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Abstract
Coronavirus disease 2019 (COVID-19) has emerged since December 2019 and was later characterized as a pandemic by 
WHO, imposing a major public health threat globally. Our study aimed to identify common signatures from different bio-
logical levels to enlighten the current unclear association between COVID-19 and Parkinson’s disease (PD) as a number of 
possible links, and hypotheses were reported in the literature. We have analyzed transcriptome data from peripheral blood 
mononuclear cells (PBMCs) of both COVID-19 and PD patients, resulting in a total of 81 common differentially expressed 
genes (DEGs). The functional enrichment analysis of common DEGs are mostly involved in the complement system, type II 
interferon gamma (IFNG) signaling pathway, oxidative damage, microglia pathogen phagocytosis pathway, and GABAergic 
synapse. The protein–protein interaction network (PPIN) construction was carried out followed by hub detection, revealing  
10 hub genes (MX1, IFI27, C1QC, C1QA, IFI6, NFIX, C1S, XAF1, IFI35, and ELANE). Some of the hub genes were asso-
ciated with molecular mechanisms such as Lewy bodies–induced inflammation, microglia activation, and cytokine storm.  
We investigated regulatory elements of hub genes at transcription factor and miRNA levels. The major transcription  
factors regulating hub genes are SOX2, XAF1, RUNX1, MITF, and SPI1. We propose that these events may have important 
roles in the onset or progression of PD. To sum up, our analysis describes possible mechanisms linking COVID-19 and PD, 
elucidating some unknown clues in between.
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Introduction

According to the statistics provided by WHO, there have 
been approximately 255 million cases diagnosed with coro-
navirus disease 2019 (COVID-19) with more than 5 mil-
lion confirmed death cases as of November 2021. The novel 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causes COVID-19 and is considered a worldwide 
pandemic whose impacts are noticeable across the globe 
(Chams et al. 2020; Khorsand et al. 2020). COVID-19 is 
initially viewed as a respiratory disease. However, it was 
demonstrated that SARS-CoV-2 affects multiple organs such 
as the central nervous system (CNS). Moreover, neurological 
manifestation associated with SARS-CoV-2 can potentially 
occur via direct invasion of the virus into the CNS and, thus, 
introduce the brain as a location containing high replicative 
values for SARS-CoV-2 (Song et al. 2021; Szcześniak et al. 
2021).

Parkinson’s disease (PD) is a neurodegenerative disease 
characterized for the first time in 1817 by James Parkinson. 
However, after nearly two centuries of research, the cause 
of most of the cases is still unclear (Olsen et al. 2018; Hayes 
2019). There are multiple reports regarding the occurrence 
of neurological complications in individuals with COVID-
19 as up to 85%. Additionally, hyposmia, one of the symp-
toms of PD, has been reported to happen in 65% of cases 
with COVID-19 (Merello et al. 2021). The prevalence of 
PD among elderly ages higher than 65 is 1–3%, and that for 
the whole population is approximately 0.3%. Of note, PD is 
distinguished mainly via degeneration of dopaminergic neu-
rons located in the substantia nigra of the midbrain (Kalia 
and Lang 2016). Subsequently, a number of theoretical 
mechanisms such as basal ganglia injury, microglia-induced 
inflammation, and post-encephalopathy inflammation have 
been proposed to be the hypothetical link between COVID-
19 and PD but there is still a gap of knowledge in the way of 
understanding the relationship among them. This hypothesis 
is also supported by some case reports, stating a rapid onset 
of PD after infection with SARS-CoV-2 (Eichel et al. 2020; 
Cartella et al. 2021; Merello et al. 2021).

