secretory, and squamous epithelial cells also highlighted the

dispersing tendency of ciliated cells and the interacting potential

among squamous cells themselves (Figures 5F and 5G).

Such distinctions existed not only in interactions among

epithelial cells but also in interactions with immune cells. Consis-

tent with the dispersing nature of ciliated cells in the outer

compartment of the pseudo-space, no significant interactions

were observed between viral-RNA-positive ciliated cells and im-

mune cells. Viral-RNA-positive secretory epithelial cells showed

interactions with neutrophils and macrophages in moderate

COVID-19 patients via the SCGB3A1-MARCO axis (Figures

S5E and S5F), but such interactions might be subdued in severe

COVID-19 patients due to the downregulation of MARCO (Fig-

ure S5G). In severe patients, viral-RNA-positive squamous cells

showed significant interactions with neutrophils and macro-

phages via the ANXA1-FPR1 and S100A9/A8-TLR4 axes (Fig-

ure 5H). Neutrophils and macrophages exhibiting high interact-

ing potentials with viral-RNA-positive squamous epithelial cells

were also prone to be SARS-CoV-2 RNA positive (Figure 5I).

As ANXA1-FPR1 and S100A9/A8-TLR4 interactions have been

reported to play critical roles in the recruitment of immune cells

and inflammatory cascade in sepsis and tumors (Gavins et al.,

2012; Laouedj et al., 2017; Osei-Owusu et al., 2019; Vogl et al.,

2007), we hypothesize that they might also play important roles

in the pathogenesis of COVID-19.

ANXA1, FPR1, S100A9, S100A8, and TLR4 also exhibited sys-

temic changes in a wide range of immune cells between moder-

ate and severe COVID-19 patients (Figures S6A and S6B). Inter-

estingly, for most immune cell clusters in BALF, the expression

levels of ANXA1 and FPR1 were downregulated in severe
utum (2/22) samples. No cells from PBMCs or PFMCs were detected as SARS-

s secretory epithelial cells for convenience in the subsequent analyses.

ction in literature.

ssion cells were excluded from regression analysis to reduce the effects of

mics 50 and 30 platforms. Given a viral gene gv, the detection rate is defined as

c cell type and then normalized by the gene length in the SARS-CoV-2 genome.

le bar, 100 mM.
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COVID-19 patients compared with moderate COVID-19 patients

(Figure S6B). But in PBMCs, except for MAIT cells (T_CD8_c09-

SLC4A10) and gdT cells (T_gdT_c14-TRDV2), ANXA1 and FPR1

were significantly upregulated in multiple cell types in severe

COVID-19 patients (Figure S6A). For severe COVID-19 patients

in the disease progression stage, S100A9 and S100A8 were

significantly upregulated in almost all cell clusters for both

BALF and PBMCs (Figures S6A and S6B). In particular, the levels

of S100A9 and S100A8 were significantly upregulated in T, B,

NK, and dendritic cells compared to moderate patients (Figures

S6A and S6B), indicating a systemic inflammatory response.

TLR4 did not exhibit notable differences in PBMCs between se-

vere and moderate COVID-19 patients (Figure S6A) but was

significantly downregulated in certain BALF monocyte and

macrophage subsets (Figure S6B).

Megakaryocytes and monocyte subsets as critical
peripheral sources of cytokine storms
We next sought to investigate the potential sources of cytokine

production. We first defined a cytokine score and inflammatory

score for each cell based on the expression of the collected cyto-

kine genes and reported inflammatory response genes (Liberzon

et al., 2015) (Table S6), respectively, and used these two interre-

lated scores as indicators to evaluate the potential contribution

to inflammatory cytokine storm for each cell. We found apparent

elevated expression of cytokine and inflammatory genes in pa-

tients, especially at the severe progression stage (Figures 6A

and S7A), indicating the existence of inflammatory cytokine

storm. Seven cell subtypes, including three subtypes of mono-

cytes (Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1, and

Mono_c3-CD14-VCAN), three subtypes of T cells (T_CD4_c08-

GZMK-FOShigh, T_CD8_c06-TNF, and T_CD8_c09-SLC4A10),

and one subtype of megakaryocytes, were detected with signif-

icantly higher cytokine and inflammatory scores based on our

scRNA-seq data for PBMC samples (Figure S7B; Table S7; p <

0.0001), indicating that these cells might be major sources of

the inflammatory storm. Interestingly, megakaryocytes, which

have been connected to the inflammatory response in COVID-

19 patients (Manne et al., 2020; Thachil and Lisman, 2020),

may affect the functions of platelets at the disease stage, consis-
Figure 5. Impact of viral RNA presence on the expression and cell-cel
(A) Volcano plot showing differentially expressed genes between squamous cells w

Wilcoxon test. ANXA1 is denoted in dark blue.

(B) Enriched Gene Ontology (GO) terms in genes highly expressed in virus-positi

(C) Venn plot showing the intersection of genes upregulated in different epithelia

(D) Cell-cell interaction networks of one severe COVID-19 patient (left) and one

BALFs. Interactions with q values < 0.1 are shown. Significance: �log10(q values

(E) Boxplots showing the self-distances among ciliated, secretory, and squamou

CSOmap. Each dot represents an individual patient. Two-sided paired Wilcoxon

(F) Violin plot showing the self-distances of three types of epithelial cells with vira

(G) Boxplot showing themedian self-distances of three type of epithelial cells with

individual patient. Two-sided unpaired Wilcoxon test.

(H) Pie charts showing the ligand-receptor contribution to the interaction betwee

positive squamous cells and virus-positive macrophages (bottom).

(I) Boxplot showing the interactions between squamous cells (with and without v

Each dot represents an individual patient. Two-sided unpaired Wilcoxon test. N

expectation (nA 3 nB, where n is the cell number of type A or B).

See also Figures S5 and S6.
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tent with a previous study (Manne et al., 2020). By contrast, eight

cell subtypes exhibited higher cytokine scores even though their

inflammatory scores showed no difference compared with other

cell clusters (Figure S7B; Table S7; p < 0.0001).

We then investigated the proportion of each of the seven cell

subtypes in patients and found that these hyper-inflammatory

cell subtypes were enriched in patients with severe disease (Fig-

ure S7C). The proportion of these hyper-inflammatory cell sub-

types in PBMCs showed different enrichment patterns in patient

groups (Figure 6B). Mono_c1-CD14-CCL3 was highly enriched

in a subpopulation of severe patients that were likely to be

accompanied by an inflammatory storm (Figure 6C), and the pro-

portion of these cells was also correlated with the age of the cor-

responding patients (Figure 6D). Hyper-inflammatory megakar-

yocytes were enriched in another batch of patients with severe

disease who also could have been experiencing an excessive in-

flammatory response (Figures 6B and 6C). To determine whether

the two cell types influence the immune state of severe COVID-

19 patients, we further compared the inflammatory scores of pa-

tients with severe disease according to whether they showed

enrichment with the two types of cells (Figure S7D). Patients

with one or both cell types showed higher scores than those

with neither of the cell types (Figure S7E).

