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Abstract: The circadian clock system works not only as a cellular time-keeper but also as
a coordinator for almost all physiological functions essential to maintaining human health.
Therefore, disruptions or malfunctions of this system can cause many diseases and pre-symptomatic
conditions. Indeed, previous studies have indicated that disrupted clock gene expression rhythm is
closely related to obesity, and that allergic diseases can be regulated by controlling peripheral clocks
in organs and tissues. Moreover, recent studies have found that obesity can lead to immune disorders.
Accordingly, in this review, we assess the connection between obesity and allergy from the point of
view of the circadian clock system anew and summarize the relationships among the circadian clock
system, obesity, and allergy.
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1. Introduction

Almost all plants and animals live in response to 24-hour cycles of the light-dark environment
generated by the rotation of the earth. However, even in an environment that has no light-dark changes
and no time information, we live under an approximately 24-hour cycle. This rhythm is known as
a circadian rhythm. The circadian clock system generates the circadian rhythm and modulates the
sleep-wake cycle, body temperature fluctuation, neural activity, and hormone secretion rhythm, all of
which enable the body to function in response to a 24-hour cycle [1].

The circadian clock system consists of transcriptional-translational negative feedback loops
between clock genes. Period1/2 (Per1/2), Cryptochrome1/2 (Cry1/2), Bmal1 (Brain and muscle arnt-like
protein 1), and Clock (Circadian locomotor output cycles kaput) are the main componential genes of the
core loop involved in the creation of an approximately 24-hour period. CLOCK heterodimerizes
with BMAL1, and CLOCK:BMAL1 heterodimers act as transcriptional promoters for Per and Cry
through binding with the specific promoter sequence known as the E-box. Per and Cry mRNAs
then translocate from the nucleus to the cytoplasm and are translated into PER and CRY proteins.
PER and CRY form a heterodimer and return to the cytoplasm. PER:CRY heterodimers then
act to inhibit Per and Cry transcription through binding to CLOCK:BMAL1 heterodimers that
bind with the E-box. As a consequence, Per and Cry mRNA and protein levels show circadian
changes [2]. Moreover, other feedback loops exist alongside this core loop. In another loop, Retinoic acid
receptor-related orphan receptor (Ror) and Reverse erythroblastosis virus (Rev-erb) are regulated by the core
loop, and these proteins enhance and inhibit transcription of Bmal1, respectively, through binding to
another specific ROR response element (RORE). Moreover, Rev-erb inhibits transcription of Clock through
binding with the REV-ERB response element (RevRF). In addition to these loops, post-translational
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modifications, such as phosphorylation, ubiquitination, and subcellular trafficking, contribute to the
maintenance of the circadian clock system by modulating the stability of the clock gene proteins [3].

In mammals, almost all cells of the body share the molecular mechanism described above.
These clock gene systems are divided into central and peripheral clocks, depending on the organs in
which they exist [4]. The central clock exists in the suprachiasmatic nucleus (SCN) of the hypothalamus,
while peripheral clocks exist in almost all peripheral organs and brain regions other than the SCN.
The central and peripheral clocks form a hierarchical system. In general, the central clock is entrained
by environmental light, through the retinal-hypothalamic tract, for eliminating the difference between
the environmental clock and the circadian clock. Subsequently, the central clock activates neural
signals, hormonal signals, locomotor activity, and other pathways to adjust the peripheral clocks
to the environmental clock [5]. Accordingly, environmental light is an essential factor for keeping
the biological rhythm at 24 h, because the period length created by the circadian clock system is
longer than 24 h. Indeed, the period length of the sleep-wake cycle was shown to be 24.5–25 h for
participants living without sunlight and time information [6]. Moreover, previous studies showed that
SCN-lesioned mice or mice under light-light (LL) conditions, where the central clock is malfunctioning,
showed arrhythmic locomotor activity and feeding rhythm. Besides, peripheral clocks in these mice
showed different phases for each organ, and their amplitudes were lower than those in mice kept
under usual light-dark (LD) conditions [7,8]. Taken together, these studies show that the central clock
orchestrates other biological clocks and that environmental light is the only entrainment factor of the
central clock.