On the other hand, several viruses including Epstein-
Barr, hepatitis C, herpes simplex 1, influenza A, and 
varicella-zoster have previously been shown to be related 
to increasing the risk of diagnosing with PD in the dis-
tant future (Henry et al. 2010; Merello et al. 2021). These 
viruses can directly induce neuronal injury after the infec-
tion. For instance, it has been demonstrated that there is 
a marked increased risk of developing PD after hepatitis 
C virus (HCV) infection. This was enabled by the ability 
of HCV to replicate in the CNS (Tsai et al. 2016). The 
family of Coronaviridae has been known to cause CNS 
infection (Bergmann et al. 2006), presumably in the case 
of SARS-CoV-2 via the blood–brain barrier (BBB) due to 
the cytokine storm (CS) (Eldeeb et al. 2020; Sulzer et al. 
2020). Moreover, SARS-CoV-2 signature was detected in 
the autoptic brains of 21 out of 40 patients (53%) after 
dying of COVID-19. Although no relationship between the 
presence of SARS-CoV-2 and the severity of the disease 
was found, it was proved that SARS-CoV-2 can reach the 
CNS (Matschke et al. 2020). Overall, all the aforemen-
tioned pieces of evidence create an urgent need that the 
possible crosstalk between SARS-CoV-2 and neurodegen-
erative disorders such as PD should be taken into consider-
ation. Other studies have been carried out assessing other 
potential comorbidities in respect to COVID-19 including 
chronic kidney disease (Auwul et al. 2021) and diabetes 
mellitus (Rahman et al. 2021).

In the present study, we adopted an integrated bioinfor-
matics analysis to scrutinize the common molecular mecha-
nisms involved in COVID-19 and PD pathogenesis and how 
SARS-CoV-2 can possibly contribute to developing PD 
whether immediately after contracting COVID-19 or years 
later (an overview of the present study is shown in Fig. 1).

Materials and Methods

Transcriptomic Data Analysis

We obtained the transcriptome data from the Gene Expres-
sion Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ geo/) 
with accession numbers GSE152418 (16 peripheral blood 
mononuclear cell (PBMC) samples from COVID-19 sub-
jects and 17 from normal individuals) (Arunachalam et al. 
2020) and GSE165082 (12 PBMC samples from PD and 14 
from normal individuals) (Henderson et al. 2021). The R 
package DESeq2 was provided for normalization and dif-
ferential expression analysis (Love et al. 2014). We used 
the P value < 0.05 and (log FC >|1|) as thresholds. Common 
differentially expressed genes (DEGs) between two datasets 
were obtained using the Venny 2.1.0 tool (https:// bioin fogp. 
cnb. csic. es/ tools/ venny/ index. html).

https://www.ncbi.nlm.nih.gov/geo/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Gene Ontology and Pathway Enrichment Analysis

For the functional annotation and pathway enrichment analy-
sis of the DEGs, Enrichr web utility tools (Kuleshov et al. 
2016) were used. WikiPathways and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) were used for finding 
pathway enrichment analysis. Gene Ontology (GO) terms 
were considered in three main categories such as biologi-
cal process (BP), cellular component (CC), and molecular 
functions (MF).

Protein–Protein Interaction Network Construction 
and Analysis

GeneMANIA (Warde-Farley et al. 2010) server was used 
for protein–protein interaction network (PPIN) construction, 
and then the obtained PPIN was analyzed and visualized by 
Cytoscape version 3.8. We adopted a hub detection approach 
called maximal clique centrality (MCC) via cytoHubba 
plug-in of Cytoscape to retrieve the top 10 hub nodes. MCC 
is a local-based algorithm which outperforms other methods 
in hub identification (Chin et al. 2014).

Identification of Transcription Factors 
and MicroRNAs Regulating Hub Genes

Transcription factor (TF) and microRNA (miRNA) are con-
sidered the major regulatory elements of gene expression at 
both transcription and post-transcription levels (Qin et al. 
2020). We have constructed TF-hub gene and miRNA-hub 
gene regulatory networks with the use of NetworkAnalyst 
3.0 to detect important regulatory elements (Zhou et al. 
2019). We used ChEA as a TF database (Lachmann et al. 
2010) to create the TF-hub gene interaction network. To 
construct the miRNA-hub gene interaction network, TarBase 
(Karagkouni et al. 2018) was selected to retrieve interacting 
miRNAs with regard to hub genes. Following the network’s 
construction, network analysis was carried out to identify 
core TFs and miRNAs based on the degree.

Results

Identification of Common DEGs Between COVID‑19 
and PD

We examined transcriptional signatures between COVID-
19 (n = 16) and healthy controls (n = 17). There were 4795 
DEGs in COVID-19 versus healthy controls. Also, we 
obtained DEGs between PD (n = 14) and normal subjects 
(n = 12). Our results showed 233 DEGs in PD compared to 

Fig. 1  Flow chart of steps conducted in the study
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controls. We detected 81 common DEGs between COVID-
19 and PD (Fig. 2). Top ten common DEGs are shown in 
Table 1.

