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Abstract

Cells respond heterogeneously to molecular and environmental perturbations. Phenotypic 

heterogeneity, wherein multiple phenotypes coexist in the same conditions, presents challenges 

when interpreting the observed heterogeneity. Advances in live cell microscopy allow researchers 

to acquire an unprecedented amount of live cell image data at high spatiotemporal resolutions. 

Phenotyping cellular dynamics, however, is a nontrivial task and requires machine learning 

(ML) approaches to discern phenotypic heterogeneity from live cell images. In recent years, ML 

has proven instrumental in biomedical research, allowing scientists to implement sophisticated 

computation in which computers learn and effectively perform specific analyses with minimal 

human instruction or intervention. In this review, we discuss how ML has been recently employed 

in the study of cell motility and morphodynamics to identify phenotypes from computer vision 

analysis. We focus on new approaches to extract and learn meaningful spatiotemporal features 

from complex live cell images for cellular and subcellular phenotyping.

Keywords

machine learning; live cell imaging; deep learning; phenotyping; cell motility; cell 
morphodynamics

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
*Author to whom any correspondence should be addressed. kwonmoo.lee@childrens.harvard.edu. 

HHS Public Access
Author manuscript
Phys Biol. Author manuscript; available in PMC 2022 May 25.

Published in final edited form as:
Phys Biol. ; 18(4): . doi:10.1088/1478-3975/abffbe.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


1. Introduction

A primary goal of biology is to understand the phenotypic characteristics of organisms 

and their underlying mechanisms. Indeed, biology is a branch of natural science that 

has historically focused on the study of differences in organismal traits or phenotypes 

(appendix A). The careful observation of phenotypes has traditionally been important in 

both medicine and agriculture. Prior to the advent of modern medicine, medical diagnosis 

focused on carefully detecting abnormal phenotypes and treating the associated diseases. 

The recent advancement of high-throughput tools has accelerated phenotyping at the 

molecular, cellular, and tissue levels [1]. Advances have been made in many areas by 

employing state-of-the-art genomic and imaging technologies, including medical diagnosis 

[2–5], drug discovery [6–13], agriculture [14–16], and bioproduction [17, 18].

Conventionally, phenotypes are characterized by static information such as cell morphology, 

protein abundance, and localization. Living organisms, however, dynamically react to 

wide ranges of everchanging environments by adapting their biochemical, physical, and 

morphological characteristics to new environments. Cellular dynamic responses occur on 

various timescales: biochemical signaling within seconds, transcriptional changes from 

minutes to hours, and differentiation and division from hours and days [19]. For example, 

the protein level of p53, a tumor suppressing transcription factor that controls cell division 

and cell death, displays dynamic oscillations in response to DNA damage to mitigate 

the irreversible effects of perpetual activation of p53 target genes [20, 21]. Cells also 

dynamically change their morphology within seconds to hours in response to environmental 

cues [22]. It is increasingly clear that static phenotypes are limited when investigating such 

dynamic processes and should be complemented by temporal organismic behaviors called 

‘dynamic phenotypes’ [23].

Since cell morphology and motility reflect the physiological and signaling states of a cell 

[24–26], efforts have long been underway to analyze the dynamics of cell morphology 

(morphodynamics) as well as motility and locomotion in a quantitative manner using 

live cell imaging [27–29]. However, phenotypic heterogeneity, where multiple phenotypes 

coexist at subcellular [30–32], cellular [33–35], and multicellular [36, 37] levels, hinders 

the task of phenotyping from a large and high-dimensional live cell dataset. Moreover, 

highly dynamic new phenotypes can emerge depending on environmental conditions and 

developmental age [38]. Therefore, the heterogeneity of cellular and subcellular dynamics 

has been a significant challenge for the quantitative identification of dynamic phenotypes.