By contrast, Mono_c2-CD14-HLA-DPB1 and Mono_c3-

CD14-VCAN subtypes were widely distributed in every disease

stage, and the proportion of hyper-inflammatory T cells (e.g.,

the T_CD4_c08-GZMK-FOShigh subtype) decreased in patients

with severe disease at the progression stage (Figures 6B, 6C,

and S7B), although both of these monocyte subtypes exhibited

increased proportions in older convalescent patients (Figure 6D).

Taken together, Mono_c1-CD14-CCL3 and megakaryocytes

might be the major sources in PBMCs triggering the cytokine in-

flammatory storm, with cell ratios, inflammatory expression, or

both elevated in severe COVID-19 patients. Certain T cell sub-

types might also contribute to the inflammatory storm via

enhanced expression of pro-inflammatory cytokines.

Next, we investigated the inflammatory signatures for each hy-

per-inflammatory cell subtype and found unique pro-inflamma-

tory cytokine gene expression in each cell subtype (Figure 6E),

such as TNF, CCL3, IL1B, CXCL8, IL6, TGFB1, LTB, and IFNG,
l interaction of epithelial subtypes
ith or without viral RNA detected. Adjusted p value < 0.05, two-sided unpaired

ve squamous cells shown in (A).

l cells with viral detection.

moderate COVID-19 patient (right) inferred by CSOmap-based on data from

).

s cells with or without viral RNA detection in the pseudo-spaces predicted by

test.

l detection (exemplified by one patient). Two-sided unpaired Wilcoxon test.

viral detection from all the patients with BALF samples. Each dot represents an

n virus-positive squamous cells and virus-positive neutrophils (top) and virus-

iral detection) and macrophage (left) and neutrophils (left) with viral detection.

ormalized connections: observed cell-cell interactions normalized by random
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suggesting diverse mechanisms potentially resulting in cytokine

storms. The hyper-inflammatory Mono_c1-CD14-CCL3 largely

expressed more cell-type-specific cytokines, suggesting central

roles of the two cell types in driving the inflammatory storm. In

particular, Mono_c1-CD14-CCL3 highly expressed CCL3,

IL1RN, and TNF, which were detected at much higher levels in

plasma in another cohort of patients at the severe stage, espe-

cially critically ill patients (Figures 6E and S7F). For 19 patients,

we collected both scRNA-seq data and cytokine detection re-

sults using plasma (Table S7). Both data sources supported

the finding that severe patients had higher level of multiple pro-

inflammatory cytokines, such as IL1B, TNF, IL-6, and CCL3 (Fig-

ure 6F). This further confirmed the accuracy of our scRNA-seq

analysis. Although the inflammatory megakaryocytes highly ex-

pressed cell-type identity marker genes such as PPBP (Zhang

et al., 1997), the expression level of these genes was decreased

in patients compared to healthy controls, indicating a loss of

function of these cells after inflammatory activation (Figures 6E

and 6G). Notably, the T_CD8_c06-TNF subtype specifically

and highly expressed IFNG, a pro-inflammatory cytokine highly

enriched in patients at the progression (severe) stage, was also

confirmed by plasma cytokine detection (Figures 6E, 6G, and

S7F). Moreover, pro-inflammatory cytokines CXCL8 and IFNG

showed age-dependent expression in patients with disease pro-

gression, while no significance was observed in healthy controls

(Figure 6H). This age-dependent expression of pro-inflammatory

cytokines in COVID-19 patients could not be observed in influ-

enza patients (Figures S7G and S7H), consistent with a recent

study that reported similar patterns of immune cells between ag-

ing and COVID-19 patients (Zheng et al., 2020). PPBP showed

no correlation with age in either patients or healthy controls, sug-

gesting that the potential loss of function of megakaryocytes

might not be age dependent (Figure 6H).
Figure 6. Mono_c1-CD14-CCL3 and megakaryocytes in peripheral bloo

(A) t-SNE plots of PBMCs colored by major cell types (top left panel), inflammato

score (bottom panel).

(B) Heatmap and unsupervised clustering of cell proportion of seven hyper-inflam

(C) Boxplots of the cell proportion of Mono_c1-CD14-CCL3, Mega, and T_CD4_c0

(moderate, n = 48), patients with progression (moderate, n = 18), convalescent pat

Wilcoxon test.

(D) Ordinary least-squares model of age to cell proportion of Mono_c1-CD14-C

healthy controls (blue, n = 20), convalescent patients (purple, n = 83), and patien

ordinary least-squares model.

(E) Heatmap of cytokine expression among seven hyper-inflammatory cell subty

(F) Boxplots of cytokine expression based on scRNA-seq and plasma profiling fo

patients (severe, n = 5, for both scRNA-seq and plasma), and patients with pr

coxon test.

(G) Boxplots of the cytokine expression of Mono_c1-CD14-CCL3, Mega and T_

(moderate, n = 48), patients with progression (moderate, n = 18), convalescent pat

Wilcoxon test.

(H) Ordinary least-squares model of age to cytokine expression of Mono_c1-CD1

20) and patients with progression (n = 18 + 38). p value was assessed with the F

In (C), (F), and (G), the box represents the second and third quartiles and media

outliers. In (B) and (E), Mono_c1, Mono_c2, Mono_c3, T_CD4_c08, T_CD8_c09, T

HLA-DPB1, Mono_c3-CD14-VCAN, T_CD4_c08-GZMK-FOShigh, T_CD8_c09-

T_CD8_c03, T_CD8_c04, T_CD8_c05, T_CD8_c07, T_gdT_c14, and T_CD8_c0

T_CD8_c04-COTL1, T_CD8_c05-ZNF683, T_CD8_c07-TYROBP, T_gdT_c14-TR

cells; Mega, megakaryocytes; Mono, monocytes.

See also Figure S7 and Tables S6 and S7.
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Interactions of hyper-inflammatory cell subtypes in lung
and peripheral blood
A cytokine storm may cause immunopathological injury to the

lung, and large amounts of infiltrating inflammatory immune cells

have been demonstrated in the pulmonary tissue of COVID-19

patients (Cao, 2020). We compared the inflammatory and cyto-

kine scores among all of the cell subtypes captured in BALF.

No enrichment of cytokine genes was observed in epithelial

cells, while subtypes of macrophages and monocytes had the

highest cytokine and inflammatory scores in the progression (se-

vere) samples (Figure 7A). Similar to our analysis of PBMCs,

we identified five hyper-inflammatory cell subtypes, including

Macro_c2-CCL3L1, the three subtypes of monocytes, and neu-

trophils (Figure 7B), suggesting that these cell subtypesmight be

the major sources driving the inflammatory storm in lung tissue.

None of the CD4+ or CD8+ T cells were detected with an elevated

inflammatory score or cytokine score in BALF samples, which

was different from those in PBMCs. Each hyper-inflammatory

subtype highly expressed specific cytokines; for example, Mac-

ro_c2-CCL3L1 specifically expressed CCL8, CXCL10/11, and

IL6. Mono_c1-CD14-CCL3, as one of the most notable pro-in-

flammatory cell types in both peripheral blood and BALF,

uniquely expressed high levels of IL1B, CCL20, CXCL2,

CXCL3, CCL3, CCL4, HBEGF, and TNF. Neutrophils also

showed multiple uniquely expressed cytokines, including

TNFSF13B, CXCL8, FTH1, and CXCL16 (Figure 7C).