Pathway Enrichment Analysis

Functional annotations of common DEGs indicated involve-
ment in multiple pathways including the complement sys-
tem, type II interferon gamma (IFNG) signaling pathway, 
oxidative damage, microglia pathogen phagocytosis path-
way, and GABAergic synapse (Table 2). The GO analysis 
of common DEGs revealed that enriched BPs were mostly 
involved in the regulation of complement activation, regu-
lation of immune effector process, regulation of humoral 
immune response, cell junction disassembly, commissural 
neuron axon guidance, synapse pruning, complement activa-
tion, classical pathway, determination of left/right symmetry, 

negative regulation of humoral immune response medi-
ated by circulating immunoglobulin, and humoral immune 
response mediated by circulating immunoglobulin. The 
enriched molecular functions were involved in kinase activa-
tor activity, protein kinase activator activity, GABA-A recep-
tor activity, neurotransmitter receptor activity involved in 
the regulation of postsynaptic membrane potential, GABA 
receptor activity, transmitter-gated ion channel activity 
involved in the regulation of postsynaptic membrane poten-
tial, protein kinase regulator activity, transmitter-gated ion 
channel activity, glycerol channel activity, and arylesterase 
activity. CC enriched in GABA-A receptor complex, azuro-
philic granule, collagen-containing extracellular matrix, 
Golgi lumen, secretory granule lumen, caveola, specific 
granule lumen, vacuolar lumen, primary lysosome, and 
plasma membrane raft (Table 3).

Protein–Protein Interaction Network Construction 
and Analysis

We constructed PPIN, containing 71 nodes and 1369 
edges as shown in Fig. 3. The PPIN depicts the inter-
action of common DEGs and was visualized by 
Cytoscape software. According to Table 4, the ten hub 
genes based on MCC score are myxovirus resistance 
genes (MX) dynamin–like GTPase 1 (MX1), interferon 
alpha–inducible protein 27 (IFI27), C1CQ, C1QA, inter-
feron alpha–inducible protein 6 (IFI6), NFIX, C1S, 
X-linked inhibitor of apoptosis-associated factor-1 
(XAF1), interferon alpha–inducible protein (IFI35), and 
elastase, neutrophil expressed (ELANE). These hub genes 
can potentially be used as drug targets and play a crucial 
role in maintaining the stability of the network. There-
fore, further analysis of these genes is of great impor-
tance. For instance, scrutinizing the regulatory interaction 
of hub genes is recommended.

Regulatory Networks

In order to gain deeper insights into our hub genes, we 
sought to construct TF-hub gene and miRNA-hub gene net-
works. Figures 4 and 5 display the regulators of the hub 
genes (TFs and miRNAs, respectively). From these regu-
latory networks, it can be concluded that some regulatory 
elements are more important and can subsequently inter-
act with more hub genes. In the TF-hub gene network, 16 
TFs were identified with 3 or more interactions, whereas in 
miRNA-hub genes, 29 miRNAs were detected with at least 
3 or more interactions. The most connected TFs were SOX2 
and XAF1 with the degree of 6, and RUNX1, MITF, SPI1, 
and MYC with 5 interactions. The most significant miRNA 
related to hub genes is hsa-mir-129–2-3p with a degree of 8. 

Fig. 2  Venn diagram showing common DGEs between COVID-19 
and PD

Table 1  Top ten common DEGs between COVID-19 and PD

The common DEGs log FC

GSE152418 (COVID-
19 versus healthy 
control)

GSE165082 
(Parkinson versus 
healthy control)

ISG15 1.2 −1.3
GABRD 1.8 −2.1
C1QC 3.5 −1.05
C1QB 2.9 −1.2
IFI6 2.05 −1.2
A3GALT2 2.08 1.04
VCAM1 −1.2 2.9
AQP10 1.9 −1.2
ACTG1P25 1.1 −1.2
C4BPA 1.1 −1.4
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Other major miRNAs are hsa-mir-124-3p, hsa-mir-34a-5p, 
hsa-mir-21-3p, and hsa-mir-27a-5p; each has 6 edges with 
hub genes.

Discussion

The COVID-19 outbreak has undoubtedly become an inter-
national concern (WHO 2021). Some case reports hypoth-
esized rapid onset of PD happens after SARS-CoV-2 infec-
tion (Cartella et al. 2021; Merello et al. 2021). However, 
there is no study aimed to investigate common links between 
COVID-19 and PD yet in an in silico manner.