Computer vision and machine learning (ML) have been employed to extract quantitative 

information from cell images and have become key tools for identifying cellular 

phenotypes [39]. There are existing tools that aid computational image analysis, including 

morphological profiling (CellProfiler [40] and PhenoRipper [41]), the supervised learning of 

cellular phenotypes (CellClassifier [42]), and the discovery of phenotypes in high-content 

imaging data (advanced cell classifier [43]). While these methods have been used to 

distinguish between normal and cancer cells [44, 45], these tools have been limited to static 

cell image datasets. Computer vision and ML enable us to identify previously unknown 

dynamic phenotypes that cannot be detected by the human eye. These new technologies 
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are capable of unraveling phenotypic heterogeneity and opening a new avenue for defining 

phenotypes at unprecedented spatial and temporal resolutions. In this review, we focus on 

how ML can address the issues of phenotypic heterogeneity within live cell image datasets 

and identify spatiotemporal phenotypes of cell motility and morphodynamics.

2. Feature extraction in machine learning to recognize phenotypes

In recent years, ML has proven to be instrumental in biomedical research, allowing scientists 

and clinicians alike to implement sophisticated computation in which computers learn 

and effectively perform specific tasks from biologically relevant datasets with minimal 

human instruction or intervention. ML can be mainly categorized into supervised and 

unsupervised learning. Supervised learning requires labeled datasets and discovers the 

relationship between inputs and outputs of ML systems. Unsupervised learning utilizes 

data representations as input and discovers the internal structures of data. In terms of 

phenotyping, supervised learning can be used to classify data into known phenotypes, 

and unsupervised learning can be used to discover previously unknown phenotypes. 

Conceptually, both supervised and unsupervised learning consist of feature extraction and 

optimization, which can include classification, regression, or clustering. After features 

are extracted from the data, supervised learning can be performed for classification or 

regression, or unsupervised learning can be performed for data clustering. The goal of these 

procedures is to optimize the objective functions related to the criteria for given ML tasks.

Raw datasets from live cell imaging inherently have high dimensionality (a time-lapse 

image set with 100 × 100 pixels and 10 timeframes has 105 dimensions). This leads 

to the ‘curse of dimensionality’ [46, 47], wherein the volume of data space becomes 

exponentially large as the dimensionality increases. This makes the data distribution too 

sparse, ultimately hindering computational algorithms from reaching statistically significant 

results. Therefore, for the effective phenotyping of high-dimensional datasets, it is necessary 

to project raw data onto low-dimensional space while retaining intrinsic dimensions. The 

goal of feature extraction is to represent raw data effectively using relevant features with 

lower dimensions. The new representations derived from raw datasets have less noise, 

redundancy, and dimensionality than the original dataset, making them more informative 

and beneficial to subsequent computational processes. Therefore, one of the most important 

steps to determine the success of ML applications is feature extraction.

In traditional ML contexts (figure 1(a)), manually selected features are used for 

dimensionality reduction. This process, however, is very time consuming and requires 

considerable human effort. An alternative method for feature extraction is feature learning, 

in which computers learn features directly from the data with less human instruction (figure 

1(b)). Deep learning (appendix B) offered a breakthrough in feature learning, wherein deep 

neural networks (DNNs) can learn the relevant features automatically and directly from raw 

data through multiple hidden layers [48]. Since the deep learning approach utilizes all the 

information from raw data, it provides more comprehensive features that human intuition 

cannot offer, while the manually selected features used in traditional ML are generally 

more interpretable and related to domain knowledge. Autoencoders (AEs), based on deep 

learning, have been widely used for feature learning [49] because they reproduce the input 
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of the AE while limiting the number of hidden units. The values from these hidden units can 

serve as the learned features from the data. The learned features from one domain can be 

used in another domain by transfer learning, which extracts feature information from input 

data using networks pretrained on different but related domains [50, 51]. Convolutional 

neural network (CNN) models pretrained with numerous ordinary images available on 

ImageNet [52] have been shown to generate highly effective features in many image-related 

ML tasks [53–56].

