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Abstract: Stress is an inherent part of the normal human experience. Although, for the most part,
this stress response is advantageous, chronic, heightened, or inappropriate stress responses can
have deleterious effects on the human body. It has been suggested that individuals who experience
repeated or prolonged stress exhibit blunted biological stress responses when compared to the general
population. Thus, when assessing whether a ubiquitous stress response exists, it is important to
stratify based on resting levels in the absence of stress. Research has shown that stress that causes
symptomatic responses requires early intervention in order to mitigate possible associated mental
health decline and personal risks. Given this, real-time monitoring of stress may provide immediate
biofeedback to the individual and allow for early self-intervention. This study aimed to determine if
the change in heart rate variability could predict, in two different cohorts, the quality of response
to acute stress when exposed to an acute stressor and, in turn, contribute to the development of a
physiological algorithm for stress which could be utilized in future smartwatch technologies. This
study also aimed to assess whether baseline stress levels may affect the changes seen in heart rate
variability at baseline and following stress tasks. A total of 30 student doctor participants and
30 participants from the general population were recruited for the study. The Trier Stress Test was
utilized to induce stress, with resting and stress phase ECGs recorded, as well as inter-second heart
rate (recorded using a FitBit). Although the present study failed to identify ubiquitous patterns of
HRV and HR changes during stress, it did identify novel changes in these parameters between resting
and stress states. This study has shown that the utilization of HRV as a measure of stress should
be calculated with consideration of resting (baseline) anxiety and stress states in order to ensure an
accurate measure of the effects of additive acute stress.

Keywords: FitBit; stress; smart technology; heart rate variability; anxiety; depression; wearable device

1. Introduction

Stress is an inherent part of the normal human experience. In its most primal sense, the
provocation of a stress response provides a valuable mechanism by which an organism can
respond appropriately to internal and external stressors. Although, for the most part, this
stress response is advantageous, chronic, heightened, or inappropriate stress responses can
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have deleterious effects on the human body. Chronic stress has been linked to numerous
disease states, from cardiovascular disease and stroke [1] to irritable bowel disease [2] and
cancer [3–6]. Research has also shown acute stress can have deleterious effects on brain
functioning [7–9], cardiovascular health [10,11], and gut functioning [12,13]. Further, there
remains a significant link between biologically inappropriate stress responses and mental
health, with individuals who experience chronic stress significantly more likely to suffer
from anxiety [14,15] and depression [16,17].

Certain populations find themselves at higher risk of stress. For instance, medical
students have often been shown to experience significantly more stressful events than the
general population [18]. The potential negative effects of emotional distress on medical
students include reductions in educational outcomes and impairment in clinical capabil-
ity when stress-induced states compromise decision making capabilities [19]. However,
studies have also shown that individuals in fields such as medicine are often more adept at
self-regulating stress responses, and thus exhibit a reduced stress reactivity when compared
to the general population [20,21]. That is, populations which find themselves exposed to
regular stressful events often report lower levels of perceived baseline stress and a dimin-
ished stress response to external stressors [22]. Further, the stressful events experienced by
clinical year medical students has been shown to be comparable to that of other professions,
such as defense force personnel, police officers, and paramedics [23]. It has been suggested
that individuals who experience repeated or prolonged stress (such as medical students,
police officers, etc.) exhibit blunted biological stress responses when compared to the
general population [22]. Thus, when assessing whether a ubiquitous stress response exists,
it is important to stratify based on resting levels in the absence of stress. Research has
shown that stress that causes symptomatic responses requires early intervention in order
to mitigate possible associated mental health decline and personal risks [24]. Given this,
real-time monitoring of stress may provide immediate biofeedback to the individual and
allow for early self-intervention.