We reasoned that the systematic inflammatory storm might

also be associated with cellular cross-talk between lung and pe-

ripheral blood via secreting diverse cytokines. To examine this,

we analyzed the ligand-receptor pairing patterns among hyper-

inflammatory cell subtypes in severe and moderate samples

within PBMCs and BALF, respectively (Figure S8). The interac-

tions between PBMCs and BALF cells appeared to show
d appear as a dominant source for the inflammatory cytokine storm

ry cell types (top right panel), cytokine score (middle panel), and inflammatory

matory cell subtypes (row normalized).

8-GZMK-FOShigh clusters from healthy controls (n = 20), convalescent patients

ients (severe, n = 35), and patients with progression (severe, n = 38). Two-sided

CL3, Mono_c2-CD14-HLA-DPB1, and Mono_c3-CD14-VCAN clusters from

ts with progression (red, n = 56). p value was assessed with the F-statistic for

pes (red font) and other clusters (gray font).

r healthy controls (n = 20 for scRNA-seq, and n = 5 for plasma), convalescent

ogression (severe, n = 14, for both scRNA-seq and plasma). Two-sided Wil-

CD8_c06-TNF clusters from healthy controls (n = 20), convalescent patients

ients (severe, n = 35), and patients with progression (severe, n = 38). Two-sided

4-CCL3, Mega, and T_CD8_c06-TNF clusters from healthy controls (blue, n =

-statistic for ordinary least-squares model.

n, whiskers each extend 1.5 times the interquartile range, and dots represent

_CD8_c06, and Mega correspond to Mono_c1-CD14-CCL3, Mono_c2-CD14-

SLC4A10, T_CD8_c06-TNF, and Mega, respectively. In (E), T_CD4_c11,

8, NK_c01 correspond to clusters of T_CD4_c11-GNLY, T_CD8_c03-GZMK,

DV2, T_CD8_c08-IL2RB, and NK_c01-FCGR3A, respectively. DC, dendritic



Figure 7. The interactions of hyper-inflammatory cell subtypes in lung and peripheral blood

(A) t-SNE plots of BALF cells colored by major cell types (top panel), cytokine score (middle panel), and inflammatory score (bottom panel).

(B) Boxplots of the inflammatory score (top panel) and cytokine score (bottom panel) of cell subtypes. Significance was evaluated with the Wilcoxon rank-sum

test. ****p < 0.0001.

(C) Heatmap and unsupervised clustering of cytokine expression of five hyper-inflammatory cell subtypes.

(D) Circos plot showing the prioritized interactions mediated by ligand-receptor pairs between inflammation-related cell types from BALF and PBMCs,

respectively. The outer ring displays color-coded cell types, and the inner ring represents the involved ligand-receptor interacting pairs. The line width and arrow

width are proportional to the log fold change between severe andmoderate progression groups in ligand and receptor, respectively. Colors and types of lines are

used to indicate different types of interactions as shown in the legend. The bar plot at bottom indicates the interaction score for each interaction, which serves to

measure the interaction strength. DC, dendritic cells; Epi, epithelial cells; Macro, macrophage cells; Mono, monocytes; Neu, neutrophils.

See also Figure S8 and Table S6.
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significant alterations (Figure 7D). Our data revealed elevated

ligand-receptor interactions of hyper-inflammatory cells in pa-

tients at the severe compared to moderate stage. Interestingly,

cells in the peripheral blood of patients with severe disease

showed much lower interactions with each other compared to

those in BALF (Figure S8A), except for megakaryocytes, which

expressed IL1B and could potentially stimulate Mono_c1-

CD14-CCL3 cells. Mono_c1-CD14-CCL3 cells in BALF ex-

pressed CCR5, which could receive multiple cytokine stimuli

secreted by other cell types in both the lung tissue and the pe-

ripheral blood. By contrast, the interactions of Macro_c2-

CCL3L1 cells mainly relied on CCR2 and IL1R2. Collectively,

these findings illustrate the molecular basis for the potential

cell-cell interactions at the pulmonary interface in an inflamed

state in COVID-19 patients.

DISCUSSION

Our SC4 alliance members generated scRNA-seq data for 284

clinical samples from 196 COVID-19 patients and healthy con-

trols in China and constructed an information-rich data resource

for dissecting the immune responses of COVID-19 patients at

single-cell resolution. This dataset covered both lung and blood

samples of COVID-19 patients with a wide age range, balanced

sex ratio, moderate and severe symptoms, and both progression

and convalescence stages. 64 well-annotated cell subsets were

clustered, providing fine details of the cellular and molecular re-

sponses to SARS-CoV-2 infection.

The comprehensive nature of our dataset proved to be power-

ful at dissecting the associations of age, sex, disease severity,

and stage with the diverse immune subsets in SARS-CoV-2

infection. In general, plasma B and proliferative T cells were

associated with disease severity, while compositional differ-

ences of the precursor cells of these adaptive immune cell types

were more prone to be influenced by sex and age. Of note, age

and sex also seemed to impact the diversity of TCR/BCR reper-

toires for a wide range of T and B cells, which may have clinical

implications.

We also demonstrated the presence of SARS-CoV-2 se-

quences in both epithelial and immune cells, along with any

altered transcriptomic properties. The presence of viral se-

quences in multiple epithelial cell types in the human respiratory

tract, including ciliated, secretory, and squamous cells, is likely

explained by viral infection, although the consequences of viral

presence appear to be distinct. The presence of SARS-CoV-2

RNA in various immune cell types, including neutrophils, macro-

phages, plasma B cells, T cells, and NK cells, was surprising to

us initially, but the research community is beginning to appre-

ciate this phenomenon. While it is still not clear how such im-

mune cells would acquire viral sequences, our findings provide

tractable angles to further explore these important questions. It

appears to us that such viral presence in immune cells, through

infection or otherwise, is not without functional consequences.

In our attempt to dissect the cellular origins of potential cyto-

kine storms, we found that megakaryocytes and a fewmonocyte

subsets might be key sources of a diverse set of cytokines highly

elevated in COVID-19 patients with severe disease progression.

Potential cross-talk between lung and peripheral blood could be
1910 Cell 184, 1895–1913, April 1, 2021
abstracted from our dataset, as exemplified in Figure S8B, facil-

itating future studies.

In summary, the large scRNA-seq dataset covering diverse

disease severity and stages has revealed multiple immune char-

acteristics of COVID-19 that were not adequately appreciated

previously. Such data provide a critical resource and important

insights in dissecting the pathogenesis of COVID-19 and poten-

tially help the development of effective therapeutics and vac-

cines against SARS-CoV-2.