3. Phenotypes of cellular motility and morphodynamics at various 

spatiotemporal scales

Cells and subcellular structures constantly undergo heterogeneous morphological changes 

over various spatiotemporal scales. Advances in fluorescence microscopy have allowed 

researchers to acquire an unprecedented amount of live cell image data at high 

spatiotemporal resolutions, which has revealed a massive amount of heterogeneity. Current 

image analysis tools, however, usually have limited capacity for phenotyping cellular and 

subcellular behaviors from heterogeneous live cell image datasets. ML and deep learning are 

being increasingly employed to extract spatiotemporal features from live-cell imaging data 

and identify their phenotypes to better understand the underlying biological mechanisms. In 

this section, we briefly review recent efforts to understand the diverse dynamic phenotypes 

of cell motility and cellular morphodynamics on various length and time scales.

Cell motility.

Cell motility is an essential process for various physiological and pathophysiological 

processes such as development, immune responses, wound healing, angiogenesis, and cancer 

metastasis. Cell motility occurs on time scales from hours to days and has long been 

a subject of study in the field of quantitative cell biology. Previously, cell migration 

trajectories were studied using simple random walk models [28, 29]. However, it is 

increasingly recognized that there exists significant cell-to-cell variability in motility speed 

[57], and cell motility has multiple phenotypes representing unique cellular states. Several 

ML frameworks for time-lapse live cell images have been developed to characterize 

numerous motility phenotypes using the unsupervised learning of single-cell motility 

[58–60] and collective cell migration [36, 61]. A recent study suggested that motility 

phenotypes in muscle stem cells (MuSCs) in mice represented the intermediate steps of 

MuSC differentiation [59]. The motility phenotyping of retinal progenitor cells (RPCs) 

before mitosis allowed for the prediction of the fate of RPCs (self-renewing vs terminal 

division and photoreceptor vs nonphotoreceptor progeny) [62]. The distance traveled by 

bone marrow mesenchymal stem cells was correlated with their adipogenic, chondrogenic, 

and osteogenic differentiation potentials [63]. The motility speed of human osteosarcoma 

cells can distinguish between a dormant nonangiogenic phenotype and an active angiogenic 

phenotype [64]. Knockout of a breast cancer oncogene, lipocalin 2, in human triple-negative 

breast cancer cells significantly reduced the motility speed and the migration distance [65].
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Cellular morphodynamics.

Leading edges (protrusive plasma membranes at the front of the cell) of migrating cells 

display significant spatiotemporal heterogeneity [27, 30]. Although these morphodynamic 

events occur on time scales from minutes to hours, which is much faster than cell 

motility, the morphology of motile cells by itself tells us about the biochemistry and 

mechanics underlying cell motility [66]. Recent ML analyses of live cell images revealed 

the relationships between cell morphodynamics and motility as follows. The morphological 

changes over second timescales enabled the prediction of migratory behaviors over minute 

timescales in Dictyostelium [67]. The morphological coordination between protrusion and 

retraction determines metastatic potency [68] and governs switching between ‘continuous’ 

and ‘discontinuous’ mesenchymal migratory phenotypes [69]. Morphodynamic phenotypic 

biomarkers together with migratory information can be used to evaluate the metastatic 

potential of breast and prostate cancer cells [70]. The neuronal growth cone is an 

essential structure for guiding axons to their targets during neural development. It exhibits 

complex and rapidly changing morphology, and the morphology of neuronal growth cones 

is highly correlated with neurite outgrowth [71]. The significance of morphodynamic 

phenotypes is not limited to cell motility. For example, the time-series modeling of live 

cell shape dynamics can reveal differential drug responses in breast cancer cells [72]. 

The local protrusion patterns of leukocytes can inform immune responses [73]. Finally, 

the morphodynamics of hematopoietic stem and progenitor cells (HSPCs) can predict the 

lineage before three generations [74].

Cell motility and morphodynamics in 3D environments.

