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Bacteria sense their own population size, tune the expression of responding genes,
and behave accordingly to environmental stimuli by secreting signaling molecules.
This phenomenon is termed as quorum sensing (QS). By exogenously manipulating
the signal transduction bacterial population behaviors could be controlled, which
may be done through quorum quenching (QQ). QS related regulatory networks
have been proven their involvement in regulating many virulence determinants in
pathogenic bacteria in the course of infections. Interfering with QS signaling system
could be a novel strategy against bacterial infections and therefore requires more
understanding of their fundamental mechanisms. Here we review the development
of studies specifically on the inhibition of production of N-acyl-homoserine lactone
(AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas
aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles
in its pathogenicity. The studies in QQ targeting on AQ are also discussed.

Keywords: quorum sensing, quorum quenching, N-acyl-homoserine lactone, Pseudomonas quinolone signal,
Pseudomonas aeruginosa, alkylquinolone

INTRODUCTION

Quorum sensing (QS) is an intercellular communication mechanism of bacteria used to coordinate
the activities of individual cells in population level in response to surroundings through production
and perception of diffusible signal molecules. The signal synthase, signal receptor, and signal
molecules are three essential elements of the basic QS circuit machinery. Genes encoded signal
generating proteins are also included among the QS target genes. This forms an autoinduction
feedback loop to modulate generation of signal molecules (Fuqua et al., 1994; Ng and Bassler,
2009; Williams and Cámara, 2009). Several bacterial behaviors including virulence factors
expression, secondary metabolites production, biofilm formation, motility, and luminescence
are regulated by QS (Antunes et al., 2010; LaSarre and Federle, 2013). QS system is part of
global regulation networks in bacterial cell related to cyclic-di-GMP second messenger signaling
pathways (Srivastava and Waters, 2012), small RNA regulation (Vakulskas et al., 2015), two-
components systems (Okkotsu et al., 2014), toxin–antitoxin (Kumar and Engelberg-Kulka, 2014),
flagella regulation (Atkinson et al., 2008), and protein secretion systems (Zheng et al., 2010;
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Atkinson et al., 2011). Through complex regulatory networks
bacteria are capable of expressing corresponding genes according
to their own population size and of behaving in a coordinated
manner.

Bacteria produce ranges of QS signal molecules. N-acyl-
homoserine lactones (AHLs) are major signal molecules
produced by Gram-negative bacteria (Ng and Bassler, 2009;
LaSarre and Federle, 2013). Gram-positive bacteria use small
linear (e.g., ComX in Bacillus subtilis) or circular peptides (e.g.,
autoinducing peptides AIP in Staphylococcus aureus) as signal
molecules which are the ligands for the extracellular receptor
of a two-component module (Ng and Bassler, 2009). There
are other classes of QS molecules including diffusible signaling
factor (DSF; cis-11-methyl-2-dodecenoic acid) in Xanthomonas,
Xylella, Burkholderia, and Pseudomonas (Deng et al., 2011);
α-hydroxyketones (AHKs) in Legionella pneumophila and Vibrio
sp. (Tiaden et al., 2010); furanone molecules (autoinducer-2;
AI-2) produced by Gram-negative and -positive bacteria as
universal signals for inter- and intra-species communications
(Kendall and Sperandio, 2007; LaSarre and Federle, 2013);
aromatic molecules (autoinducer-3; AI-3) in enteric pathogens
Salmonella and Escherichia coli O157:H7 served in inter-
kingdom communications via the epinephrine signaling system
in mammalian cells (Sperandio et al., 2003; Moreira et al., 2010)
and alkylquinolone (AQ) in Pseudomonas sp. and Burkholderia
sp (Heeb et al., 2011; Lee and Zhang, 2014). The fragments of
peptidoglycan from bacterial cell wall have been suggested as
novel QS signals for signaling the growth state of bacteria cell
than population size (Dworkin, 2014).