Limitations of the study
Our data may have variations introduced by different sample

processing methods (fresh or frozen) and the wide time range

of sampling after symptom onset. While we have made efforts

to explicitly include these factors in analyses by ANOVA, their

potential impact needs to be considered. While our data show

the presence of SARS-CoV-2 RNA and S proteins in epithelial

and immune cells, follow-up studies are needed to explore

whether these amount to direct infection and what the conse-

quences therein are.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bio-Plex Pro Human Cytokine Screening Panel,

48-Plex

BIO-RAD Cat #12007283

Human Cytokine/Chemokine/Growth Factor

Panel A Magnetic Bead Panel

LINCO Research, Inc. Cat #HCYTA-60K-PX48

Biological samples

PBMC, PFMC, BALF and sputum samples from 171

COVID-19 patients and 25 healthy donors

Single Cell Consortium for

COVID-19 in China (SC4)

This paper (Table S1)

Critical commercial assays

Fixation/Permeabilization Solution Kit BD Biosciences Cat #554714

SureSelectXT Target Enrichment System for Illumina

Paired-End Multiplexed Sequencing Library Kit

Aglient Cat #G9701

TruePrep DNA Library Prep Kit V2 for Illumina Vazyme Biotech Cat #TD503

Chromium Single Cell 3 0 Library and Bead kit 10x Genomics Cat #PN-120237

Chromium Single Cell 30 Chip Kit v2 10x Genomics Cat #PN-120236

Chromium i7 Multiplex Kit 10x Genomics Cat #PN-120262

Hiseq 3000/4000 SBS kit Illunima Cat #FC-410-1003

Hiseq 3000/4000 PE cluster kit Illunima Cat #PE-410-1001

Deposited data

Data files for single-cell RNA sequencing (processed data) This paper The NCBI GEO database (GSE158055)

Raw data This paper Genome Sequence Archive: HRA001149

Software and algorithms

Harmony (Korsunsky et al., 2019) https://github.com/immunogenomics/harmony

Cellranger v3.0.2 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/ahta-is-cell-ranger

kb v0.24.4 Bray et al., 2016; Melsted

et al., 2019

https://github.com/pachterlab/kb_python

kallisto v0.46.1 Bray et al., 2016 https://github.com/pachterlab/kallisto

bustools v0.39.3 Melsted et al., 2019 https://github.com/BUStools/bustools

STARTRAC Zhang et al., 2018 https://github.com/Japrin/STARTRAC

Seurat 2.3.0/3.0 (Butler et al., 2018) http://satijalab.org/seurat

scanpy 1.4.6/1.5.1 Wolf et al., 2018 https://scanpy.readthedocs.io/en/latest/

CSOmap Ren et al., 2020 https://github.com/zhongguojie1998/CSOmap

SCENIC 1.1.2-2 Aibar et al., 2017 https://github.com/aertslab/SCENIC

Scrublet (Wolock et al., 2019) https://github.com/AllonKleinLab/scrublet
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Zemin

Zhang (zemin@pku.edu.cn).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
The processed gene expression data in this paper have been deposited into the NCBI GEO database: GSE158055. Visualization of

this dataset can be found at http://covid19.cancer-pku.cn. The raw data are available from Genome Sequence Archive for human

with accession ID: HRA001149 (https://ngdc.cncb.ac.cn/gsa-human/browse/HRA001149). Additional Supplemental Items are

also available at Mendeley Data: https://dx.doi.org/10.17632/dvp4y5ttd5.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
This study strictly follows the principles according to the Declaration of Helsinki, with written informed consents obtained from all

participants before sample collection according to regular principles. Ethical approvals were gained from the Ethics Committees

of 19 institutions, including State Key Laboratory of Ophthalmology of Sun Yat-sen University, Department of Infectious Diseases

of Fifth Medical Center of Chinese PLA General Hospital, Eastern Hepatobiliary Surgery Hospital of Second Military Medical Univer-

sity, Guangzhou Regenerative Medicine and Health GuangDong Laboratory, Institute of Biophysics of Chinese Academy of Sci-

ences, The First Affiliated Hospital of University of Science and Technology of China, Cancer Center of Renmin Hospital of Wuhan

University, Department of Laboratory Medicine of Yuebei People’s Hospital of Shantou University Medical College, Shenzhen Third

People’s Hospital, Center for Life Sciences of Harbin Institute of Technology, School of Life Science and Technology of Harbin Insti-

tute of Technology, Institute of Pathology and Southwest Cancer Center of Army Medical University, Southwest Hospital of Army

Medical University of Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of

Medical Sciences and Peking Union Medical College, State Key Laboratory of Experimental Hematology and National Clinical

Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Shanghai Institute of Immunology of

Department ofMicrobiology and Immunology of Shanghai Jiao TongUniversity School ofMedicine, Guangzhou Institutes of Biomed-

icine and Health of Chinese Academy of Sciences, Beijing Youan Hospital of Capital Medical University, State Key Laboratory of

Oncology in South China, Collaborative Innovation Center for Cancer Medicine of Sun Yat-sen University Cancer Center.

Biological samples
A total of 171 patients with COVID-19 and 25 healthy individuals in this study were enrolled from 37 centers/ laboratories, with sam-

ples (n = 284) collected. Samples of COVID-19 were further categorized into groups of moderate convalescence (n = 89), moderate

progression (n = 33), severe convalescence (n = 51) and severe progression (n = 83) according to disease severity (moderate or se-

vere) and stages (progression and convalescence) based on the WHO guidelines (https://www.who.int/publications/i/item/

clinical-management-of-covid-19). The sex ratio between female and male donor is 106:177. The age of the donors ranges from

6 to 92. Of all the 284 samples, 249 samples were collected from PBMC, among which 77 samples have sorted B/T cells or both.

13 samples were collected from lung tissues, including 12 BALF samples and 1 PFMC sample.We also collected 22 sputum samples

from patients as well. Among all the samples, we have 7 paired lung BALF and PBMC samples. Single-cell transcriptome data for

each sample was profiled using 10x Genomics scRNA-seq platform. Single-cell sequencing of TCRs (13 samples) and BCRs (53

samples) or both (11 samples) was also performed for part of the samples. Detailed clinical information and demographic character-

istics of patient cohorts were shown in Table S1.

METHOD DETAILS

Sample collection
Blood samples that were not immediately processed for cell encapsulation were mixed with Whole Blood Cell Stabilizer (Cytodelics)

and stored at �80�C freezer. The peripheral blood mononuclear cells (PBMCs) were isolated using standard density gradient centri-

fugation and then used for 10x single-cell RNA-seq. Bronchoalveolar lavage fluid (BALF) samples were collected fromCOVID-19 pa-

tients during intubation and processed with 2h according to WHO guidance. BALF was passed through 100-mmnylon cell strainer to

obtain single cell suspensions with cooled RPMI 1640 completemedium. Cells in the BALFwere freshly used for 10x single-cell RNA-

seq. To reduce the possibility of blood cell contamination, we removed the red blood cell using Red Blood Cell Lysis Buffer in the

BALF sample processing step. In the data quality step, we also checked the expression of blood cell marker such as HBB to confirm

no contamination in the BALF data. Sputum samples were collected from COVID-19 patients using an oropharyngeal swab or hy-

pertonic saline induction. To reduce squamous cell contamination, subjects were asked to rinse their mouth with water and clear

their throat. Samples were incubated in Dulbecco’s Phosphate-Buffered Saline (DPBS) with agitation for 15 minutes and filtered

through 40-micron strainers. Cells in the sputum were freshly used for 10x single-cell RNA-seq.