A more recent study emphasized the importance of understanding cell motility in 3D 

cultures due to its physiological relevance and the advent of 3D cultures [75] and light 

sheet microscopy [76]. The persistent random walk model used for 2D motility is not 

suitable for modeling 3D motility since 3D motility is temporally coupled and anisotropic 

[77]. There are also significant technical challenges in assessing 3D cell morphology in 

a quantitative manner compared to 2D morphology [78]. The 3D morphological features 

of cancer cells derived from quantitative phase contrast microscopy can classify healthy, 

cancer, and metastatic cells [79]. A 3D image analysis of endothelial cell branching in 3D 

collagen gels revealed the role of myosin II in shape control [80]. Recently, an ML-based 

3D morphological motif detector, u-shape 3D, was developed to identify lamellipodia, 

filopodia, pseudopodia and blebs in 3D live cell images, clearing a path for 3D subcellular 

morphodynamic phenotyping [81].

Subcellular cytoskeleton dynamics.

The cytoskeleton orchestrates cellular morphodynamics and motility. Therefore, 

characterizing the heterogeneity of cytoskeletal dynamics at subcellular levels can reveal 

the underlying mechanism for cell motility and morphodynamics. The actin cytoskeleton 

directly affects cellular morphology via actin remodeling. Lamellipodia are composed 

of actin network structures at the leading edge of a motile cell, which provide strong 

force generation for cell shape changes and motility. Quantitative fluorescence speckle 

microscopy [82] and local sampling strategies [83, 84] have been extensively used to probe 
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lamellipodial dynamics in cell protrusions. Furthermore, the leading edge dynamics of 

lamellipodia were shown to have distinct subcellular protrusion phenotypes with differential 

recruitment of VASP and Arp2/3 [30]. Extended lamellipodia promoted by hyperactivation 

of Rac1 via the P29S mutation promotes the proliferation of melanoma cells [85]. Filopodia 

are finger-like protrusive structures containing thin actin bundles that play a role as sensory 

organelles for cell migration. Several computational platforms for the analysis of filopodial 

dynamics have been developed, including cellGeo [86], filopodyan [87], filoQuant [88], and 

GCA [71]. In neuronal growth cones, there are multiple filopodial phenotypes whereby Ena 

and VASP play differential roles in associated filopodial dynamics [87]. Additionally, the 

increased density of filopodia in breast cancer cells promotes higher invasiveness [88].

4. Strategies for spatiotemporal feature extraction

With the advancement of live cell imaging techniques, various computational strategies 

have been employed to extract both spatial and temporal features to characterize new 

phenotypes. As discussed before, feature extraction is a critical step for successful ML-based 

phenotyping because the nature of the extracted features from raw data determines the 

phenotyping. In this section, we discuss analytical strategies for feature extraction to identify 

dynamic cellular phenotypes in detail. We first focus on handcrafted feature extraction. 

Then, we discuss the application of emerging feature learning-based methods using deep 

learning.

4.1. Handcrafted feature extraction

The overall strategy defined here can be largely grouped by which type of feature is the 

focus for identifying phenotypes as follows (figure 2): (i) morphology-focused extraction, 

followed by temporal analysis, (ii) time-focused feature extraction, and (iii) simultaneous 

spatiotemporal feature extraction. Below is a more detailed description of representative 

analytical processes in defining cellular phenotypes in each category.

Morphology-focused feature extraction.—In this category (figure 2(a)), rich 

morphological features are first extracted at each time point (figure 2(b)); then, the feature 

dimensions are often reduced by principal component analysis [89] (PCA, reducing the 

dimensionality of data while preserving the information of data as much as possible), and 

morphological states are identified (figure 2(c)). The subsequent temporal analyses are 

performed by ML, such as time-series modeling, clustering, and classification. These types 

of analyses usually assume that cell morphology dictates distinct cellular states and then 

investigate how the morphological states evolve over time (figure 2(d)).

