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Abstract: We hereby discuss the thermoelectric properties of PdXSn(X = Zr, Hf) half Heuslers in
relation to lattice thermal conductivity probed under effective mass (hole/electrons) calculations
and deformation potential theory. In addition, we report the structural, electronic, mechanical, and
lattice dynamics of these materials as well. Both alloys are indirect band gap semiconductors with
a gap of 0.91 eV and 0.82 eV for PdZrSn and PdHfSn, respectively. Both half Heusler materials are
mechanically and dynamically stable. The effective mass of electrons/holes is (0.13/1.23) for Zr-type
and (0.12/1.12) for Hf-kind alloys, which is inversely proportional to the relaxation time and directly
decides the electrical/thermal conductivity of these materials. At 300K, the magnitude of lattice
thermal conductivity observed for PdZrSn is 15.16 W/mK and 9.53 W/mK for PdHfSn. The highest
observed ZT value for PdZrSn and PdHfSn is 0.32 and 0.4, respectively.

Keywords: electronic structure; thermoelectric properties; phonon band structure; lattice thermal conductivity

1. Introduction

The ability of thermoelectric (TE) materials to convert heat to electrical energy has
attracted a great deal of interest and can play a significant part in developing futuristic
energy effective materials and devices [1]. Thermoelectric materials are eco-friendly, with
no adverse effects on the environment, and are very important in daily life to achieve
energy harvesting. The efficiency of TE material can be expressed by its figure of merit
(ZT), which is defined as [2]

ZT=
S2σT

k
(1)

where S is Seebeck coefficient, σ is electrical conductivity, T is absolute temperature, and k
is total thermal conductivity. The total thermal conductivity (k) of crystal is sum of lattice
thermal conductivity (kL) and electronic thermal conductivity (kel). All these parameters are
related to each other, so it is difficult to alter the thermoelectric properties independently.

Several techniques, such as electron-hole doping [3,4], strain engineering, forming
a layered structures, effect of resonant levels [5], etc., have been used to enhance the
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value of ZT. The various efficient bulk thermoelectrics include Heusler materials [6–9],
phonon glass and electron crystals (PGEC) [10,11], pentatellurides [12], clathrates [13],
chalcogenides [14], skutterudite [15], oxides [16], and tin selenide [17], etc., which have low
thermal conductivity and high electrical properties.

Here, we discuss the half Heusler (HH)-kind materials exhibiting an FCC structure in
the form of XYZ [18] formulae units, where X and Y are the element of transition series of
d-block, and Z is an element of group III–IV of p-block elements. In HH materials, X-atoms
are positioned at (0, 0, 0), Y atoms at (0.25, 0.25, 0.25), and Z-atoms are located at (0.5, 0.5,
0.5). Half Heusler compounds have interesting properties due to their high value of Seebeck
coefficient, power factor, and low thermal conductivity. MNiSn (M = Ti, Zr, Hf) are the most
reliable half Heusler compounds due to their high ZT value, which is between the range
from 0.7 to 1.5 [19]. XCoSb (X = Ti, Zr, Hf) compounds have gained attention because of
their ZT value, which is equal to 1.0 at 1097 K with p-type doping [20,21]. K. Jia et al. found
that CuLiX(X = Se, Te) are a good thermoelectric material due to their high ZT value, which
is equal to 2.65 (1.7) for CuLiTe (CuLiSe) [22]. FeNbSb-based half Heusler compounds have
also been explored, and their value of ZT is >1 [23,24]. M.K. Bamgbose investigated the
thermoelectric properties of XIrSb (X = Ti, Zr, Hf) and found that ZT = 0.87, 0.95, and 0.90
for TiIrSb, TrIrSb, and HfIrSb at 800 K, respectively [25]. Fang et al. [26] have reported that
due to large band degeneracy and low effective mass, the value of ZT = 1.5 at 1200 K for
RuTaSb half Heusler. Thermoelectric properties of KBiX (X = Ba, Sr) were investigated
by Z.F. Meghoufel et al. using ab initio principle, and they found the values of ZT = 2.68
and 1.56 for KBiBa and KBiSr, respectively [27]. R. Ahemad et al. reported ZT = 1 for all
XMgN (X = Li, La, K) half Heusler materials [28]. Vikram and his co-workers explored
the thermoelectric properties of Bi-based half Heusler alloys and reported ZT = 0.37 for
HfRhBi, 0.42 for ZrIrBi, and 0.45 for ZrRhBi at 1300 K, respectively [29]. M. Zeeshan et al.
investigated the thermal and electrical transport properties of two novel Fe-based Heusler
alloys, namely FeTaSb and FeMnTiSb, and found ZT equal to 0.74 (FeNbSb), 0.72 (FeTaSb),
and 0.46 (FeMnTiSb) at 1100 K [30]. ZrNiPb, ZrPtPb, and ZrPdPb have been reported with
ZT values 1.71, 1.26, and 1.75, respectively [31]. J. Nagura and his co-workers explored the
thermoelectric and mechanical properties of XHfSn (X = Ni, Pd, Pt) materials [32] using
first principle calculations. Inspired by other half Heusler materials, we investigated the
structural, electronic, mechanical, chemical, and thermoelectric properties of half Heusler
PdXSn (X = Zr, Hf) in this paper using the first principle calculation and Boltzmann
transport equation. To best out of our knowledge, the thermoelectric properties of PdZrSn
Heusler material has not yet been explored, and also, there is no previous theoretical and
experimental work reported on PdZrSn half Heusler material.