The concept of allostasis is of particular importance, with allostasis reflecting an indi-
vidual’s physiological response to stressful situations and maintenance of homeostasis by
how an individual adapts to stressors. It is of importance as it supports the aforementioned
theory that immersion in frequent stressful scenarios associated with certain careers may
result in an individual becoming more capable of responding to stress; however, allostatic
load (the concept of ongoing failed adaptation to stress) can present in individuals who
do not respond well to stress/have poor resilience and are at higher risk of the chronic ill-
nesses mentioned above due to poorer physiological responses to stress [25,26]. This study
aimed to determine if the change in heart rate variability could predict, in two different
cohorts, the quality of response to acute stress when exposed to an acute stressor and, in
turn, contribute to the development of a physiological algorithm for stress which could
be utilized in future smartwatch technologies. This study also aimed to assess whether
baseline stress levels may affect the changes seen in heart rate variability at baseline and
following stress tasks. It is hypothesized that low frequency HRV will increase and HF
HRV will reduce during the stress task. It is also hypothesized that the medical population
will exhibit reduced stress induced HRV excitability when compared with the general
population.

2. Materials and Methods
2.1. Participants and Sampling

The current study utilized a cross-sectional study design. Participants in the current
analysis included 30 medical student participants in their clinical year and 30 normative
participants aged between 24 and 58 years. This study was undertaken in a light- and
sound-controlled laboratory environment. Prior to inclusion, an in-house designed lifestyle
questionnaire was used to screen participants for medication use (participants who reg-
ularly consumed medications which alter HRV were excluded), alcohol intake, smoking
habits, and chronic disease/illness. Participants were excluded if they smoked more than
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10 cigarettes per day or had smoked in the previous 12 h, had consumed alcohol in the
previous 12 h, or were taking any prescription medication known to affect heart rate or
blood pressure. Participants provided informed consent prior to beginning the study. Two
participants were excluded, one due to taking a calcium-channel blocker and one due to
the inability to remain for the duration of the study.

2.2. Experimental Procedure

At the commencement and conclusion of each session, the participant’s blood pressure
(BP) was measured three times with an automated blood pressure monitor (Omron IA1B,
Japan) and then averaged to derive an average BP value. Following BP measurement,
a purpose designed questionnaire was used to collect demographic, lifestyle, and work-
related data. Additionally, the general health questionnaire (GHQ) was utilized to assess
general psychological wellbeing whilst the 42-item Depression Anxiety Stress Scale (DASS)
was applied to assess symptom severity of stress. At present, interpretation of the DASS is
based primarily on the use of cut-off scores. Severity is stratified by ratings from ‘normal’
to ‘extremely severe’ on the basis of percentile scores, with 0–78 classified as ‘normal’, 78–87
as ‘mild’, 87–95 as ‘moderate’, 95–98 as ‘severe’, and 98–100 as ‘extremely severe’ [27].

Following completion of the questionnaires, participants had a 3-lead ECG fitted. The
participant was also fitted with a FitBit Versa 2 on their non-dominant hand. The FitBit was
used to record second-by-second heart rate data.

The Trier Social Stress Test (TSST) [28] was then utilized to elicit a controlled stress
response in participants. For this section of the study, participants underwent a 15 min
resting baseline session followed by the TSST, which constituted of a 5 min prepara-
tion/anticipation task where participants were required to prepare a short speech, followed
by a 5 min public speaking task, and, finally, a 5 min mental arithmetic task. The Trier
Social Stress Test (TSST) is one of the most well-accepted laboratory techniques to induce
acute stress in experimental settings and has been repeatedly shown to reliably provoke
hypothalamic–pituitary–adrenal axis activation [28–34] and is particularly useful for studies
of stress assessment and stress hormone reactivity [30].

During baseline and each component of the TSST, 3-lead ECG data were captured using
disposable Ag/AgCl electrodes placed on the participant’s upper torso under each clavicle
on the coracoid processes and one just below the sternum over the xiphoid process [35].
Following completion of the TSST, three further BP reading were obtained which were then
averaged.