Due to its key roles in bacterial population behaviors and
pathogenicity, QS has been suggested to be the target for
novel bacterial infection therapy (Zhang and Dong, 2004;
Rasmussen, 2006; LaSarre and Federle, 2013). By reducing
concentration of signals or interrupting the interactions of
signal on receptor protein, the expression of QS-regulated genes
can be disturbed and bacterial virulence can be subsequently
attenuated (Dong et al., 2000, 2001). These approaches coined
as quorum quenching (QQ) were considered as alternatives
against bacterial infections (Cámara et al., 2002; Zhang and
Dong, 2004; González and Keshavan, 2006). Several natural
compounds and enzymes from prokaryotic (Dong et al., 2000;
Wang, 2004; Chu et al., 2013) and eukaryotic organisms including
plants (Vandeputte et al., 2011; Koh et al., 2013), murine
(Yang et al., 2005), and human (Chun et al., 2004; Ozer
et al., 2006) have been discovered and shown the capability
of inhibiting bacterial QS systems. Broad advances on QQ
studies and various types of QS inhibitors are also highlighted
in several reviews (Chun et al., 2004; Yang et al., 2005;
Ozer et al., 2006; Dong et al., 2007; Chu et al., 2013; Kalia,
2013; Koh et al., 2013; LaSarre and Federle, 2013; Nazzaro
et al., 2013). Here we review the development of inhibiting
of AHL synthesis. In the genome of Pseudomonas aeruginosa,
an opportunistic human pathogen, QS is responsible for the
regulation of around 10% of genes (Williams and Cámara, 2009).
AQ–QS coupled with AHL-QS play crucial roles in virulence
regulation. Thus the recent QQ studies on AQ–QS are also
discussed.

AHL SYNTHESIS AND INHIBITION

More than 30 different AHLs have been identified. AHLs
generally consist of a homoserine lactone ring and of a fatty
acyl side chain ranging from 4 to 18 carbons (Chhabra et al.,
2005). The regulation of bioluminescence in Aliivibrio fischeri
(former Vibrio fischeri) (Urbanczyk et al., 2007) is the archetypal
example of AHL-QS. The genes for bioluminescence are encoded
in an operon (luxICDABE) where luxI encodes the AHL synthase
that generates N-(3-oxo-hexanoyl)-L-homoserine lactone (3-
oxo-C6 HSL) and luxCDABE encode for proteins responsible
for bioluminescence production. This operon is regulated by the
LuxR protein, a transcriptional regulator. Binding of 3-oxo-C6-
HSL by LuxR activates the expression of the luxICDABE operon
which in turns results in the production of more of this signal
molecule, through an autoinduction loop, and bioluminescence
(Fuqua and Greenberg, 2002). S-adenosylmethionine (SAM) is
the main amino acid substrate for the homoserine lactone ring,
while the acyl chain of AHL is derived from a 6-carbon acyl-
ACP (acyl carrier protein). The LuxI catalyzes the formation of an
amide bond between the two substrates. SAM binds to the active
site of LuxI, and then the acyl group from a specific acyl-ACP
is transferred to the methionine on SAM and forms an amide
bond. Lactonization of the intermediate results in the production
of AHL andmethylthioadenosine (MAT; Parsek et al., 1999). Two
regions of LuxI are essential for the full function of the enzyme.
Residues 25 to 104 are thought to be the region of the enzymatic
catalysis, while residue 133 to 164 are involved in the selection of
the appropriate acyl-ACP substrates (Hanzelka and Greenberg,
1996).