2. Computational Method

The calculations are performed within density functional theory (DFT) as implemented
in Quantum Espresso code [33] (Version 6.7.0) using the norm-conserving pseudo potentials
based on the Troullier Martins scheme [34]. The plane wave basis set and generalized
gradient approximation (GGA) [35] with Perdew, Burke, and Ernzer of (PBE) exchange-
correlation functional is used in this work. The plane-wave basis set is used to implement
kinetic energy cutoff and charge density cutoff. The kinetic energy cutoff of 70 Ry and
charge density cutoff of 700 Ry for PdHfSn and PdZrSn are used in calculations. Under
the Monkhorst–Pack scheme [36] k-mesh 10 × 10 × 10 is used in the first irreducible
Brillouin zone.

The semi-classical Boltzmann transport theory, as implemented in the BoltzTraP
code [37–39] and rigid band approximation (RBA), is used to determine the thermoelectric
coefficient. For better convergence of results, highly dense k-points are used to calculate
transport properties. The calculation of lattice thermal conductivity (kL) is calculated using
Slack’s equation [40–42], which is written as

kL=
AMθ3

DV1/3

γ2Tn2/3 (2)
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Here, M, V, n, and γ are average atomic mass, volume, no. of atoms in the unit cell, and
Gruneisen parameter, respectively. γ is calculated as

γ=
9 − 12

(
vt
vl

)2

2 + 4
(

vt
vl

)2 (3)

Here, vl is longitudinal, and vt is transverse velocity. The dimensionless constant A is
computed as:

A =
2.43 × 10−8

1 − 0.514
γ + 0.228

( γ)2

(4)

Deformation potential theory [43,44] based on effective mass approximation is used to
determine the relaxation time (τ), which is calculated as

τ =
8π1/2ћ4Cii

3
(
m∗

dKBT
)3/2E2

d

(5)

where m∗
d is the effective mass of DOS, Cii is elastic constant, and Ed is deformation constant.

In addition, Ed is defined as

Ed =
∂Eedge

∂
(

∆a
a0

) (6)

where Eedge band energy corresponds to VBM and CBM for hole and electron, respectively,
ao is the optimized lattice constant, and ∆a is the distortion from equilibrium lattice pa-
rameter. The elastic constant (Cii) is estimated using the total energy with strain using a
quadratic polynomial fit as

Cii =
1

Vo

∂2E

∂
(

∆a
ao

)2 (7)

where Vo is equilibrium volume. The details of the calculated values for this material are
listed in Table 1.

Table 1. DOS effective masses (m∗
d), deformation constant (Ed), elastic constant (Cii), and relaxation

time (τ) of PdZrSn and PdHfSn at 300 K.