Single cell RNA library preparation and sequencing
Cell suspensions were barcoded through the 10x Chromium Single Cell platform using Chromium Single Cell 50 Library, Chromium

Single Cell 30 Library, Gel Bead and Multiplex Kit, and Chip Kit (10x Genomics). The loaded cell numbers range from 300-500,000

aiming for 300-14,000 single cells per reaction. Single-cell RNA libraries were prepared using the ChromiumSingle Cell 30 v2 Reagent
(10x Genomics; PN-120237, PN-120236 and PN-120262), Chromium Single Cell 30 v3 Reagent (10x Genomics; PN-1000075, PN-
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1000073 and PN-120262) the ChromiumSingle Cell 50 v2 Reagent (10x Genomics, 120237), andChromiumSingle Cell V(D)J Reagent

kits (10x Genomics, PN-1000006, PN-1000014, PN-1000020, PN-1000005) was used to prepare single-cell RNA libraries according

to themanufacturer’s instructions. Each sequencing library was generatedwith a unique sample index. The libraries were sequenced

using either DIPSEQ, BGISEQ or Illumina platforms.

IHC staining for SARS-CoV-2+ lymphocytes
Formalin-fixed paraffin-embedded pulmonary tissue blocks were cut into 3 mm-thick serial sections. After block with streptavidin

peroxidase, heat-induced antigen epitope retrieval in citrate buffer (pH: 6.0) was performed. Sections were incubated overnight at

4�C with primary antibodies against SARS-CoV-2 spike protein (Cat 40150-T62-COV2, Sino Biological). Staining was visualized

by Dako REAL EnVision Detection System, Peroxidase/DAB+, Rabbit/Mouse (K5007, Dako) followed by counterstaining with hema-

toxylin. Images were captured using a digital camera (DP73, Olympus) under a light microscope (BX53, Olympus).

Cytokine analysis of plasma by using multiplex bead-based immunoassay
Human cytokines in the plasma were measured by Bio-plex Pro TM Human Cytokine Screening 48 plex Bio-PlexTM 200 System (#

12007283, Bio-Rad, US) and Human Cytokine/Chemokine Magnetic Bead Panel (#HCYTA-60K-PX48). The experiments were per-

formed by following the manufacturers’ instructions. Whole blood from COVID-19 patients and healthy controls were drawn into

collection tubes containing anticoagulant. Centrifugation the tubes at 1,000 x g for 15 min at 4�C and transfer the plasma to a clean

polypropylene tube, followed by another centrifugation at 10,000 x g for 10 min at 4�C to completely remove platelets and precip-

itates. Dilute samples fourfold (1:4) by adding 1 volume of sample to 3 volumes of sample diluent. Fifty microliter of each sample

were used to assay. Paired software was used for data acquisition and analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA-seq data processing
Single-cell sequencing data were aligned and quantified using kallisto/bustools (KB, v0.24.4) (Bray et al., 2016) against the GRCh38

human reference genome downloaded from 10x Genomics official website. Preliminary counts were then used for downstream anal-

ysis. Quality control was applied to cells based on three metrics step by step: the total UMI counts, number of detected genes and

proportion of mitochondrial gene counts per cell. Specifically, cells with less than 1000 UMI counts and 500 detected genes were

filtered, as well as cells with more than 10% mitochondrial gene counts. To remove potential doublets, for PBMC samples, cells

with UMI counts above 25,000 and detected genes above 5,000 are filtered out. For other tissues, cells with UMI counts above

70,000 and detected genes above 7,500 are filtered out. Additionally, we applied Scrublet (Wolock et al., 2019) to identify potential

doublets. The doublet score for each single cell and the threshold based on the bimodal distribution was calculated using default

parameters. The expected doublet rate was set to be 0.08, and cells predicted to be doublets or with doubletScore larger than

0.25 were filtered. After quality control, a total of 1,598,708 cells were remained. The stepwise quality control metrics used for indi-

vidual samples were listed in Table S1. The resulting distribution of UMI counts, gene counts as well as mitochondrial gene percent-

age were shown in Figures S1C–S1E. We normalized the UMI counts with the deconvolution strategy implemented in the R package

scran. Specifically, cell-specific size factors were computed by computeSumFactors function and further used to scale the counts for

each cell. Then the logarithmic normalized counts were used for the downstream analysis.

Batch effect correction and cell subsets annotations
To integrate cells into a shared space from different datasets for unsupervised clustering, we used the harmony algorithm (Korsunsky

et al., 2019) to do batch effect correction. To detect themost variable genes used for harmony algorithm, we performed variable gene

selection separately for each sample. A consensus list of 1,500 variable genes was then formed by selecting the genes with the great-

est recovery rates across samples, with ties broken by random sampling. All ribosomal, mitochondrial and immunoglobulin genes

were then removed from the list. Next, we calculate a PCA matrix with 20 components using such informative genes and then

feed this PCAmatrix intoHarmonyMatrix() function implemented in R package Harmony.We set sample and dataset as two technical

covariates for correction with theta set as 2.5 and 1.5, respectively. The resulting batch-corrected matrix was used to build nearest

neighbor graph using Scanpy (Wolf et al., 2018). Such nearest neighbor graph was then used to find clusters by Louvain algorithm

(Traag et al., 2019). The cluster-specific marker genes were identified using the rank_genes_groups function.

The first round of clustering (resolution = 0.3) identified six major cell types including T cells, NK cells, B cells, plasma B cells,

myeloid cells and epithelial cells. To identify clusters within each major cell type, we performed a second round of clustering on

T/NK, B/plasma B, myeloid and epithelial cells separately. The procedure of the second round of clustering is the same as first round,

starting from low-rank harmony output (30 components) on the highly variable genes chosen as described above, with resolution

ranging from 0.3 to 1.5. Each sub cluster was restrained to have at least 30 significantly highly expressed genes (FDR < 0.01, logFC

> 0.25, t test) compared with other cells. Annotation of the resulting clusters to cell types was based on the known markers. Mean-

while, single cells expressing two sets of well-studied canonical markers of major cell types were labeled as doublets and excluded

from the following analysis. Also, cells highly expressed HBA, HBB and HBD, which are the markers for erythrocytes, were also

excluded. 136,006 cells were removed and a total of 1,462,702 cells were retained for downstream analysis. In total, we identified
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6 major cell types including B cells (MS4A1,CD79A,CD79B), myeloid cells (CST3, LYZ), NK cells (GNLY, NKG7, TYROBP), epithelial

cells (KRT18, KRT19), CD4 and CD8 T cells (CD3D, CD3E, CD3G, CD40LG, CD8A, CD8B). These major cell types were further clas-

sified into 64 clusters representing different cell types within major cell lineages (Figures 1B and S1F–S1J). A full list of canonical and

signature marker genes for each cluster was deposited in Table S2.

Detection and processing scRNA-seq data with viral RNA
To identify single cells with viral RNA, we aligned raw scRNA-seq reads using kallisto/bustools (KB) against a customized reference

genome, in which the SARS-CoV-2 genome (NC_045512, NCBI Refseq) was added as an additional chromosome to the human

reference genome. Single cells with viral reads (UMI > 0) were retained. Cells with less than 200 genes expressed or more than

20% mitochondrial counts were excluded, as well as those labeled as doublet following aforementioned protocol (Figure 4A).