Homologs of luxI/luxR are involved inGram-negative bacteria
(Miller and Bassler, 2001; LaSarre and Federle, 2013). AHL
synthases from more than 40 different bacteria share four
conserved regions in their protein sequences and within them
eight residues are completely conserved (Fuqua et al., 1994). The
X-ray crystallography study of an AHL synthase EsaI, a LuxI-type
protein producing 3-oxo-C6-HSL from Pantoea stewartii, has
been revealed (Watson et al., 2002). A model for catalyzing the
amide bond between the two substrates based on this structural
study has been proposed. Many of the conserved residues across
LuxI-type synthases lie on the same face of the EsaI and are
localized in the active site in N-terminus. This supports a
notion that SAM and acyl-ACP interact with this region. The
presence or absence of a serine/threonine at residue 140 in
AHL synthase may be crucial for selecting different acyl-ACP
substrates. LasI, EsaI, and LuxI which mainly produce 3-oxo-
AHLs have a conserved threonine at this position whilst the
absence of threonine at position 140 in RhlI, CerI, SwrI, and
AsaI seems to preferentially produce AHLs lacking 3-oxo or 3-
hydroy moiety (Watson et al., 2002). The crystal structure of
LasI, the synthase from P. aeruginosa mainly produces N-(3-
oxododecanoyl)-homoserine lactone (3-oxo-C12-HSL), further
reveals the mechanism of AHL synthesis. The conserved residues
in LasI N-terminus form a binding packet for SAM and the
structure of the acyl-ACP binding packet is formed as a tunnel
which allow the binding with different acyl-ACPs with longer
side chain in contrast to the restrictive hydrophobic packet in
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EsaI (Gould et al., 2004). The acceptance of various acyl-ACPs
in LasI may explain the wild spectrum of AHL production profile
in P. aeruginosa (Ortori et al., 2011).

N-acyl-homoserine lactone molecules act not only in bacterial
communication but also in cross-kingdom conversation with
eukaryotic cells (Joint et al., 2002; Twigg et al., 2013). AHLs
modulate the behaviors of innate immune cells and interfere with
the signaling pathways in epithelial cells (Holm and Vikström,
2014). Inhibition of AHLs production is the strategy to reduce
the AHLs-mediated virulence factors and to prevent AHLs-
promoted tissue damages and inflammation. To study the kinetic
process of AHLs synthesis by RhlI from P. aeruginosa, the end
products MTA and several substrate analogs including holo-ACP,
sinefungin, D/L-S-adenosylhomocysteine, L-S-adenosylcysteine,
and butyryl-SAM have been tested for their inhibition effects
on AHLs production in vitro (Parsek et al., 1999). However
their effects on QS and QS-related phenotypes in vivo are
unclear (Rasmussen, 2006). More inhibitors targeting on the
AHL synthesis precursors or their synthesis have been identified.
A small molecule, triclosan, reduces AHL synthesis by inhibiting
the precursor production from enoyl-ACP reductase (Hoang
and Schweizer, 1999). The 5-MAT/S-adenosyl-homocysteine
nucleosidase (MTAN), which plays crucial part in both AHL
and AI-2 synthesis, was inhibited by immucillin A (ImmA)
derivatives and DADMe-ImmA derivatives (Singh et al., 2005a,b,
2006). These inhibitors not only show the effective potency
on AHL synthesis but also inhibit the central amino acid
and fatty acid metabolisms by which may affect other cellular
functions. This imposes selective pressure to bacterial cells and
increases the risk of resistance. For example P. aeruginosa
develops resistance to triclosan because of active efflux pumps
(Schweizer, 2003). Thus, it is necessary to identify inhibitors
specifically targeting on AHLs synthesis without interrupting
metabolisms.

In Burkholderia glumae, the pathogen of rice grain rot,
virulence factor biosynthesis and transportation, protein
secretion and motility are controlled by N-octanoyl-HSL
(C8-HSL) produced by TofI. Two acyl-HSL analogs have been
identified to inhibit the C8-HSL mediated QS. One of the
inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding
to its cognate regulator, TolR. The other inhibitor, J8-C8 (N-3-
oxocyclohex-1-enyl octanamide), inhibits C8-HSL synthesis in
a dose-dependent manner. Crystal structure analysis suggested
that the TofI, which is similar to its homologues, LasI and EsaI,
consists of two substrate binding sites (Watson et al., 2002; Gould
et al., 2004; Chung et al., 2011). A putative pocket in apo-TofI
structure has been identified which is bound by J8-C8. This study
suggested J8-C8 occupies the acyl-ACP substrate-binding site of
TofI and inhibits its function (Chung et al., 2011).