Compound
Electrons Holes

m∗
d (mo) Ed (eV) Cii (GPa) τ (fs) m∗

d (mo) Ed (eV) Cii (GPa) τ (fs)

PdZrSn 0.13 37.88 166.7 0.690 1.28 35.33 166.7 0.026

PdHfSn 0.128 38.21 163 0.698 1.12 35.74 163 0.030

3. Results and Discussion
3.1. Structure and Stability

Half Heusler materials PdXSn (X = Zr, Hf) have an FCC cubic crystal structure with
space group F43 m symmetry as represented in Figure 1. The lattice constant of this
series is calculated by GGA approximation corresponding to minimization of energy that
is fitted by using the Birch–Murnaghan equation [45]. The optimized value of lattice
parameters obtained for PdZrSn and PdHfSn are 6.41
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Figure 2a,b indicates that there are no negative phonon frequencies that exist, which indi-
cates the dynamical stability of both materials. In the phonon dispersion curve, there are 
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Figure 1. The crystal structure of PdXSn (X = Zr, Hf) compound. Blue, green, and red color represent
Pd, X, and Sn atoms, respectively. The position occupied by Pd, X, and Sn are (0.25, 0.25, 0.25); (0.5,
0.5, 0.5); and (0, 0, 0), respectively.

The chemical stability of PdXSn (X = Zr, Hf) are examined with the help of formation en-
ergy (∆E f ) and cohesive energy (∆Ec) calculations, using the following expressions [46,47]:

∆E f = [E(PdXSn)Bulk
n − nE(Pd)bcc − nE(X)bcc − nE(Sn)bcc]/n (8)

∆Ec = [E(PdXSn)Bulk
n − nE(Pd)atom − nE(X)atom − nE(Sn)atom]/2n (9)

where E(PdXSn)Bulk
n is n formula unit energy of PdXSn cell; E(Pd)bcc, E(X)bcc, E(Sn)bcc are

energies of Pd, X, and Sn in stable structure, respectively. E(Pd)atom, E(X)atom, E(Sn)atom

are energies of Pd, X, and Sn in free space. The formation energy (cohesive energy) of
PdZrSn as −3.40 eV (−2.79 eV) and PdHfSn is −3.17 eV (−2.78 eV). The negative values of
both formation and cohesive energies indicate that PdXSn(X = Zr, Hf) are chemically stable
compounds and can be synthesized experimentally.

Table 2. Optimized lattice parameters of PdXSn (X = Zr, Hf) compound.

Parameter Lattice Constant (
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) Band Gap (eV)

PdZrSn

6.41 (this work) 0.91 (this work)

6.32 [48] 0.49 [48]

6.321 [49] 0.43 [49]

6.392 [50]

PdHfSn

6.38 (this work) 0.82 (this work)

6.354 [32] 0.40 [32]

6.30 [48] 0.38 [48]

The crystal structure of PdXSn (X = Zr, Hf) has been examined for dynamical stability
with the help of phonon frequency calculations. For a dynamically stable system, the
phonon frequency should be real and positive; a system with negative and imaginary
frequency is not considered as dynamically stable. The phonon dispersion curve shown
in Figure 2A,B indicates that there are no negative phonon frequencies that exist, which
indicates the dynamical stability of both materials. In the phonon dispersion curve, there
are three acoustical modes and six optical modes because these materials have three atoms
in the primitive unit cell. The group velocity of phonon is described by the equation
vg = dω

dk , which represents the slope of related branches. The curvature of optical branches
is flat, which corresponds to low group velocity, but the longitudinal acoustical branches
having a linear variation seem to have a large group velocity and are primarily responsible
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for thermal conduction. Hence, the acoustical mode of phonon gives a large contribution to
the lattice thermal conductivity of a material because the group velocity of this mode is
very high.
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3.2. Electronic Structure

Figure 3 represents the band structure and density of states (DOS) of PdXSn (X = Zr, Hf),
which are calculated at the optimized value of lattice constant using generalized gradient
approximation. In-band structure calculations valence band maxima (VBM) are located at
Γ-point, and conduction band maximum is located at L-point. Therefore, PdXSn (X = Zr, Hf)
are indirect bandgap semiconductors with bandgaps of 0.91 eV and 0.82 eV, respectively.
DOS shows atomic orbital’s contribution of the atoms. Near the fermi level, Zr-4d, Sn-5p
orbitals for PdZrSn and Hf-5d, Sn-5p for PdHfSn have large contributions in the valence
band and conduction band. Therefore, d-orbitals are expected to have a major role in deter-
mining the thermoelectric behavior of these HH materials. From the band structure, we
observed that VBM are 3-fold degenerate, which consist of heavy and light bands. Heavy
bands contribute to enhance the Seebeck coefficient, and light bands give a contribution to
the charge carrier’s mobility. As a result, both types of bands enhance the TE performance
of the materials.
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Under the parabolic approximation, the effective mass for both types of charge carriers
(electron and hole) is defined as

m∗ =
ћ2

∂2E
∂k2

(10)