Gerlich’s group pioneered the development of ML frameworks for cellular morphodynamics 

in mitosis. Their overall approach focused on accurate morphological phenotyping by taking 

advantage of temporal information. Held et al developed a supervised ML framework, 

termed CellCognition [90], to classify complex cellular dynamics through morphologically 

distinct cell states (interphase, six different mitotic stages, and apoptosis) combining support 

vector machine [91] (SVM, see appendix C) classification with a hidden Markov model 

[92] (HMM, see appendix C). They extracted 186 quantitative features of texture and 

shape from the confocal images of live HeLa cells stably expressing the chromatin marker 
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H2B-mCherry, followed by SVM training for the classification of the cell states. Thereafter, 

they trained an HMM to take advantage of the temporal context of the cellular states, 

which corrected the misclassification occurring during the state transition. Zhong et al, in 

the same group, developed an unsupervised ML approach to identify the different cellular 

stages in mitosis without user annotation [93]. The same morphological features were 

reduced by PCA, and then temporally constrained combinatorial clustering was applied to 

make temporally linked objects cluster together, producing results consistent with the user 

annotation. This avoids expensive user annotation and facilitates high-throughput image-

based screening.

To analyze morphodynamics in cell motility, Godonov et al developed an unsupervised 

ML method, the SAPHIRE (stochastic annotation of phenotypic individual-cell responses) 

framework [72], wherein 18 morphological features, including area, perimeter, equivalent 

diameter, major/minor axis length, eccentricity, solidity, extent, convex area, axis ratio, 

circularity, waviness, geodesic diameter, and convex diameter, were extracted for each cell 

object at a specific temporal point. The high dimensionality of the extracted features is 

then reduced to low-dimensional space by PCA, and distinct shape states are determined by 

clustering. Thereafter, they applied an HMM to the time trajectories of these PCA-reduced 

features. Similarly, with the previously mentioned works, they also considered that cell 

morphology represents cellular states, and the HMM was applied to study the dynamics of 

the transition between morphological states. The temporal features extracted from the HMM 

can reveal more refined drug effects than the morphological features alone, which can be 

used to dissect the heterogeneity in cellular drug responses.

Morphodynamic phenotypes were also studied in the context of epithelial-to-mesenchymal 

transition (EMT) by Wang et al [94]. Using 150 points on cell outlines as cellular 

morphological features, they extracted Haralick features [95] (quantifying texture 

information from images) from fluorescently tagged endogenous vimentin, which is an 

EMT marker. After tracking these features over time during EMT, the acquired time series 

were projected onto a 2D space using a nonlinear dimensionality reduction technique, t-SNE 

[96] (t-distributed stochastic neighbor embedding, assigning pairs of similar data with high 

probabilities of being neighbors in low dimensional space), and they found two clusters 

using k-means clustering [97] (grouping unlabeled data into k clusters by assigning them to 

nearest cluster means). In one cluster, the changes in vimentin Haralick features preceded 

those of cell morphology. In the second cluster, the vimentin Haralick and morphological 

features changed concertedly. Since they could not find these results using pseudo-time 

analysis from the snapshot data, their live cell image analysis revealed the heterogeneity of 

EMT trajectories, which could not be obtained from static datasets.

The morphodynamic phenotyping of neuronal growth cones was studied using PCA in shape 

space, which revealed five to six basic shape modes of neuronal growth cone morphology 

[98]. For each growth cone mode, the autocorrelation function [99] (ACF, quantifying the 

similarity between a time series and its lagged one) and Fourier power spectrum were 

quantified to identify oscillatory phenotypes. It was found that the average growth rate was 

significantly correlated with the oscillation strength of specific growth cone modes.
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Time-focused feature extraction.—Previous morphology-focused approaches have 

treated cell morphology as a readout of cell states. While this can be a faithful 

approximation, particularly in mitosis, it is also possible that temporal dynamics in cellular 

or subcellular processes can reflect their unique properties. Therefore, temporal phenotyping 

based on time-focused feature extraction could reveal new findings. To identify temporal 

phenotypes (figure 2(e)), we must extract time-series or trajectory data directly from 

live-cell time-lapse videos using image analysis (figure 2(f)), and then quantify specific 

temporal features from the time-series (figure 2(g)). If necessary, the dimensions of temporal 

features can be reduced by PCA. Thereafter, standard ML methods such as clustering 

or classification can be applied to characterize the temporal phenotypes (figure 2(h)). 