Besides rationally designed analogs, natural products isolated
from various sources also exhibit QQ properties (Koh et al.,
2013). Three pure botanic compounds, salicylic acid, tannic
acid, and trans-cinnamaldehyde, showed the inhibition on
P. aeruginosa AHL synthase. Further liquid chromatography–
mass spectrometry (LC–MS) analysis suggested the trans-
cinnamaldehyde specifically targets short-chain AHL synthase
RhlI. The RhlI/R-QS in P. aeruginosa is involved in the

production of pyocyanin, a green phenazine pigment functioning
as a toxin and promoting biofilm formation. The trans-
cinnamaldehyde inhibits pyocyanin production in a dose-
dependent manner. Successful molecule docking suggested trans-
cinnamaldehyde occupies the SAM substrate binding sites of
RhlI counterpart, LasI in P. aeruginosa and the acyl-chain
substrate binding site of EasI in Pa. stewartii (Chang et al.,
2014). Furthermore cinnamaldehyde and its derivatives target
on AI-2 based LuxR in Vibrio sp. and reduce the LuxR DNA
binding ability which lead to the reduction of biofilm formation,
sensitivity to starvation and antibiotics treatment, reduction
of pigment and virulence factors production and attenuated
pathogenicity (Brackman et al., 2008, 2011). These studies
suggested the potentiality of cinnamaldehyde as a QQ compound
against bacteria infections.

QUENCHING AQ-MEDIATED QS

A non-AHL signaling molecule produced by P. aeruginosa
was described and termed as PQS (Pseudomonas quinolone
signal) by Pesci et al. (1999). This molecule was chemically
characterized as 2-heptyl-3-hydroxy-4-(1H)-quinolone, part of
the 4-hydroxy-2-alkyl quinoline series (HAQ; Pesci et al.,
1999). Other major molecules comprised the C7 and C9 long
alkyl chain including 2-heptyl-4-quinolone (HHQ), 2-nonyl-4-
quinolone (NHQ), 2-heptyl-4-quinolone N-oxide (HHQNO),
2-heptyl-4-hydroxyquinoline N-oxide (HQNO) and 2-nonyl-
4-hydroxyquinoline N-oxide (NQNO) are also produced by
P. aeruginosa. More than 50 different AQs have been found in
P. aeruginosa. These molecules all belong to the family of 2-alkyl-
4-quinolones (AQs) which have been previously studied for their
antimicrobial properties (Heeb et al., 2011; Ortori et al., 2011).

2-heptyl-4-quinolone and Pseudomonas quinolone signal
are the major AQ–QS signaling molecules in P. aeruginosa.
The AQ–QS system consists of multiple genes. The pqsABCDE
in an operon are essential for AQs synthesis. PqsA catalyzes
the conversion from anthranilic acid produced by phnAB,
which are adjacent to pqsABCDE operon, to anthraniloyl-
coenzyme A (CoA). PqsD then condenses anthraniloyl
moiety from anthraniloyl-CoA with malonyl-CoA to form
intermediate 2-aminobenzoyl-acetyl-CoA (2-ABA-CoA) for
subsequently synthesizing 2,4-dihydroxyquinolone (DHQ)
with unknown function or 2-aminobenzoylacetate (2-ABA).
The decarboxylating coupling of 2-ABA to an octanoate group
linked to PqsBC produces HHQ (Bera et al., 2009; Dulcey
et al., 2013). HHQ acts as a signaling molecule or can then be
transformed to PQS by the mono-oxygenase, PqsH (Pesci et al.,
1999; Diggle et al., 2006). PqsE is required for P. aeruginosa
virulence in plant and animals infection models and biofilm
formation (Rampioni et al., 2010). A recent study suggested
PqsE is also involved in the HHQ synthesis as a thioesterase,
hydrolyzing the 2-ABA-CoA to form 2-ABA. Although PqsE
plays crucial role in P. aeruginosa pathogenicity, its catalytic
role in AQ biosynthesis can be replaced by a broad specificity
thioesterase, TesB (Drees and Fetzner, 2015). Two other genes,
pqsH and pqsL, involved in AQ synthesis are located separately
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TABLE 1 | Overview of inhibitors on N-acyl-homoserine lactone (AHL) synthesis and on alkylquinolone (AQ)-mediated quorum sensing (QS) system.