This means that for a given k-point, the effective mass for a flat curvature will be
higher in comparison to the effective mass for a sharp curvature. The effective mass of the
density of states (m∗

d ) is given by

m∗
d= N2/3

V

(
m∗

x .m∗
y .m∗

z

)1/3
(11)

NV is band degeneracy, and m∗
x , m∗

y , m∗
z are effective masses in the x, y, z directions,

respectively. For an isotropic material, m∗
x = m∗

y = m∗
z = m∗; therefore, m∗

d = N2/3
V m∗ . The

large value of NV and small value of m* give rise to the high value of Seebeck coefficient
and carrier mobility.

The variation of band edge energy corresponding to valence band (VBM) and con-
duction band (CBM) with the applied strain is shown in Figure 4. The slope of the curves
represents the value of the deformation constant (Ed).
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Born et al. [51] defined the following mechanical stability criteria using elastic parameters:

C11 > 0, C44 > 0, C11− C12 > 0, C11+2 C12 > 0 (12)

where C11, C12, and C44 are elastic constants. The observed value of elastic constants of
PdXSn (X = Ti, Hf, Zr) listed in Table 3 are found to satisfy the stability criteria, which
implies that these HH compounds are mechanically stable. Using Voigt–Reuss–Hill ap-
proximations [52,53], the bulk modulus (B) and shear modulus (G) of PdXSn (X = Hf, Zr)
were calculated. The bulk modulus (B), shear modulus (G), Young’s modulus, longitudinal
(vl), and transverse (vt) velocity is defined as

B =
(C11 + 2C12)

3
(13)

G =

C11−C12+C13
5 + 5(C11−C12)

3(C11−C12+4C44)

2
(14)
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Y =
9BG

3B + G
(15)

vl=

√
G
ρ

(16)

vt =

√
(3B + 4G)

3ρ
(17)

Table 3. Elastic constants ( C11, C12, and C44 ), density (ρ), longitudinal velocity (vl), transverse
velocity (vt), bulk modulus (B), shear modulus (G), Debye temperature (θD), and Pugh’s ratio (B/G)
for PdZrSn and PdHfSn compounds.

Property PdZrSn
(This Work)

PdHfSn
(This Work)

(PdHfSn)
Others 26

C11 (GPa) 178.8 175.1 179.5

C12 (GPa) 96.6 90.4 88.6

C44 (GPa) 76.7 79.0 69.6

ρ (gcm−3) 7.96 10.29 -

vl (ms−1) 5055.9 4417.7 -

vt (ms−1) 2738.0 2445.7 -

B (GPa) 124.0 118.6 117.0

G (GPa) 59.7 61.7 59.5

θD (K) 322.5 288.6 -

Pugh’s ratio (B/G) 2.07 1.92 -

Anderson’s formula [54] is be applied to compute the Debye temperature θD in terms
of longitudinal and transverse velocity as

θD=
ћ
kB

(
3nρNA

4πM

)1/3
[
1
3

(
1
v3

l
+

1
v3

t

)
]

−1/3

(18)

where h̄ is reduced plank constant, kB is Boltzmann constant, n is no. of atom in the
primitive unit cell, NA Avogadro’s number, and M is atomic mass of the unit cell. Cauchy’s
pressure (C) and Pugh’s ratio [55] (B/G) are used for elaborating the brittleness and ductility
of the material. The negative value of C = (C12 − C44) and B/G < 1.75, which implies the
brittleness and vice-versa ductility of materials. The positive value of C = (C12 − C44) and
B/G > 1.75 shows that both materials are ductile in nature.