In this study, we adopted a network-based approach fol-
lowing transcriptome analysis to detect the common molecu-
lar pathways involved in COVID-19 and PD pathogenesis. 
The analysis demonstrated 81 common DEGs between 
COVID-19 and PD. We then performed the pathway enrich-
ment analysis of common DEG. Our results showed the 
complement and coagulation cascades are one of the path-
ways that are enriched by the common DEGs. The comple-
ment system plays a double role in the immune response 
against SARS-CoV-2 and the pathogenesis of COVID-19 
tissue involvement (Gao et  al. 2020; Diao et  al. 2021). 
Several studies reported complement components to alter 
within the blood of PD patients (Goldknopf et al. 2006). 
The type II IFNG signaling pathway was also identified. 

The interferon (IFN) responses constitute the main first line 
of defense against SARS-CoV-2 (Park and Iwasaki 2020). 
IFN-γ has a role in inflammation and neurodegeneration in 
PD, as an increase of IFN-γ was detected in the serum of 
PD patients (Baba et al. 2005). Another common pathway 
was oxidative damage. Oxidative stress most likely impacts 
COVID-19 pathogenesis by accompanying cell activation 
(Chernyak et al. 2020). Oxidative stress is one of the mecha-
nisms mentioned in the etiopathogenesis of PD (Dorszewska 
et al. 2021). Oxidative stress causes damage to key cellu-
lar components in the substantia nigra (SN) of PD patients 
(Dias et al. 2013). We detected microglia pathogen phago-
cytosis pathway in which microglia by some pathogenic 
mechanisms could contribute to the development of post-
COVID-19 neurological sequelae and disorders, including 
PD (Awogbindin et al. 2021). Another enriched pathway was 
GABAergic synapse. COVID-19-associated inflammation 
may induce a cortical impairment of GABAergic neurotrans-
mission, possibly representing cognitive fatigue, apathy, and 
executive deficits (Ortelli et al. 2021). GABA has also been 
reported to be involved in neurodegenerative disorders such 
as PD (Muñoz et al. 2020).

The hub genes have been identified from the PPIN to 
detect major signaling elements that may be used as thera-
peutic targets for the development of novel drugs to treat 
COVID-19 patients with PD comorbidity. MX1 is one of the 
MX which has the antiviral effect against RNA viruses. MX1 

Table 2  Top ten molecular pathways enriched by 81 common DEGs in COVID-19 and PD

Source Pathways P value Count Genes

WikiPathways Complement and coagulation cascades (WP558) 0.001682 3 C1QB;SERPING1;C1QC
Complement activation (WP545) 0.003550 2 C1QB;C1QC
Complement system (WP2806) 0.007179 3 SERPING1;C4BPA;ELANE
Type II interferon gamma (IFNG) signaling (WP619) 0.009842 2 IFI6;ISG15
miRNAs’ involvement in the immune response in sepsis (WP4329) 0.009842 2 VCAM1;ELANE
Oxidative damage (WP3941) 0.011437 2 C1QB;C1QC
Microglia pathogen phagocytosis pathway (WP3937) 0.011437 2 C1QB;C1QC
Development of ureteric collection system (WP5053) 0.015565 2 WNT11;SMO
Prader-Willi and Angelman syndrome (WP3998) 0.025409 2 GABRR2;GABRD
Non-genomic actions of 1,25-dihydroxyvitamin  D3 (WP4341) 0.033623 2 RSAD2;ISG15

KEGG Pertussis 0.000256 4 C1QB;SERPING1;C4BPA;C1QC
Complement and coagulation cascades 0.000394 4 C1QB;SERPING1;C4BPA;C1QC
Systemic lupus erythematosus 0.002210 4 C1QB;CTSG;ELANE;C1QC
Neuroactive ligand-receptor 0.002609 6 GABRR2;CHRND;GRID1;LPAR