2.3. ECG Data Processing

Raw ECG data were processed utilizing the Kubios HRV Premium software (Version
3.1.0, Kubios Oy, Kuopio, Finland) to generate HRV parameters. Frequency domain HRV
deconstructs the variance in beat-to-beat HR into its underlying components at different
frequencies using fast-Fourier transforms (FFTs). Note that the calculation of frequency
domain HRV requires a certain level of ‘stationarity’ (i.e., the mean and variance of the ECG
signal do not vary significantly at different points during the electrocardiogram). In order
to meet this requirement, data were collected over 5-min intervals and averaged to produce
reliable HRV frequency domain data. Further, all data were assessed to ensure sinus
rhythm prior to transformation. Frequency domain activity was calculated using Welch’s
periodogram method [36] for the following HRV frequency bands: low frequency (LF)
power (0.04–0.15 Hz), high frequency (HF) power (0.15–0.4 Hz), and total power (TP), as
well as the LF:HF ratio. Note that, in the process of deriving these variables, the automatic
artefact correction process of the Kubios software [37] as well as the Smoothn Priors method
of trend component rejection were utilized, and HRV data were log-transformed prior to
analysis, where relevant.
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2.4. FitBit Data Processing

FitBit was used to record heart rate data alone. Heart rate variability data are not yet
commercially available from the FitBit. ECG derived HRV data were correlated with the
FitBit data to work toward an algorithm.

2.5. Statistical Analysis

Statistical analysis was performed using SPSS Version 23.0 (SPSS, Inc.; Chicago, IL,
USA) with statistical significance defined as p < 0.05. Data were initially subject to de-
scriptive statistics. A paired t-test was used to determine significant differences in HRV
parameters between the resting phase and stress task. As multiple comparisons were made,
a Holm–Bonferroni correction was then applied to avoid type I errors with the family-wise
α (a) level set at 0.05. Following that, partial Pearson’s correlation analysis (controlling
for age and body mass index (BMI)) was utilized to determine associations between HRV
parameters and DASS scores during the baseline and stress task (TSST).

3. Results
3.1. Participant Descriptives

This study cohort consisted of 60 participants (33 males and 27 females), with demo-
graphic information provided in Table 1. The average age of participants was 28.9 ± 8.8
(years ± SD), with an average body mass index of 23.1 ± 3.4 kg/m2. The two study
groups were age (p = 0.36) and weight (p = 0.26) matched. Within the medical group, the
mean systolic blood pressure pre-study was 117 ± 13 mmHg, which was significantly
higher following the stress task at 120 ± 11 mmHg (p = 0.047); with mean diastolic blood
pressure pre-study of 76 ± 7 mmHg, which was also significantly higher following the
stress task at 80 ± 9 mmHg (p < 0.001). Within the general population group, the mean
systolic blood pressure pre-study was 115 ± 15 mmHg, which was significantly higher
following the stress task at 119 ± 15 mmHg (p = 0.014); with mean diastolic blood pressure
pre-study of 75 ± 10 mmHg, which was also significantly higher following the stress task
at 81 ± 8 mmHg (p < 0.001).

Table 1. Demographics and blood pressure data for the cohort and per grouped division
(mean ± standard deviation with range in parentheses). Comparisons are between medical stu-
dent and general population (Student’s unpaired t-tests).

Measure Cohort
(n = 60)

Medical Students
(n = 30)

General Population
(n = 30) p-Value

Male Gender
(%)

55.0
(Male 33; Female 27)

53.3
(Male 16; Female 14)

56.7
(Male 17; Female 13) -

Age
(years) 28.9 ± 8.8 27.8 ± 2.9 29.9 ± 10.3 0.36

Height
(cm) 174.5 ± 9.8 173.5 ± 9.9 175.4 ± 9.7 0.53

Weight
(kg) 72.7 ± 14.8 70.7 ± 11.9 75.2 ± 17.4 0.26

BMI
(kg/m2)

23.1 ± 3.4
(18–35)

23.4 ± 2.7
(19–28)

21.5 ± 7.7
(18–35) 0.36

Pre-Study SBP
(mmHg)

116 ± 14
(78–143)

117 ± 14
(92–143)

115 ± 15
(78–138) 0.63

Post-Study SBP
(mmHg)

120 ± 14
(76–149)

120 ± 11
(102–149)

119 ± 15
(76–141) 0.81

3.2. Psychometric Data

Participants completed the DASS, with scores for each of the populations found in
Table 2. For the stress subscale of the DASS, the average score for the medical group was
11.1 ± 8.9 (score ± SD), which is classified as mild stress, and 20.9 ± 14.2 (score ± SD) for
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the general population, which is classified as moderate stress. For the depression subscale
of the DASS, the average score for the medical students was 2.2 ± 2.6 (score ± SD), which
is considered normal, and 13.0 ± 16.8 (score ± SD) for the general population, which is
classified as moderate depression. For the anxiety subscale of the DASS, the average score
for the medical students was 4.5 ± 6.1 (score ± SD), which is considered normal, and
8.6 ± 7.4 (score ± SD) for the general population, which is classified as mild anxiety. The
general population has significantly higher scores for all of the DASS subscales than the
medical students (stress: p = 0.002; depression: p = 0.026; anxiety: p = 0.003).