While the central clock is entrained only by environmental light, peripheral clocks can be entrained
by many stimuli, such as temperature, meal, exercise, and stress [9]. A previous study showed that
delaying the timing of three meals a day (breakfast, lunch, and dinner) by 5-hours delayed the clock
gene expression rhythm in adipose tissue in humans. This study also showed that the secretion
rhythms of cortisol and melatonin, which are biomarkers for evaluating the rhythm of the central
clock, remained unaffected [10]. Another study, which used RNA from the hair follicle cells in humans,
demonstrated that nighttime exercise (from 20:00 to 22:00) delayed the phase of clock gene expression
rhythm for 2 to 4 h, as compared to that without exercise [11]. Studies in mice have shown that
many environmental factors, such as restricted feeding (RF) during the inactive period, wheel-running
exercise only during the beginning or end of the active period, and physical and psychological stress,
affected the phase of peripheral clocks, but not the central clock [12,13]. Moreover, these studies in
mice identified insulin and cortisol as the main entrainment factors when the peripheral clocks are
affected by feeding, exercise, and stress [12,13]. Therefore, whereas the central clock is entrained only
by the environmental light, the peripheral clocks are orchestrated by the central clock but also affected
by external stimuli, including feeding, exercise, and stress.

In the circadian clock system, the clock genes regulate not only expression rhythm of
themselves, but also the expression rhythm of clock-controlled genes (CCGs). The CCGs are
involved in many physiological functions, such as metabolism, immunity, and other functions.
Indeed, previous studies showed that CCGs represent approximately 10% of all genes in many
organs [14]. Consequently, studies in humans showed that postprandial blood glucose levels in the
evening are maintained at a higher level than in the morning [15]. Moreover, an additional study
demonstrated that a late dinner increases the maximum of postprandial blood glucose levels compared
with an early dinner [16]. In addition, circadian rhythms have been observed in the occurrence of
various diseases, such as asthma, myocardial infarction, and depressive symptoms, due to the circadian
rhythm of hormone secretion, neural activity, and other physiological functions [17]. Indeed, studies in
mice revealed that glucose tolerance testing at the beginning or middle of the active period produced
lower blood glucose levels than the idle period [18]. Other studies showed that food antigen exposure
in the late inactive period caused more severe food allergy symptoms than in the late active period [19]
and that salivary IgA secretion rhythm was abolished by SCN lesion [20]. Therefore, keeping an
accurate circadian clock system is vital for maintaining normal physiological functions.
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In this review, we limit discussion to the mammalian circadian clock system and focus on the
interplay among the circadian clock system, obesity, and allergy. Moreover, we discuss not only
phenomenological studies in humans but also fundamental mechanisms using mice and other animal
experiments. In doing so, we hope this review improves the understanding of these interactions.

2. Circadian Rhythm in Obesity

The increase in the number of people with obesity is a global public health concern, which poses
a substantial socioeconomic burden. Furthermore, epidemiologic studies have indicated that obesity
increases the risk of diabetes, insulin resistance, metabolic syndrome, and cardiovascular disease [21,22].
Many studies in humans have shown that obesity associates with disturbances of biological rhythms,
such as those governing sleep and food intake. Additionally, studies have shown that people with
obesity have delayed bedtimes and shorter sleep duration compared to healthy people. In one
study, plasma melatonin circadian rhythm in people with obesity was disrupted, and no significant
circadian rhythm was found [23]. In another study of mainly overweight women, there was a negative
correlation BMI with urinary 6-sulfatoxymelatonin concentration at 09:00, which is a metabolite of
melatonin and shows rhythm similar to melatonin secretory rhythm [24], suggesting that overweight
women’s melatonin rhythm might be disturbed. The reason is that serum melatonin and urinary
6-sulfatoxymelatonin show similar secretory rhythm. Moreover, nocturnal hyperphagia and morning
anorexia, which were regarded as delayed food intake pattern, was observed in a group of obese
women, which is characteristic of night eating syndrome [25]. In brief, obesity is involved in not only
the malfunction of the metabolic system but also the disturbance of biological rhythms.