1;CTSG;GABRD
Staphylococcus aureus infection 0.006778 3 C1QB;DEFA4;C1QC
Transcriptional misregulation 0.007708 4 ETV7;DEFA4;ERG;ELANE
Nicotine addiction 0.011437 2 GABRR2;GABRD
Basal cell carcinoma 0.026977 2 WNT11;SMO
GABAergic synapse 0.050585 2 GABRR2;GABRD
Morphine addiction 0.052626 2 GABRR2;GABRD
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expression has been reported to be elevated in COVID-19 
patients and conversely declines as age increases. Plus, it 
can be stimulated in the cytoplasm by IFNs and participates 
in the cellular antiviral response to SARS-COV-2 (Bizzotto 
et al. 2020). Furthermore, the accumulation of α-synuclein 
(α-SYN) in the brain of PD patients induces the expression 
of MX1. This molecule is involved in PI3K-Akt signaling 
pathway, cytokine release, and immune response IFN-α, 
IFN-β, and IFN-γ signaling pathways (Yamada et al. 1994; 
Qin et al. 2016). It is also a regulator of IFN systems that 
contributes to CS (Yang et al. 2021). This might facilitate 
the entry of virus to the CNS via the BBB. It is noteworthy 
that the BBB was reported to be disrupted in the animal 

models of PD which can lead to degeneration of neurons in 
the substantia nigra (Al-Bachari et al. 2020). MX1 localized 
in self-aggregations and generated Lewy bodies and swelling 
of neuronal processes in the substantia nigra of brain tissues 
in Parkinson’s patients (McDonough et al. 2017). Lewy bod-
ies which contain misfolded proteins can then trigger the 
activation of T cells (Sulzer et al. 2017). IFN-alpha inducible 
(IRI) family members are closely related to the inflamma-
tory immune response in COVID-19 and PD (Shaath et al. 
2020). IFI6 is an immune-associated early predictor for PD 
(Lei et al. 2020; Yu et al. 2020). IFI35 is involved in type I 
interferon signaling pathway and have a vital role in inflam-
mation response in SARS-CoV-2-infected cells (Hachim 

Table 3  GO enrichment analysis of 81 common DEGs in COVID-19 and PD

BP biological processes, MF molecular functions, CC cellular components

Term P value Count Genes

BP Regulation of complement activation (GO:0030449) 0.000049 4 C1QB;SERPING1;C4BPA;C1QC
Regulation of immune effector process (GO:0002697) 0.000062 4 C1QB;SERPING1;C4BPA;C1QC
Regulation of humoral immune response (GO:0002920) 0.000067 4 C1QB;SERPING1;C4BPA;C1QC
Cell junction disassembly (GO:0150146) 0.00024 2 C1QB;C1QC
Commissural neuron axon guidance (GO:0,071679) 0.00044 2 SMO;NFIB
Synapse pruning (GO:0098883) 0.00057 2 C1QB;C1QC
Complement activation, classical pathway (GO:0006958) 0.00057 2 C1QB;C1QC
Determination of left/right symmetry (GO:0007368) 0.00065 3 DNAH11;SMO;FOXJ1
Negative regulation of humoral immune response mediated by 

circulating immunoglobulin (GO:0002924)
0.00071 2 FOXJ1;C4BPA

Humoral immune response mediated by circulating immunoglobu-
lin (GO:0002455)

0.00087 2 C1QB;C1QC

MF Kinase activator activity (GO:0019209) 0.00026 3 WNT11;SPDYA;GPRC5D
Protein kinase activator activity (GO:0030295) 0.002133 3 WNT11;SPDYA;GPRC5D
GABA-A receptor activity (GO:0004890) 0.002649 2 GABRR2;GABRD
Neurotransmitter receptor activity involved in the regulation of 

postsynaptic membrane potential (GO:0099529)
0.003236 2 CHRND;GRID1

GABA receptor activity (GO:0016917) 0.00355 2 GABRR2;GABRD
Transmitter-gated ion channel activity involved in the regulation of 

postsynaptic membrane potential (GO:1904315)
0.006547 2 CHRND;GRID1

Protein kinase regulator activity (GO:0019887) 0.007384 3 WNT11;SPDYA;GPRC5D
Transmitter-gated ion channel activity (GO:0022824) 0.008356 2 CHRND;GRID1
Glycerol channel activity (GO:0015254) 0.020088 1 AQP10
Arylesterase activity (GO:0004064) 0.024058 1 CA1