Table 2. Scores obtained for depression, anxiety, and stress scale (mean ± standard deviation).
Comparisons are between medical students and general population (Student’s unpaired t-tests).
Normative values for each subscale are presented (Crawford and Henry 2003).

Cohort
Stress Score Depression Score Anxiety Score

(Average ± SD) (Average ± SD) (Average ± SD)

Medical Students 11.1 ± 8.9 2.2 ± 2.6 4.5 ± 6.1
General Population 20.9 ± 14.2 13.0 ± 16.8 8.6 ± 7.4

p-value 0.002 0.026 0.003

Normative Values

Normal 0–10 Normal 0–9 Normal 0–6
Mild: 11–18 Mild: 10–12 Mild: 7–9

Moderate: 19–26 Moderate: 13–20 Moderate: 10–14
Severe: 27–34 Severe: 21–27 Severe: 15–19

3.3. Heart Rate Data

Both resting and stress phase HR were significantly higher in the medical student
population than the general population (resting p < 0.001; stress p = 0.022). Further, both
populations had a significant rise in average heart rate between the resting and stress stages
(general population, p = 0.07; medical student cohort, p = 0.04) (Table 3).

Table 3. Average heart rate for the baseline and stress phases, general population vs. medical cohort,
which was recorded with FitBit Versa 2.

General Population Medical Students p-Value

Resting HR 75.29 79.94 0.07

Stress HR 83.71 90.55 0.04 *

p-value <0.01 * 0.022 * -
* = significant (p < 0.05).

3.4. Heart Rate Variability Data

For the general population, there was a significant rise in LF (p = 0.006), HF (p < 0.001),
and LF:HF ratio (p = 0.007) during the stress task. For the medical student cohort, there
was a significant rise in VLF (p = 0.023), LF (p = 0.031), and HF (p = 0.029) during the stress
task (Table 4).

When controlling for age and BMI, the anxiety subscale of the DASS showed significant
correlations. Anxiety (as measured by the anxiety subscale of the DASS) was found to be
correlated to baseline VLF (r = 0.43; p = 0.003) and, during the stress task, was correlated to
LF (r = −0.49; p = 0.0113) and LF:HF ratio (r = 0.46; p = 0.02) (Table 5).
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Table 4. Comparison between heart rate variability parameters collected from 3-lead ECG during the
baseline (resting) and stress tasks for the general population and medical cohorts (mean values).

HRV Parameter Baseline Stress p-Value

General
Population

VLF 4.56 4.54 0.916
LF 53.12 54.62 0.006 *
HF 46.88 56.29 <0.001 *
TP 17.22 17.24 0.980

Ratio 1.14 1.21 0.007 *

Medical
Students

VLF 4.59 5.69 0.023 *
LF 54.48 59.70 0.031 *
HF 45.52 49.14 0.029 *
TP 17.26 20.70 0.197

Ratio 1.21 1.22 0.554
* = significant (p < 0.05).

Table 5. Correlation between anxiety subscale (of the DASS tool) and heart rate and heart rate
variability data in the general population; with heart rate data recorded with FitBit Versa 2 and heart
rate variability data collected from 3-lead ECG.

Correlation
Coefficient (r) p-Value

Anxiety subscale

Baseline VLF 0.43 0.033 *

Baseline LF 0.35 0.084

Baseline HF −0.35 0.084

Baseline TP 0.35 0.086

Baseline Ratio −0.35 0.090

Stress LF −0.49 0.013 *

Stress Ratio 0.46 0.020 *
* = significant (p < 0.05).