Molecules/enzymes Mechanism of inhibition Reference

Inhibitors of AHL synthesis

MTA and substrate analogs: holo-ACP, sinefungin,
D/L-S-adenosylhomocysteine, L-S-adenosylcysteine, and butyryl-SAM

Potentially occupying the substrates binding site of RhlI
in Pseudomonas aeruginosa

Parsek et al., 1999

Triclosan Inhibiting the AHLs precursor production from
enoyl-ACP reductase

Hoang and Schweizer, 1999

Immucillin A (ImmA) derivatives and DADMe-ImmA derivatives Inhibiting MTAN, the enzyme involved in MTA
depurination

Singh et al., 2005a,b, 2006

J8-C8 Occupying the acyl-ACP substrate-binding site of TofI in
Burkholderia glumae

Chung et al., 2011

Trans-cinnamaldehyde Potentially binding to substrate binding sites of RhlI in
P. aeruginosa

Chang et al., 2014

Inhibitors of AQ-based QS

Analogs of 2-heptyl-4-quinolone (HHQ) and PQS (Pseudomonas quinolone
signal) precursor anthranilatic acid (AA): methylanthranilate (MA),
2-amino-6-fluorobenzoic acid (6FABA), 2-amino-6-chlorobenzoic acid
(6CABA), and 2-amino-4-chlor-obenzoic acid (4CABA)

Potentially competing for activate site of PqsA in
P. aeruginosa

Calfee et al., 2001;
Lesic et al., 2007

A group of compounds with a benzamide–benzimidazole backbone Binding to MvfR (PqsR) and reducing MvfR DNA
binding activity

Starkey et al., 2014

Farnesol Decreasing the level of pqsA expression Cugini et al., 2007

Hod (3-hydroxy-2-methyl-4(1H)-quinolone 2,4-dioxygenase) Cleaving PQS to N-octanoylanthranilic acid and carbon
monoxide

Pustelny et al., 2009

Unknow enzyme from Achromobacter xylosoxidans Q19 Oxidizing PQS into
2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione
(HHQD)

Soh et al., 2015

elsewhere on the chromosome in P. aeruginosa. PqsH, FAD-
dependent monooxygenase, is required for the conversion of
HHQ into PQS. PqsL is also a monooxygenase which is required
for HQNO synthesis (Heeb et al., 2011). PQS or HHQ binds
to and activates the LysR-type transcriptional regulator PqsR
(also known as MvfR), which in turn induces the expression
of the pqsABCDE operon and possibly the phnAB operon
and triggers the typical QS autoinducing response enhancing
AQ biosynthesis (Maddocks and Oyston, 2008; Heeb et al.,
2011).

Alkylquinolone–quorum sensing cooperates with the AHL-
QS systems, lasI/R and rhlI/R, in P. aeruginosa (Xiao et al., 2006;
Heeb et al., 2011). PQS has been shown to regulate the expression
of the AHL synthase gene rhlI (Pesci et al., 1999; McKnight
et al., 2000). Furthermore, it has been demonstrated that PQS is
essential for the activation of certain rhl-dependent genes (Diggle
et al., 2003). The las QS system increases the expression of pqsR
and pqsA as well as controlling the expression of pqsH indicating
that las acts as a positive regulator of PQS (Déziel et al., 2004;
Xiao et al., 2006). However, the biosynthesis of PQS only partially
relies on the las system since PQS is still produced in the absence
of lasR (Diggle et al., 2003). In contrast to the las QS system, the
rhl system negatively regulates the PQS production (Xiao et al.,
2006; Heeb et al., 2011).

Alkylquinolone–quorum sensing also plays important roles in
pathogenicity. Mutants on AQ–QS showed reduced P. aeruginosa
virulence in infection models (Cao et al., 2001; Diggle
et al., 2003; Déziel et al., 2004). These results suggest that
PQS or HHQ signaling pathway could be a novel target
against P. aeruginosa infecyions. A sesquiterpene, farnesol

produced by the fungus Candida albicans, decreases the
level of pqsA expression by interfering with PqsR-mediated
transcription activation and sequentially reduces the PQS and
PQS-regulated pyocyanin production. However, in the PQS-
defective lasR mutant farnesol restores PQS production by
inducing PqsH via RhlI/C4-HSL activation (Cugini et al.,
2007, 2010). Around 50% of strains isolated from lungs of
late stage cystic fibrosis (CF) patients are deficient in lasR
function (Winstanley and Fothergill, 2009). The fungal–bacterial
communication via farnesol is still unclear and may provide
a new target for mitigating bacterial chronic infection in CF
lungs.