CC GABA-A receptor complex (GO:1902711) 0.002649 2 GABRR2;GABRD
Azurophilic granule (GO:0042582) 0.003635 4 CEACAM6;DEFA4;CTSG;ELANE
Collagen-containing extracellular matrix (GO:0062023) 0.004433 6 C1QB;SERPING1;CTSG;CSPG4;ELANE;C1QC
Golgi lumen (GO:0005796) 0.007805 3 DEFA4;CSPG4;MUC5B
Secretory granule lumen (GO:0034774) 0.009194 5 DEFA4;SELENOP;SERPING1;CTSG;ELANE
Caveola (GO:0005901) 0.02464 2 SMO;KCNA5
Specific granule lumen (GO:0035580) 0.026188 2 DEFA4;ELANE
Vacuolar lumen (GO:0005775) 0.027664 3 CTSG;CSPG4;ELANE
Primary lysosome (GO:0005766) 0.043669 1 DEFA4
Plasma membrane raft (GO:0044853) 0.043678 2 SMO;KCNA5
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et al. 2020; Ziegler et al. 2020; Ong et al. 2021). On the 
other hand, IFI35 is upregulated in PD patients in response 
to INF response (Yu et al. 2020). IFI35 gene is expressed in 
the stratum and substantia nigra regions of the brain, and its 
de novo mutation is contributed to early onset of PD patho-
genesis (Guo et al. 2018). IFI27 is an early predictor for 
SARS-COV-2 infection, and high-level expression of IF127 

is associated with the presence of a high viral load (Shojaei 
et al. 2021). One study found elevated expression of IFI27 
after microglial activation and neuroinflammation in pro-
gressive neurodegenerative disorders such as PD (Zhou et al. 
2015). SARS-CoV-2 infection induces a strong activation 
of major constituents of the human complement subcom-
ponent C1q (C1QA, C1QB, C1QC) (Ramlall et al. 2020; 

Fig. 3  PPIN of common DEGs. Red nodes indicate top 10 hub genes identified by MCC
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Santiesteban-Lores et al. 2021). These genes are upregulated 
in the microglial cells in the brain of PD patients. Activation 
of the complement system improves the removal of patho-
gens and products of tissue damage from the brain and is 
related to neuronal cell death in PD (Depboylu et al. 2011; 
Mariani et al. 2016; Itoh and Voskuhl 2017). ELANE gene 
codes destructive enzymes named neutrophil elastase that 
play a key role in host defense mechanism. This enzyme 

is highly overexpressed in naso-oropharyngeal and blood 
samples of COVID-19 patients. Neutrophil elastase can 
activate the spike (S) protein and mediate viral entry and 
pathogenesis of SARS-COV-2 (Belouzard et  al. 2010; 
Akgun et al. 2020; Guéant et al. 2021). After an inflamma-
tory insult to the CNS structure, the expression of neutrophil 
elastase increases, then degrades basal lamina and extracel-
lular matrix (ECM) molecules and suppresses neurobehav-
ioral recovery mechanisms (Stowe et al. 2009; Stock et al. 
2018). Neutrophil elastase inhibitors could be new treatment 
options for COVID-19 patients (Mohamed et al. 2020).

Among these transcription factors, sex-determining 
region Y-box 2 (SOX2) has a critical role in the develop-
ment and maintenance of neural stem/progenitor cell popu-
lations committed to becoming glial cells. SOX2 inhibits 
myelination in the peripheral nerves and maintains Schwann 
cells in a proliferative state, which is also associated with 
the influx of macrophages and increased neuroinflammation 
(Roberts et al. 2017). Interestingly, the expression level of 
SOX2 was found to be elevated in the brains of PD patients 
(Vedam-Mai et al. 2014). Nerve inflammation is one of the 
important factors in the onset or progression of PD (Pajares 
et al. 2020). XAF1 is a mitochondrial apoptosis activator 