The remaining cells were then used for dimension reduction and unsupervised clustering using Python package Scanpy. In brief,

the top 500 genes with the highest variance were selected and the dimensionality of the data was reduced by principal component

analysis (PCA) (30 components) first and then with t-SNE, followed by Louvain clustering performed on the 30 principal components

(resolution = 1). For t-SNE visualization, we directly fit the PCA matrix into the scanpy.api.tl.tsne function with perplexity of 30. To

identify cell-type-specific gene markers, we selected genes that were differentially expressed across different cell types (FDR <

0.01, log fold change > 0.5) using the rank_genes_groups function. Clusters were annotated based on the expression of known

marker genes (Figure 4B).

To confirm whether the virus detection rate is related to library preparation methods, we further aligned raw scRNA-seq reads

against the same reference genome with additional annotation information of the 11 SARS-CoV-2 genes. We then calculated detec-

tion rates in 10x 3-prime and 10X 5-prime sequencing samples respectively (Figures 4F and S4G). We could directly calculate the

detection rate (Dij) of each gene by the equation:

Dij =
Nij

Nj 3 Li
Nj denotes the number of cells within cell type j while Nij denote
s the number of cells with genei detected within j. Li is the length

of gene i.

TCR and BCR analysis
TCR/BCR sequenceswere assembled and quantified following Cell Ranger (v.3.0.2) vdj protocol against GRCh38 reference genome.

Assembled contigs labeled as low-confidence, non-productive or with UMIs < 2 were discarded. To identify TCR clonotype for each

T cell, only cells with at least one TCR a chain (TRA) and one TCR b-chain (TRB) were remained. For a given T cell, if there are two or

more a or b chains assembled, the highest expression level (UMI or reads) a or b chains was regarded as the dominated a or b chain in

the cell. Each unique dominated a-b pair (CDR3 nucleotide sequences and rearranged VDJ genes included) was defined as a clo-

notype. T cells with exactly the same clonotype constituted a T cell clone.

BCR clonotypes were identified similar to TCR. Only cells with at least one heavy chain (IGH) and one light chain (IGL or IGK) were

kept. For a given B cell, if there are two ormore IGH or IGL/IGK assembled, the highest expression level (UMI or reads) IGH or IGL/IGK

was defined as the dominated IGH or IGL/IGK in the cell. Each unique dominated IGH-IGL/IGK pair (CDR3 nucleotide sequences and

rearranged VDJ genes) was defined as a clonotype. B cells with exactly the same clonotype constituted a B cell clone.

220,968 T cells with TCR information and 282,464 B cells with BCR information were used to perform the STARTRAC analysis as

we previously described (Zhang et al., 2018). STARTRAC-expa was used to quantified the potential clonal expansion level. TCR/BCR

diversity was calculated as Shannon’s entropy shown below:

H = �
X

x

pðxÞ � log 2½pðxÞ�
The p(x) represents the frequency of a given TCR/BCR clone am
ong all T/B cells with TCR/BCR identified.

Transcriptional factor analysis
Both activated transcriptional factors, differentially activated transcriptional factors and activated regulons in each cluster were clar-

ified. The activated transcriptional factors in each cluster were chosen according to mean expression level calculated from scaled

expression matrix, and the differentially activated transcriptional factors in each cluster were identified by wilcox.test using cells

from other clusters. Activated regulons in each cluster were analyzed using SCENIC (Aibar et al., 2017) with raw countmatrix as input.

Comparing immune cell proportion
For samples from PBMC and BALF tissue, we calculated immune cell proportions for each major cell type and underlying cell sub-

sets. In order to avoid bias caused by samples dominated by a few cell types, we filtered samples containing FACS-sorted B/T cells

and retained those samples with cells > 1000. For each sample, cell type proportion was calculated by number of cells in certain cell

type divided by total number of cells. To identify changes in cell proportions between samples in different disease severity states,
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disease progression stages and sex, we performedWilcoxon rank-sum test on the proportions of eachmajor cell type and underlying

cell subset across different phenotype groups (Figures 2B–2G, 2I, and 3B–3F). We performed correlation analysis to assess the as-

sociation between cell type proportion and patient age (Figures 2H and 3G–3I). Only those cell types with statistically significant dif-

ferences (FDR < 0.05) in proportions were shown.

ANOVA analysis
To further assess how different patients’ phenotypes and their potential interactions influence cell type proportions, we performed

multivariate ANOVA on cell type proportions and on diversity of BCR/TCR based on different patient phenotypes (Figures 2A and 3A),

including disease severity, disease progression stage, sex and age together with technical factors including sample type (fresh or

frozen) and sampling time (days after symptom onset). Interactions between these variables were excluded. To convert age into a

categorical variable, we binned patient age into four groups: young (< 18 years old), middle-age (18-50 years old), old-age (50-70

years old) and the elderly (70+ years old). Interactions between variables were regarded as significantly associated with cell type pro-

portions when FDR < 0.05. Sampling time was binned into five groups: controls; < 10 days; 10-30 days; 30-60 days; > 60 days.

Differential expression and Gene Ontology enrichment analysis
To investigate the impact of the presence of the viral RNA on epithelial cells, we identify differential expressed genes by performing

two-sided unpairedWilcoxon tests on all the expressed genes (expressed in at least 10% cells in either group of cells). P values were

adjusted following Benjamini & Hochberg protocol. Top 100 highly expressed genes of each group were shown in the volcano plots

(Figure 5A). Based on these genes, enriched GO termswere then acquired for each group of cells using R package clusterProfiler (Yu

et al., 2012) following the default parameters. Annotation Dbi R package ‘‘org.Hs.eg.db’’ was used to map gene identifiers. The re-

sults were visualized as bar plots (Figure 5B).

Cell-cell interaction analysis by CSOmap
To illustrate the cell-cell interaction potential of cells with viral detection, we first created a set of datasets by joining 7 BALF samples

with the virus+ dataset separately. Then, we used CSOmap (Ren et al., 2020) to construct a 3D pseudo space and calculate the sig-

nificant interaction for each dataset. To investigate the interaction potentials of the cell types, we used two indexes, distances within

cell type and normalized connection. Distance within each cell type is calculated based on the aforementioned 3D coordinates (Fig-

ures 5E–5G). The shorter the distance, the closer the cells are located in the 3D space, which indicates that they are more likely to

interact with each other. To further investigate the interaction between different cell types, we made use of the CSOmap output

connectionmatrix (Figure 5I). For a cluster pair, normalized connectionwas calculated by dividing its corresponding connection value

by the product of their respective cell numbers. Normalized connections were then multiplied by 10,000. Meanwhile, to highlight the

key ligand-receptor pairs function in the interaction, we also examine the contribution output by CSOmap (Figure 5H).