A monomeric enzyme, Hod (3-hydroxy-2-methyl-4(1H)-
quinolone 2,4-dioxygenase) from Arthrobacter sp. strain Rue61a
involved in the degradation of 2-methylquinoline (quinaldine),
is able to cleave PQS to N-octanoylanthranilic acid and
carbon monoxide but not HHQ. Exogenous Hod reduces
the PQS production and PQS-regulated virulence factors,
lectin A, pyrocyanin, and rhamnolipids in P. aeruginosa.
Hod also attenuates the pathogenicity of P. aeruginosa in
a plant leaf infection model (Pustelny et al., 2009). It has
been reported that, a group of analogs of PQS precursor
anthranilatic acid (AA) including methylanthranilate (MA), 2-
amino-6-fluorobenzoic acid (6FABA), 2-amino-6-chlorobenzoic
acid (6CABA), and 2-amino-4-chlor-obenzoic acid (4CABA),
acts as competitors for PqsA active site and as inhibitors for
HHQ and PQS production resulting in reduced pathogenicity
of P. aeruginosa in mice infection models (Calfee et al., 2001;
Lesic et al., 2007). Recently Soh et al. (2015) reports an
environmental bacterium, Achromobacter xylosoxidansQ19 from
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rainforest soil, is capable of oxidizing PQS into 2-heptyl-2-
hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD), which was
elucidated by mass spectrometry and nuclear magnetic resonance
spectroscopy. The PQS oxidation to HHQD also occurs with less
efficiency in the A. xylosoxidans and P. aeruginosa from CF lung
which suggests that the hydroxylated PQS is a common molecule
in soil and in CF lungs (Soh et al., 2015). However, the biological
function of HHQD is still unknown.

Besides targeting on PQS molecules production or
modification, a group of compounds with a benzamide-
benzimidazole backbone targeting on MvfR (PqsR)-regulated
pathways have been identified by using a whole-cell high-
throughput screen (HTS) and structure–activity relationship
(SAR) analysis. These compounds inhibit the production of
pyocyanin in several clinically isolated P. aeruginosa strains;
limit the formation of antibiotic-resistant cells; rescue mice
macrophage from the bacterial cytotoxicity; attenuate the
bacterial pathogenicity in acute thermal injury and lung infection
murine models; reduce the accumulation of macrophage at
the infection sites resulting in inhibition of inflammation
evoked by bacteria and inhibit bacterial persistence for
developing chronic infection in burned mice. One of the
most effective compounds, M64 molecule, binds to MvfR and
decreases the MvfR–DNA binding affinity by 10-folds which
results in the reduction of MvfR-activated virulence factors.
These compounds have been suggested as next generation
therapeutic agents against bacterial infections (Starkey et al.,
2014).

CONCLUSION

Here we summarize recent studies of AHL synthesis inhibition
and QQ on P. aeruginosa AQ–QS (Table 1). Although QS is an
ideal target to attenuate bacterial virulence and pathogenicity,
several studies warn that bacteria rapidly evolve and spread
the resistance against QS inhibitors like the fate of antibiotics
(García-Contreras et al., 2013; Kalia et al., 2013). Furthermore
Decho et al. (2010) suggested that the biologically or chemically
modified signals might interact with unexpected signal receptors
for unpredicted outcomes in the complex natural environments.
Little is known about the effects of QS inhibitors or enzymes
on the broader microorganisms’ communities or the fate of
products from signal molecules degradation and modifications in
the environments (Decho et al., 2010). Many questions remain
for further investigation. Thus it is highly desired to further
investigate the virulent roles of QS signals in infections and to
explore the strategy to eliminate their production rather than to
modify or to degrade them for diminishing unpredicted impacts
to environments.
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