The identified temporal phenotypes can then be further studied in a spatial context. This 

approach has been applied in cell motility, protrusion, and endocytosis, as discussed below.

The initial efforts in this approach were focused on phenotyping cell motility based on 

cellular trajectories. Sebag et al [58] developed a generic unsupervised ML method termed 

MotIW (motility study integrated workflow) from high-throughput time-lapse image data. 

First, fifteen features were extracted from each cellular trajectory, including the diffusion 

coefficient and track entropy, other global features (such as convex hull area and effective 

path length), and average local features (including mean square displacement and mean 

signed turning angle). PCA was used for dimensionality reduction, and k-means clustering 

was applied. Using the Mitocheck dataset, they discovered eight motility phenotypes, 

but the biological meaning of each phenotype remains to be discerned. Kimmel et al 
[59] took a similar approach, termed heteromotility, that extracts motility features from 

time-lapse cell images, including distance traveled, turning, and speed metrics. Using 

heteromotility, they identified more detailed phenotypes because the approach included 

features with more complex motions, such as Levy flight-like motion features, fractal 

Brownian motion features, and autocorrelation functions for displacements. Subsequently, 

hierarchical clustering was performed with Ward’s linkage, which identified multiple 

motility phenotypes within the cell population. The application of heteromotility analysis 

to the MuSC system during activation revealed three distinct MuSC phenotypes, and the 

motility phenotypes of activated MuSCs sequentially led to the motility phenotypes of 

muscle progenitor myoblasts, suggesting that dynamic phenotypes of cell motility can 

represent the intermediate steps of MuSC differentiation.

Multiple phenotypes exist not only at the single-cell level but also at the subcellular level. 

Therefore, dynamic phenotyping has been applied to subcellular leading-edge dynamics. 

Wang et al [30] developed an unsupervised ML framework, termed HACKS (deconvolution 

of heterogeneous activity in the coordination of cytoskeleton at the subcellular level) 

that deconvolves the heterogeneity of the subcellular protrusion at micron and minute 

scales. The images of the leading edge of PtK1 epithelial cells were segmented by 

multiple probing windows, and then the time series of protrusion velocities in each 

probing window were quantified (figure 2(f)). The ACF was calculated as a temporal 

feature of the protrusion velocity time series (figure 2(g)). Then, density peak clustering 

[100] (identifying cluster centers that are at local density maxima and away from other 

high-density regions) was applied to identify distinct subcellular protrusion phenotypes 
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(figure 2(h)). HACKS identified distinct subcellular protrusion phenotypes hidden in 

highly heterogeneous protrusion activities, revealing the temporal coordination of Arp2/3 

and VASP in accelerating protrusion phenotypes. This analysis also suggests that the 

unsupervised ML of cellular dynamics could dissect the underlying molecular mechanisms 

and drug responses obscured by heterogeneity. Li et al also analyzed the subcellular 

dynamics of leading-edge displacement using unsupervised ML and demonstrated that the 

subcellular phenotypes could be utilized for single-cell phenotyping [101]. They tracked 

and segmented target cells from the phase contrast microscopy images of lymphocytes. The 

local time series of edge displacement was extracted, and six-dimensional temporal features, 

such as temporal regularity, were quantified. Based on the local temporal features, the 

researchers further reduced the dimension of the vector to 2 with PCA, followed by applying 

k-means clustering. Three clusters of subcellular deformation patterns were identified, and 

the frequency of each cluster within the same cells was used for the feature of dynamic 

cellular morphology to perform supervised ML to classify ‘normal’ and ‘drastic’ cellular 

phenotypes.