Inflammatory and cytokine score related subtypes analysis
Briefly, we first filtered out samples with fewer than 1000 cells available. For PBMC, only subtypes with more than 1000 cells were

included in the subsequent analysis. For BALF data analysis, we removed major cell types with fewer than 500 cells. To define in-

flammatory and cytokine score, we downloaded a gene set termed ‘HALLMARK_INFLAMMATORY_RESPONSE’ fromMSigDB (Lib-

erzon et al., 2015) and collected cytokine genes based on these references (see Table S1). Cytokine and inflammatory score were

evaluatedwith theAddModuleScore function built in the Seurat (Stuart et al., 2019). To select themost promising hyper-inflammatory

cell types, we performed Mann-Whitney rank test (single-tail) for each subtype’s score versus all the other subtypes’ score. Seven

subtypes (Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1, Mono_c3-CD14-VCAN, T_CD4_c08-GZMK-FOShigh, T_CD8_c06-

TNF, T_CD8_c09-SLC4A10 and Mega) in PBMC were defined as hyper-inflammatory cell types with significantly statistical param-

eters (p < 0.0001) in both cytokine and inflammatory score. In addition, we defined 8 subtypes (T_CD8_c08-IL2RB, T_CD4_c11-

GNLY, NK_c01-FCGR3A, T_CD8_c05-ZNF683, T_CD8_c04-COTL1, T_CD8_c07-TYROBP, T_CD8_c03-GZMK and T_gdT_c14-

TRDV2) with significantly statistical parameters (p < 0.0001) only in cytokine score. For subtypes in BALF, we defined 5 subtypes

(Macro_c2-CCL3L1, Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1, Mono_c3-CD14-VCAN, Neu) as hyper-inflammatory

types with the same standard threshold as PBMC (p < 0.0001).

Cell ratio and cytokine marker analysis of hyper-inflammatory subtypes
To explore whether there are state-specific of COVID-19 patients enriched subtypes, we performed hierarchical clustering with

setting standard scale (0-1) for 7 hyper-inflammatory subtypes (Figure 6B). Then, we used the Wilcoxon rank-sum test to calculate

the significance of cell proportion of each subtype in states (moderate convalescent, moderate progression, severe convalescent,

severe progression) compared with healthy control (Figures 6C and 6G). We also applied the ordinary least square method to calcu-

late the correlation between age and cell proportion in different states of COVID-19 patients (Figures 6D and 6H). For the significance

of cytokine expression level with state and age, we performed Wilcoxon rank-sum test and ordinary least square to assess the

p values.

To determine whether Mono_c1-CD14-CCL3 and Mega cell-types influence the inflammatory state of the severe patients, we

classified patients of the progression (severe) stage into 4 groups (named ‘both’, ‘Mono’, ‘Mega’ and ‘neither’) based on the propor-
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tion of Mono_c1-CD14-CCL3 and Mega cell-types in each sample. Specially, we normalized the ratio of each subtype among

7 hyper-inflammatory subtypes for each sample with setting standard scale (0-1). Then, we identified and named ‘both’ group which

was enriched both Mono_c1-CD14-CCL3 and Mega cell-types subtypes (threshold > 0.5), ‘Mono’ group only enriched Mono_c1-

CD14-CCL3 subtype cells, ’Mega’ only enriched Mega cell-types subtype cells, and ’neither’ group which was neither enriched

Mono_c1-CD14-CCL3 nor Mega cell-types subtypes.

For the analysis of single-cell datasets with influenza from Lee et al.(Lee et al., 2020), we applied the function ‘ingest’ built in the

Scanpy package for projection based on results for the COVID-19 data. In detail, raw data were processed and normalized with

default parameters. As recommended, we used PCA space to map cells of influenza into each cluster of COVID-19.

Cell-cell communication analysis between PBMC and BALF by iTALK
To identify and visualize the possible cell-cell interactions in terms of cytokine storm between the highly inflammation-correlated cell

types evaluated by the inflammation score within each tissue and the crosstalk between lung and circulating blood, we employed an

R package iTALK introduced by (Wang et al., 2019). Cytokine/chemokine category (n = 320) in the ligand-receptor database was

selectively used for our purpose. Wilcoxon rank sum test was used to identify the differentially expressed genes (DEGs) between

the progression (severe) and progression (moderate) patient groups for each cell type. DEGs were then matched and paired against

the ligand-receptor database to construct a putative cell-cell communication network. An interaction score defined as the product of

the log fold change of ligand and receptor was used to rank these interactions (Figure 7D). In addition, the expression level of both

ligand and receptor were also considered. We defined severe gained interaction if a ligand gene was upregulated in the progression

(severe) group and its paired gene upregulated or remains no change. We defined severe lost interaction if a ligand (receptor) gene

was downregulated in the progression (severe) group regardless of the expression level of its paired gene.
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Figure S1. Basic characteristics of the integrated dataset and selected markers of cell subsets in different major cell lineages, related to

Figure 1

(A) The age distribution of the dataset (color-coded by disease conditions). (B) Distribution of sex. Chi-square test. (C-E) Distribution of uniquemolecular identifier

(UMI) counts per cell (C), gene counts per cell (D), and percentage of mitochondrial transcripts per cell (E) detected for cells in various tissue types. PBMC,

peripheral blood mononuclear cells; BALF, bronchoalveolar lavage fluid; PFMC/Sputum, pleural effusion/sputum. (F-J) Violin plots of selected marker genes

(rows) for cell subsets (columns) within each cell lineage, including 6 B/plasma B cell clusters (F), 23Myeloid cell clusters (G), 3 NK cell clusters (H), 4 Epithelial cell

clusters (I) and 28 T cell clusters (J).
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Figure S2. Comparison of different immune cell types among patient groups, related to Figure 2

(A) Comparison on the major cell type level based on 159 unsorted PBMC samples with at least one thousand cells available in the scRNA-seq data. NK, natural

killer cells; Mono, monocytes; DC, dendritic cells; Mega, megakaryocytes. (B) State transition between B_c05-MZB1-XBP1 and other B cell sub clusters

quantified by the STARTRAC algorithm based on TCR clonotypes (Zhang et al., 2018). Clonotypes with more than 5 cells were shown in the right panel. (C)

Percentage of B_c06-MKI67 in PBMC across disease conditions based on the same cohort with (A). (D) RNA velocity analysis shows the transition potential from

B_c03-CD27-AIM2 to B_c05-MZB1-XBP1. Cell pairs transiting from B_c03-CD27-AIM2 to B_c05-MZB1-XBP1 or vice versa were quantified in the bar plot. (E)

Percentage of B_c03-CD27-AIM2 in PBMC across disease conditions based on the same cohort with (A). (F) State transition quantified by STARTRAC (Zhang

et al., 2018) between T_CD4_c13-MKI67-CCL5low proliferating cells and other CD4 cell sub-clusters (left) and clones containing T_CD4_c13-MKI67-CCL5low

cells with more than 5 cells (right). (G) Percentage of T_CD4_c04�ANXA2 across disease conditions based on the same cohort with (A). (H) Sex differences of