On the other hand, obesity is caused by a disrupted lifestyle rhythm, such as shift work and
varying meal timings. In terms of shift work, previous human epidemiological studies indicated that
shift work, especially the duration of shift work, is associated with an increased risk of obesity [26,27].
Regarding the timing of meals, studies showed that skipping the first meal of the day (breakfast)
increases the risk of obesity [28,29], that the multivariable-adjusted odds ratio of obesity was even
higher with a late dinner and bedtime snack than with skipping breakfast [30], and that subjects
given 2000 calories in a single daily meal for a week showed greater body weight loss when this meal
was given at breakfast rather than at dinner [31]. Shift work and varying meal timings not only are
associated with the increased risk of obesity but also alter the biological rhythm. Previous studies
have shown that nocturnal light exposure increased the secretion of insulin and GLP-1 after meals [32]
and that the acute stimulation of night work for 4 days slowed down the increase in postprandial
blood glucose levels and reduced insulin sensitivity [33]. Another study suggested that a positive
correlation between body fat percentage and the percentage of calories consumed 4 h before dim light
melatonin onset (DLMO; a biomarker for the beginning of the biological night) or sleep onset [34].
From these papers, a late food intake corresponded to the biological clock, independent of amount
or content of food intake and activity level, would be associated with increased body weight and/or
obesity. In addition to these effects of shift work and varying meal timings on metabolic parameter,
Indeed, previous studies in humans showed that the shift work shifted the phase of clock gene
expression rhythm and the levels and timing of melatonin production [35,36], and that delayed three
meals (breakfast, lunch, and dinner) for 5-hour delayed clock gene expression rhythms in adipose
tissue [10]. Taken together, evidence suggests that a disrupted lifestyle rhythm, such as that seen with
shift work and varying meal timings, is a contributing factor to obesity, and obesity interacts closely
with a disrupted lifestyle rhythm.

These interactions have also been observed in many studies in mice and rats. There are many
rodent models of obesity and diabetes, such as ob/ob mice and db/db mice, which are deficient
in leptin and the leptin receptor, respectively, KK-Ay mice, which are obese and diabetic mice
independent of insulin, and high-fat diet (HFD) induced obesity (DIO; diet-induced obesity) model
mice. Many previous studies have indicated that these obesity model mice show disruption of biological
rhythms, such as locomotor activity rhythm, food intake rhythm, and clock gene expression rhythms.
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For example, obese ob/ob mice show a phase shift and decreased rhythmicity of the sleep-wake cycle
and locomotor activity rhythm [37,38], and the amount and amplitude of their locomotor activity and
energy expenditure are decreased significantly compared with healthy mice [39]. Further, diabetic obese
db/db mice show no circadian rhythmicity in locomotor activity, and their REM duration in the inactive
period is decreased, although their clock gene expression rhythm in central and peripheral clocks
shows circadian rhythmicity [40,41]. Moreover, the changes in metabolic parameters, such as plasma
glucose, insulin, liver glycogen, and hepatic glycogen synthase and phosphorylase activities, in diabetic
obese db/db mice may be caused by changes in daily rhythm rather than by absolute changes [42].
Also, obese and diabetic KK-Ay and DIO mice show attenuated expression rhythm of clock genes and
downstream target genes of clock genes in the liver and central nervous system [43–46]. Thus, these
studies indicate that obese mice, regardless of model, show disruptions of biological rhythm and that
some types of obese model mice dysregulate their clock gene and CCG expression rhythms.