4. Discussion

The present study aimed to determine if HRV could be used to predict the quality
of response to acute stress, comparing the general population to medical students, with
the intent to contribute data which may aid in developing a physiological algorithm for
stress that could be incorporated into wearable technologies. Whilst there are devices in
development capable of detecting stress [38], there is currently no rigorously validated
algorithm for stress detection. The current study found a significant rise in LF, HF, and
the LF:HF ratio, with HF (p < 0.001) and LF:HF ratio during the stress task with medical
students having a narrower increase in HRV parameters than the general population. HRV
parameters were, however, not significantly correlated to psychometric stress testing, with
repeat analysis required with larger cohorts.

The present study found that LF increases significantly following an acute stressor in
both the general population and medical student cohorts, reflective of increase sympathetic
nervous system activity [39]. Further, LF was significantly negatively correlated with
anxiety as reported by the objective DASS score, which further supports the relationship
between LF and acute stress. The present study found that baseline depression, anxiety,
and stress scores were significantly higher in the general population than those reported
by the medical student population. This is a rather novel finding in that literature often
reports that medical students experience significantly higher levels of stress than the general
population [40–44].

Repeated exposure to stressful events leads to a biological tailoring of the stress
response. This often results in blunted physiological stress responses and a reduced
stress reactivity [45–47]. It has been hypothesized that, amongst other academic traits, the
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development of this reduced stress reactivity throughout a medical student’s studies, and
into their medical career, proved advantageous in both clinical and personal settings [48].

Both the general population and the medical student group responded to a stressful
task similarly, with increases in heart rate during the stress task when compared to the
resting phase. It is well accepted in the literature that increases in heart rate during a
stressful task are biologically advantageous [49–51]. As the heart rate increases, so too does
the cardiac output which, in turn, increases oxygen perfusion to large peripheral muscle
groups. Interestingly, the medical group showed higher average heart rates during both the
resting and stress task than the general population. Research has suggested anticipation
causes a rise in both resting and stress state heart rate as a compensatory mechanism for
the perceived imminent stressor [52]. Certain personality traits have been shown to exhibit
higher levels of anticipatory cardiac elevation during laboratory induced stress tasks.

The changes in heart rate variability between the resting and stress tasks both had
some overlap in HRV parameters common to both groups as well as some differences. The
general population showed significantly higher LF, HF, and TP in the stress task, when
compared to baseline, while the medical students showed significantly higher VLF, LF,
and HF during the stress task compared to baseline. The common finding across both
groups, however, was an increase in LF and HF during the stress task. The literature is
in disagreement regarding the impacts of acute stress on LF and HF. Some studies report
an increase in LF during stress tasks [53–55] whilst others report a decrease in LF during
clinically induced stress [56,57]. There remains, however, general consensus regarding
the effects of acute mental stress on HF HRV. Studies generally support a decrease in
HF HRV during acute mental stressors, owing to a decrease in parasympathetic-oriented
concentration during stress tasks [39,58]

Given that LF is generally accepted as a correlate of parasympathetic and sympathetic
nervous system activity, our findings are in line with current literature, which suggests
an increase in total autonomic arousal during stress by the sympathetic nervous system.
Further, high levels of baseline anxiety have been shown to positively correlate to stress
reactivity, and thus HRV reactivity, during stress tasks [59].

5. Conclusions

The use of biological algorithms to assess HR and HRV stress responses is a novel use
of currently available technology. The aim of this study was to determine if average heart
rate, and heart rate variability, could be used to identify distinct physiological changes
during a stressful task. Although the present study failed to identify ubiquitous patterns
of HRV and HR changes during stress, it did identify novel changes in these parameters
between resting and stress states.

Small cohort size is a limitation of this study, which limits the generalizability of the
results, with further research required with a larger cohort of participants with stratified
anxiety scores based off the DASS to further evaluate the correlation with HFV. With
respect to study environment, there may be an inherent bias benefiting the medical student
group who are familiar with the clinical environment the investigation was conducted in;
thereby, relative stress may have been lower at baseline than compared with the general
population. This study has shown that the utilization of HRV as a measure of stress should
be calculated with consideration of resting (baseline) anxiety and stress states in order to
ensure an accurate measure of the effects of additive acute stress.
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