Table 4  Summary of hub nodes

MCC maximal clique centrality

Hubs MCC

MX1 5
IFI27 4
C1QC 3
C1QA 3
IFI6 3
NFIX 2
C1S 2
XAF1 2
IFI35 2
ELANE 2

Fig. 4  TF-hub gene regulatory network acquired from Network Analysis web server. Square nodes representing TFs and circle nodes are stand 
for hub genes
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that is upregulated in immune cells (T, B, natural killer, and 
dendritic cells) of COVID-19 patients that may be asso-
ciated with increased apoptosis of these cells (Zhu et al. 
2020; Gao et al. 2021). Furthermore, XAF1 expression is 
higher in the midbrain of PD patients (Gispert et al. 2015; 
Santiago and Potashkin 2017). IFN-α and IFN-β induced 
XAF1 mRNA expression and therefore induced cell apop-
tosis (Leaman et al. 2002). The expression of Runt-related 
transcription factor 1 (RUNX1) increases after SARS-CoV-2 
infection (O’Hare et al. 2021). Interestingly, its overexpres-
sion is related to the progression of PD. RUNX1 increases 
the expression of leucine-rich repeat kinase 2 (Lrrk2) gene 
in immune cells and has a critical role in the pathogenesis 
of familial PD due to developing hyperactive inflammatory 
phenotype, neuronal toxicity, and cell apoptosis (Cook et al. 
2017; Thomsen et al. 2021). Microphthalmia-associated 
transcription factor (MITF) is one of the key TFs with vary-
ing functions in cell homeostasis, cell cycle, and apoptosis. 
MITF is upregulated in immune cells and worsens severity 
of infection in an unknown way in COVID-19 patients (Bost 
et al. 2020; Ding et al. 2021; Jeong et al. 2021). Ubiquitin 
carboxyl-terminal hydrolase L1 (UCHL1) is expressed in 
neural cells and inhibits the stability of MITF by binding to 
the ubiquitinated protein. The ligase activity of UCHL1 is 
disrupted in PD, resulting in MITF overexpression and cell 

damage in these patients (Liu et al. 2002; Seo et al. 2017). 
The E26 transformation–specific (ETS) family transcription 
factor SPI1 upregulated in PBMCs of COVID-19 patients 
and is involved in the inflammatory process and modulates 
host immune systems of these patients (Fagone et al. 2020; 
Rahman et al. 2021). SPI1 plays a key role in the identity, 
differentiation, and specialized functions of microglia. 
Microglia rapidly activate in response to pro-inflammatory 
response. These activated microglia are accumulated in 
brain lesions of PD patients. SPI1 has many target func-
tional genes in microglial cells including Spi1, Runx1, Irf8, 
Il34, Aif1, Csf1r, Csf1, Cx3cr1, Tyrobp, and Trem2 (Satoh 
et al. 2014). SPI1 induces cytokine release and microglial 
pro-inflammatory response (Pimenova et al. 2021). There-
fore, misregulation of SPI1 target genes might lead to the 
establishment or development of PD due to the accumula-
tion of activated microglia (Satoh et al. 2014). In addition, 
one multi-omic study identifies a single nucleotide poly-
morphism, rs10130373, within a microglia-specific peak; 
interrupts a SPI1 motif; and interfaces effectively with the 
promoter of the Rab interactor 3 (RIN3) gene. RIN3 plays 
an important role in the early endocytic pathway that needs 
microglial function, thereby playing a particularly critical 
role in progressive neurodegenerative disease (Kajiho et al. 
2003; Corces et al. 2020).

Fig. 5  miRNA-hub gene regula-
tory network acquired from 
Network Analysis web server. 
Square nodes represent miR-
NAs that regulate circle nodes 
which denote hub genes
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hsa-mir-129–2-3p is the most significant miRNA in 
miRNA-hub gene regulatory networks. miR-129 is a brain-
enriched miRNA, and its level increases in the peripheral 
blood lymphocytes of PD patients (Qin et al. 2016).

In the present study, an integrated bioinformatics 
approach was adopted to explore the possible risk of PD 
development after COVID-19 infection by investigating 
the common molecular mechanisms. By taking advantage 
of the holistic viewpoint of systems biology, we were able 
to consider every aspect of both diseases and infer novel 
hypotheses. Further supplementary studies need to be 
conducted to clarify the association between COVID-19 
and PD, as, at the moment, there is little known regarding 
both of these disease entities. It is worth mentioning that 
contracting PD is a complex and age-dependent neurode-
generative disorder. Thus, it is encouraged to investigate 
infected COVID-19 patients’ years after their infection to 
estimate the probability of getting PD.

Conclusion

The current study aimed to investigate common regulators 
between COVID-19 and PD. Overall, our analysis high-
lights multiple mechanisms such as complement system, 
oxidative stress, activation microglia, cytokine storm, and 
activation of T cells by misfolded proteins which might be 
the potential links between both comorbidities. Nonethe-
less, as this is a thorough in silico analysis, the results of 
this work should be taken into account carefully. Further 
case reports and follow-up experiments of COVID-19 
patients can corroborate these links.
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