Contrarily, other studies have indicated that disrupted biological rhythm, caused by altered
light conditions, HFD, or clock gene deficiency, increases the risk of obesity. In rats, the chronic
advance of the light period increased appetite, and decreased metabolism and energy expenditure,
while promoting significant alterations in neuropeptides, lipid metabolism, and inflammation [46].
Moreover, feeding mice with an HFD increased food intake during the inactive period and decreased
food intake during the active period, leading to a reduction in food intake rhythmicity. These effects are
caused by activated microglia that promote hypothalamic inflammation [47]. Besides, this diet decreased
locomotor activity during the day and reduced the synchronization to light [48,49]. Previous studies
have also suggested that the effects of HFD on biological rhythm are due to disturbed clock gene and
CCG expression rhythm, which may be caused by disrupted food intake rhythm. Indeed, it has been
demonstrated that feeding with HFD shifts the phase of clock gene and CCG expression rhythm in many
peripheral organs, disturbs the phosphorylation rhythms of the metabolic regulators CREB and S6,
impairs CLOCK:BMAL1 recruitment, and promotes activation of pathways through the transcriptional
regulator PPARγ [50–52]. On the other hand, several papers suggest that mutations or deletions of
clock genes are related to dysfunctional energy metabolism. Cry mutation mice show dysfunctions in
insulin secretion and hyperglycemia [53]. In Bmal1-KO (knockout) mice, disorders of lipid metabolism,
independent of food components, a high respiratory quotient, which indicates difficulty utilizing
lipids as an energy source, and lower insulin secretion are seen compared to wild-type mice [54,55].
Moreover, studies of these mice have indicated that PEPCK (phosphoenolpyruvate carboxykinase) and
GLUT2 (glucose transporter 2), which are involved in glucose metabolism, showed low expression
levels and arrhythmic expression [56]. In Clock mutant mice, arrhythmicity of food intake and
dysfunction of the metabolic system are seen [57]. Moreover, these mice show severe hypoglycemia
after insulin injection due to impaired gluconeogenesis [58]. Liver-specific Rev-erbα and β double
KO mice show arrhythmic expression of Pparα, which is involved in β-oxidation of fatty acids [59].
Thus, disruption of the circadian clock system, caused by light conditions, HFD, and gene deletion,
interacts with impairment of the metabolic system, leading to obesity.

3. Obesity and Allergy

Obesity reportedly causes an increase in the levels of inflammatory mediators, potentially leading
to immune disorders. In the obese state, the levels of plasma adiponectin, an anti-inflammatory
adipokine, are low, thus enabling the natural onset of inflammation [60]. Leptin and adiponectin are
adipokines secreted by white adipose tissue and are known to be related to obesity and involved
in glucose and lipid metabolism. Leptin, a hunger-inhibiting hormone predominantly made by
adipocytes, is a mitogen factor for keratinocytes that also promotes fibroblast proliferation and
positively correlates with body fat and body fat mass [60,61]. A study conducted in the United States
of America revealed a positive correlation between BMI and total IgE levels in children aged 2 to
19 years old [60]. Interestingly, this study showed a relationship between CRP and total IgE levels
with age-adjustment, which was also confounded by BMI [60]. Since obesity is associated with atopy,
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reflecting an inflammatory state, it may be correlated with food allergies [62]. Although it is a rather
small study, one of the recent cohort studies with 164 children showed that obesity in girls at 2 years of
was highly correlated with increased risk of asthma, with odds ratio 12.14 [63]. In adult study, 9,888
Japanese subjects study reported that obese significantly increases a risk of late-onset asthma only in
women [64]. Meta-analysis of 18 children-subjected articles revealed that overweight or obese showed
1.30-fold increase in a risk of childhood asthma, and 1.90 for wheeze [65]. Another meta-analysis with 13
studies showed a positive correlation with 1.47 odds ratio between abdominal obesity and asthma [66].
Taken together, these studies have suggested that a higher prevalence of asthma is observed among
obese and overweight adults and children, who are also at risk of increased severity and a worse
prognosis [39,63–67]. However, precise mechanism of obesity causing asthma in children are still not
clear, while late-onset asthma is mostly neutrophil-predominant and non-IgE-mediated, which shows
increased levels in adipokines [68]. Moreover, a body mass index exceeding 30 kg/m2 is associated with
a 92% increased risk of developing asthma [69]. Furthermore, gastric bypass surgery was shown to
significantly improve airway hyperresponsiveness in obese individuals with asthma who had normal
serum IgE levels, but not in those with elevated IgE [70]. Several large-scale studies have reported that
obesity positively correlated with allergic rhinitis (AR) and chronic rhinosinusitis (CRS) in both adults
and children [61]. Additionally, a Spanish study showed a positive relationship between BMI and the
severity of atopic dermatitis (AD) [66]. Further, although within the standard range, total cholesterol
levels in patients with AD were higher than those in a healthy group, and were found to be yet higher
in cases of severe AD [71]. Although skin dryness is one of the risk factors for AD, contrasting results
have been reported regarding transepidermal water loss (TEWL) and obesity. A significant positive
correlation was reported between BMI and TEWL [72]. Additionally, increased TEWL was observed in
obese children [73], while one study showed decreased TEWL in obese individuals [74]. The authors
attributed this result to the role of adipokines and leptin [74].