3.3. Thermoelectric Properties

The thermoelectric parameters were calculated to find out the thermoelectric per-
formance of PdXSn (X = Zr, Hf) at various temperatures using the Boltzmann transport
equation. Figure 5 shows the variation of lattice thermal conductivity with temperature,
and the value of lattice thermal conductivity is 15.16 (9.53) W/mK for PdZrSn (PdHfSn)
at 300 K. The lattice thermal conductivity decreases with increase in temperature due to
lattice scattering.
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Figure 6 represents the Seebeck coefficient (S), electrical conductivity (σ), and electronic
thermal conductivity (kel) for both PdZrSn and PdHfSn materials at various temperatures
(300 K, 500 K, 700 K). According to Mott’s formula [27], the Seebeck coefficient is directly
proportional to DOS effective mass and temperature but inversely proportional to carrier
concentration. It is given by

S =
8π2k2

B
3eh2 m∗

dT
[ π

3n

]2/3
(19)

Seebeck coefficient decreases as the carrier concentration increase with temperature.
The calculated band structure for these materials features a sharp conduction band and
a flat valence band, indicating high transport characteristics. The highest value of the
Seebeck coefficient at room temperature is 900 µV/K and 763 µV/K for PdZrSn and
PdHfSn, respectively.

For calculation of total thermal conductivity, we have to evaluate the electronic thermal
conductivity (kel). The value of kel and σ are in the form of σ

τ and kel
τ , where τ is relaxation

time. Electrical conductivity is inversely proportional to effective mass and depends
directly upon relaxation time. At room temperature, the obtained value of electrical
conductivity for PdHfSn (~17.46 × 106 S/m) is larger than PdZrSn (~13.96 × 106 S/m),
and it decreases exponentially due to thermal collisions when temperature is increased.
The temperature behavior of kel is similar to σ because both types of conductivity decrease
with increase in temperature. It is observed that the largest value of electronic thermal
conductivity is 101.88 W/mK and 127.08 W/mK for PdZrSn and PdHfSn, respectively, at
room temperature.

The Seebeck coefficient, electrical conductivity, and total thermal conductivity are
used to determine the dimensionless figure of merit ZT. Figure 7 shows the ZT value as
a function of chemical potential for PdZrSn and PdHfSn materials. ZT gradually varies
with temperature and attains the highest value 0.32 for PdZrSn and 0.4 for PdHfSn at
700 K. The comparison of ZT with other half Heusler compounds are given in Table 4.
Apart from half Heusler compounds, the calculated ZT value of PdZrSn and PdHfSn is
greater than or comparable with other materials such as quaternary Heusler compounds
CoZrMnX (X = Al, Ga, Ge, In) [56], FeRhCrX (X = Si, Ge) [57], LiTiCoX (X = Si, Ge) [58] with
ZT~(0.02–0.14), full Heusler Fe2ScX (X = P, As, Sb) [59] with ZT~(0.2–0.52), and SrTiO3 [60]
with ZT = 0.07.
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Table 4. Comparison of Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity
(kL) (at 300 K) and maximum ZT of PdXSn (X = Zr, Hf) with other half Heusler materials.

Compound S (µV/K) σ (S/m) kL (W/mK) ZT Value

PdZrSn (our work) 900 13.96 × 106 15.16 0.32

PdHfSn (our work) 763 17.46 × 106 9.53 0.40

PtZrSn [47] 1533 4.00 × 105 16.96 0.24

PtHfSn [47] 1649 6.42 × 105 10.04 0.57

HfRhSb [61] 252 1.5 × 105 17.35 0.42

ZrNiSn [62] 275 4 × 105 7.00 0.64

ZrIrBi 255.9 26.5× 104 2.00 0.42

ZrRhBi 319.8 8.7× 104 - 0.43

HfPtSn [63] 196 5.2 14.90 0.05

4. Conclusions

The thermoelectric properties of half Heusler compounds PdZrSn and PdHfSn have
been studied under the perspective of density functional theory. PdZrSn and PdHfSn
are indirect bandgap semiconductors with a bandgap of 0.91 eV and 0.82 eV, respectively.
These materials are mechanically, chemically, and dynamically stable. Seebeck coefficient,
electrical conductivity, total thermal conductivity, and ZT value are calculated at various
temperatures with respect to chemical potential. Pugh’s ratio shows the ductile nature of
both PdZrSn and PdHfSn. The highest value of ZT for PdZrSn is 0.32 and PdHfSn is 0.4 for
p-type doping. The ZT value of PdHfSn is higher than PdZrSn. However, ZT values shows
that both PdZrSn and PdHfSn are good for thermoelectric performance and certainly give
guidance for experimental work.
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