T_CD4_c04-ANXA2. Single-side Wilcoxon test. (I and J) Percentage of T_gdT_c14-TRDV2 and T_CD8_c09-SLC4A10 across disease conditions based on the

same cohort with (A). Adjusted P-values smaller than 0.05 are indicated (two-sided unpaired Wilcoxon test).
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Figure S3. Effects of sampling time and sample processing methods (fresh or frozen) on immune cell composition and the BCR/TCR di-

versity, related to Figures 2 and 3

(A) Gross relationship between B_c05�MZB1�XBP1 frequency in PBMC and sampling days. ANOVA rejected the association between B_c05�MZB1�XBP1

frequency and sampling days after incorporating age, sex, COVID-19 severity and stage (Figure 2A). (B) Gross relationship between DC_c4�LILRA4 frequency in

PBMC and sampling days. (C) Gross relationship between Neu_c3�CST7 frequency in PBMC and sampling days. (D-G) Comparison among patient groups for

T_CD4_c02�AQP3, T_CD8_c01�LEF1, T_CD8_c02�GPR183, and T_CD4_c08�GZMK�FOShigh via separating fresh and frozen PBMC samples. (H-K) Gross

relationship of sampling time with frequencies of T_CD4_c02�AQP3, T_CD4_c08�GZMK�FOShigh, T_CD8_c01�LEF1, and T_CD8_c02�GPR183.
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Figure S4. Characteristics of SARS-CoV-2-RNA-positive epithelial and immune cells, related to Figure 4

(A) Associations of BSGwith viral RNA load in neutrophils, plasma cells, T/NK cells, and ciliated epithelial cells (Person’s correlation). Grey points (no expression

or dropouts) were excluded from the regression analysis to reduce the impacts of dropouts in scRNA-seq. (B) Violin plots showing the expression of ISGs in viral

RNA-positive cells (from BALF) compared with viral RNA-negative cells from PBMC and BALF. Two-sided unpaired Wilcoxon test was used. (C) Pearson’s

correlation between viral RNA load and the expression levels of ISGs. Grey points (no expression or dropouts) were excluded from the regression analysis to

exclude the impacts of dropouts in scRNA-seq. (G) Detection rates of SARS-CoV-2 genes in different cell types on both 10xGenomics 50 and 30 platforms. (H) IHC

staining of SARS-CoV-2 spike protein in lymphocytes in pulmonary tissue.
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Figure S5. Differences of various epithelial cells with viral RNA detected in the interaction potential with other cells, related to Figure 5
(A) Differential expression of ANXA1 in SARS-CoV-2 RNA-positive and negative squamous epithelial cells. (B) 2D visual view of the pseudo-space constructed by

CSOmap with the location of ciliated cells highlighted. Each dot denotes a single cell and is colored by its cell type. (C and D) Self-distance of viral RNA-positive

and negative ciliated and squamous cell groups in the pseudo-space shown in (B). Two-sided unpairedWilcoxon test. (E) Comparison of interacting potentials of

viral RNA-positive secretory epithelial cells with BALF Macro_c1-C1QC cells between moderate and severe patients. Spatial connections within the pseudo-

space constructed by CSOmap were used for quantification, which were normalized by the cell numbers of both clusters. Error bar: s.e.m across different

patients. (F) The ligand-receptor contribution between viral RNA-positive secretory epithelial cells andMacro_c6-VCAN cells. (G) Dot plot showing the expression

level of MARCO in BALF samples. Pct, percentage of expressed cells.
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Figure S6. The expression of selected genes in PBMC and BALF samples, related to Figure 5

(A) Dot plots showing the expression of S100A9 in cell clusters found in PBMCs. Each dot is colored by the mean expression and sized by the scaled mean (Z

scores). The blue box highlights the expressions in patients belonging to the progression (severe) group. (B) Dot plots showing the expression of ANXA1 (top),

FPR1 (middle) and TLR4 (bottom) in clusters found in PBMCs. (B) Dot plots showing the expression of ANXA1 (first panel), FPR1 (second panel), S100A9 (third

panel), S100A8 (fourth panel) and TLR4 (bottom panel) in clusters found in BALFs. Each dot is colored by the means of the expression and sized by the scaled

means (Z scores).
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Figure S7. Identification of hyper-inflammatory subtypes associated with cytokine storm in PBMCs, related to Figure 6

(A) t-SNE plots of PBMC cells colored by cytokine score (top panel) and inflammatory score (bottom panel). (B) The proportion of subtypes from healthy controls

(n = 20), progression (severe, n = 38) and average of all samples (n = 159) (top panel); the inflammatory score (middle panel) and cytokine score (bottom panel) of

subtypes from healthy controls (n = 20), convalescence (moderate, n = 48), progression (moderate, n = 18), convalescence (severe n = 35) and progression

(severe, n = 38) patients. Significance was evaluated with Mann-Whitney rank test for each subtype versus all the other subtypes. ****p < 0.0001. (C) Boxplots of

the proportion of inflammatory cell-types and other cell-types from healthy controls (n = 20), convalescence (moderate, n = 48), progression (moderate n = 18),

convalescence (severe, n = 35) and progression (severe, n = 38) patients. Two-sided Wilcoxon rank-sum test. (D) Pie chart showing the proportion of 4 classified

groups (named ‘both’, ‘Mono’, ‘Mega’ and ‘neither’) based on the proportion of Mono_c1-CD14-CCL3 andMega cell-types in patients at the progression (severe)

stage. (E) Boxplots of the inflammatory and cytokine score within 4 classified groups (named ‘both’, ‘Mono’, ‘Mega’ and ‘neither’). (F) Bar graphs showing

cytokine concentration at the plasma levels of CCL3, IFNG, IL1RN and TNF from healthy controls (n = 5), convalescent (n = 7), non-severe (n = 4), severe (n = 4),

death case (n = 7) patients. Shown are P values by Student’s t test. (G) Boxplot of CXCL8 expression of Mono_c1-CD14-CCL3 subtype and IFNG expression of

T_CD8_c06-TNF subtype from the scRNA-seq datasetswith influenza (n = 5). (H) Ordinary least-squaresmodel of age to IFNG signal from array data (n = 310) with

influenza. P value was assessed with F-statistic for ordinary least-squares model. In panel (B), (C), (E) and (G), the box represents the second, third quartiles and

median, whiskers each extend 1.5 times the interquartile range; dots represent outliers. In panel (F), all points are shown and bars represent mean with the 95%

confidence intervals. DC, dendritic cells. Mega, megakaryocytes. Mono, monocytes.
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Figure S8. Intercellular interaction alterations among cell types between severe and moderate progression sample groups, related to

Figure 7

(A). Circos plot showing the prioritized interactions mediated by ligand-receptor pairs between inflammation-related cell subtypes for each tissue, namely, PBMC

(left panel) and BALF (right panel). The outer ring displays color coded cell types and the inner ring represents the involved ligand-receptor interacting pairs. The

line width and arrow width are proportional to the log fold change between severe progression and moderate progression patient groups in ligand and receptor,

respectively. Colors and types of lines are used to indicate different types of interactions as shown in the legend. The barplot at bottom indicates the interaction

score for each ligand-receptor interaction which serves to measure the interaction strength. (B) Summary illustration depicting the potential cytokine/receptor

interactions of hyper-inflammatory cell subtypes involved in the cytokine storm. DC, dendritic cells. Epi, epithelial cells. Macro, macrophage cells. Mono,

monocytes. Neu, neutrophils. Mega, megakaryocytes.
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