So far, we have shown evidence of the positive correlation between obesity and allergic diseases.
Interestingly, a study showed that the prevalence of AR/CRS and AD was higher in obese individuals
than in those with asthma and food allergies [61]. These phenomena can be partially explained
by interleukin (IL)-17 involvement. Anti-IL-17 monoclonal antibody treatment (Secukinumab) is
an available option for the treatment of psoriasis, and it has shown a better, more rapid response
in patients with a healthy BMI than overweight (BMI ≥ 25) patients [75]. This result suggests that
IL-17 neutralization is less effective in obese patients because of obesity-mediated inflammation.
Additionally, allergic diseases with higher involvement of type 3 inflammation (IL-17-related response)
may show a stronger correlation with obesity. This observation is supported by the failure to induce
obesity in IL-17 receptor A (IL-17RA) knockout mice [76].

In animal studies, obese mice were shown to develop allergic sensitization and severe airway
eosinophilia with a smaller amount of allergen compared to lean mice. Obesity also decreased the
threshold of allergic sensitization, as smaller amounts of allergen were sufficient to induce a comparable
level of allergen-specific antibodies, as compared with lean mice [67]. Another study showed that HFD
significantly increased mast cell accumulation in the intestine and enhanced intestinal permeability [77].
Interestingly, both of these effects are promoted by the induction of food allergy in these mice [77].
Microbiota transplantation experiments have also shown that HFD-associated microbiota enhanced
susceptibility to food allergy, but did so independently of obesity [77]. Interestingly, the allergen-specific
IgE levels of HFD-fed animals remained comparable to controls [77]. This finding suggests that IgE
induces the increased intestinal mast cell response. Nevertheless, these studies suggest that obesity
is a risk factor for developing allergic diseases, although the influence of atopic factors appears to
be stronger.

4. Circadian Rhythm in Allergy

Recently, a large genome-wide association study identified RORA as one of the significant genes
associated with asthma [78]. RORA encodes a member of the NR1 subfamily of nuclear hormone
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receptors that binds to ROREs in DNA as a monomer. Rora was reported to enhance Bmal1 transcription
and play an essential role in maintaining a robust circadian rhythm [79]. In immunity, RORα and
RORγ are well known as key transcription factors for Th17 [80] and type 3 innate lymphoid cell [81]
differentiation, both of which are important in chronic allergic diseases. RORα is also an important
factor for type 2 innate lymphoid cells (ILC2), and when it was knocked down together with IL-7R,
ILC2-deficient mice were obtained [82]. Using this strain, the authors demonstrated a partial decrease
of type 2 airway inflammation in an asthma model [82]. Collectively, both type 2 and 3 inflammation are
under the control of RORα, which plays a vital role in chronobiology by enhancing Bmal1 transcription.
Together with BMAL1, RORα is one of the major regulators of the circadian molecular oscillator.
Therefore, the peculiar role of RORα suggests that allergy is one of the responses under the influence
of circadian homeostasis.

Recently, Spadaro et al. showed that histamine release from basophils oscillates and significantly
fits a cosine curve in asthmatic patients, but not in healthy controls [83]. They also showed a less
dramatic amplitude in daily cortisol rhythm in patients with asthma [83], suggesting the involvement
of disrupted local molecular clocks in asthmatic physiology. However, a relatively small Korean
study reported, interestingly, that CCGs from nasal mucosa in the right and left turbinates showed
asymmetric expression levels [84]. The authors also found higher expression levels of these genes
in AR patients, compared to healthy controls [84]. This suggests that the local molecular clock is
dysregulated or shifted in the lesion site. Although a causality dilemma for this phenomenon is still
not fully clarified, resetting the local clock can be one of the options to improve from this condition.

In humans, two single nucleotide polymorphisms (SNPs) of CLOCK were reported to enhance
the risk of overweight or obesity by 1.8-fold [85]. Another study of CLOCK SNPs reported that three
SNPs were associated with plasma cytokine levels, especially IL-6, adiponectin, and CCL2/MCP-1 [86].
Separately, variable number tandem repeats (VNTRs), such as 86 bp repeats in IL-1 receptor antagonist
(IL-1RA) intron 2 and 70 bp in IL-4 intron 3, were reported to be associated with obesity and adiposity in
a Malaysian study [87]. Apolipoprotein ApoA-IV, found on high-density lipoproteins (HDL) cholesterol
in serum, as well as in circulation, is known to have anti-inflammatory effects. ApoA-IV was reported
to inhibit eosinophil chemotaxis towards CCL11/eotaxin and prostaglandin D2 (PGD2) via an NR1D1
(Rev-erbα)-dependent pathway [88]. The authors also examined the systemic effects of ApoA-IV using
an asthmatic murine model, and showed a significant decrease in airway hyperresponsiveness with
exogenous ApoA-IV administration [88].

Using mice, Ehlers et al. showed, interestingly, that, compared to controls, Bmal−/− or chronic jet lag
mice developed severe acute viral bronchiolitis in response to Sendai virus and influenza A virus [89].
Similar results were also reported in myeloid cells of mice lacking BMAL1, which developed severe
symptoms in an ovalbumin-induced asthmatic model [90]. Additionally, Nakamura et al. showed
that a Clock mutation in mast cells caused a defect in FcεRI, the high-affinity IgE receptor, expression,
leading to an inadequate IgE-mediated degranulation [91]. They also reported that glucocorticoids
inhibited IgE-mediated allergic reactions and increased PER2 levels, leading to a resetting of the
local molecular clock in mast cells, both in vitro and in vivo [92]. Speaking of mast cells, circadian
oscillations in mast cell degranulation were reported to be attenuated by inhibition of FcεRI [92] or
organic cation transporter 3 (OCT3) [93], both of which expression levels are temporarily regulated by
Clock in their E-box motif in promoter region. These findings imply that mast cell functions in allergy
can be regulated by recalibrating local molecular clocks.

5. Conclusions

Here, we summarize evidence from in vitro, ex vivo, and in vivo studies of rodents and humans,
which show the interplay among the circadian clock system, obesity, and allergy (Figure 1).
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Figure 1. Relationship among the circadian clock system, obesity, and immunity. In a healthy state,
the circadian clock system, the metabolic system, and the immune system interact and function normally.
However, when one of the gears became out of position for some reason, other systems will be led
to malfunction.

The reviewed studies suggest that the dysfunction of biological rhythms, irrespectively of the
underlying cause, might lead to obesity. However, obesity also triggers arrhythmicity in clock gene
expression and biological rhythms. Studies in mice have shown that time-restricted feeding (TRF)
with HFD, independent of TRF timing, has an anti-obesity effect. This effect is mediated through
the improvement of the disrupted clock gene and CCG expression and energy expenditure rhythms
brought about by HFD feeding [50]. A recent study in humans confirmed that participants’ body weight
was reduced, and their sleep satisfaction was improved when eating duration, or the time from the first
meal (breakfast) to the last meal (dinner or night snack), is restricted to 11 h [94]. Thus, regulating meal
timings to correspond to one’s biological rhythm would be helpful to attenuate obesity.

A growing body of evidence has reported on the relationship between circadian rhythm
and allergy, but the understanding of the mechanisms underpinning this relationship is still
limited. Interestingly, the phenomenon of nocturnal asthma has been discussed since the 1980s [95].
However, the molecular mechanisms by which the circadian system controls the pathophysiology
of this condition remain to be elucidated. Recent studies in a variety of fields, including circadian
system [96], and allergy [97,98] research, have focused on the microbiota. These reports suggest the
importance of studying microbiota, in addition to examining probiotics and prebiotics, which may be
key to investigating the unknown molecular mechanisms in these fields.

In this review, we assessed the connection between obesity and allergy from the viewpoint of the
circadian system anew. Although we may not cover the whole field of disease phenotypes, we believe
this review highlights the intimacy with which these three physiological aspects interact to maintain
homeostasis. Further direct evidence to dissect the complex, mutual relationships between allergy
and the circadian clock is required and may lead to a more in-depth understanding of the reciprocal
interactions among the circadian clock, obesity, and allergy.
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