Membrane trafficking, including endocytosis and exocytosis, is also a promising field where 

this ML application can make a significant contribution due to the multiple modes of 

endocytic and exocytic events [102, 103]. Wang et al [102] developed a ML method 

termed DASC (disassembly asymmetry score classification) applied to clathrin-mediated 

endocytosis (CME), that resolves aborted coats (ACs) from bona fide clathrin-coated pits 

(CCPs) based on single-channel fluorescent movies. They defined a clathrin disassembly 

risk function, which indicates the net risk for disassembly at every intensity-time state from 

the fluorescence time series. From this risk function, they quantified the features, including 

time-average, lifetime-normalized difference between the maximum and minimum value, 

and a modified skewness of the disassembly risk, which allowed accurate classification 

between ACs and CCPs. DASC can provide more accurate pictures of the progression of 

CME by deconvolving previously unresolvable ACs and CCPs.

Simultaneous spatiotemporal feature extraction.—In the previous ML approaches, 

spatial and temporal analyses were performed sequentially. However, when spatial and 

temporal processes are tightly interconnected with each other, it is desirable to consider 

spatiotemporal features simultaneously (figure 2(i)). This approach may preserve more 

information about spatiotemporal coordination than sequential procedures.

Spatiotemporal feature extraction is particularly relevant in collective cell migration, where 

neighboring cells constantly interact to migrate together. To study the propagation of 

directional cues from wound edges through a cellular monolayer undergoing collective 

migration, Zaritsky et al [61] quantified the mean directionality at different distances from 

the monolayer edge over time, followed by PCA. They were able to identify guanine 

nucleotide exchange factors (GEFs) that are involved in intercellular communication. Zhou 

et al [36] also developed a generalized computational framework, MOSES (motion sensing 

superpixels), to describe collective cell migration in terms of the individual trajectories of 

migrating cells and their spatiotemporal interactions (figure 2(j)). The long-term motion 

tracks from individual cells were constructed by capturing spatial motion dynamics with 

superpixels (formed with specific spatial points grouped with neighboring pixels at certain 

Choi et al. Page 9

Phys Biol. Author manuscript; available in PMC 2022 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time points). The locations of superpixels in the next frame were calculated by averaging 

optical flow. Then, superpixels were linked to meshes to indicate the relationship between 

the movement of superpixels and that of their neighbors. Local and global spatiotemporal 

features can be derived from the strain curves, which measure the relative deformation 

between connected superpixels with respect to their initial mesh geometry over time (figure 

2(k)). They applied PCA to the strain curves to visualize the phenotypic distributions of 2D 

collective migration (figure 2(l)). They demonstrated that the junctional motion dynamics 

of squamous-columnar cells with increasing epidermal growth factor (EGF) became similar 

to those of squamous-cancer cells. MOSES can provide a useful framework to investigate 

many biological collective phenomena in a quantitative and unbiased manner.

Different subcellular regions of leading edges are interconnected via cytoskeleton and 

membrane structures. Therefore, spatiotemporal feature-based phenotyping of leading-edge 

dynamics could provide additional insights in comparison to time-focused feature extraction. 

Ma et al [32] combined local shape descriptors and temporal features of time series for 

spatiotemporal feature extraction and studied the phenotypes of COS-7 cell edge dynamics. 

The cell edges were segmented and divided into sampling windows, and the time series 

of protrusion velocity was calculated for each window over time. They applied empirical 

mode decomposition, which reduces the data to six intrinsic mode functions (IMFs). The 

frequency spectra of each IMF in both the spatial and time domains were acquired by 

applying the Hilbert–Huang transform. Thereafter, they compiled instantaneous temporal 

and spatial frequency spectra into one feature vector for each time point and each sampling 

window. These features were used to merge similar neighboring spatial and temporal points 

by statistical region merging clustering and identify distinct motion regimens. They were 

able to locate subcellular microdomains with distinct Rac1 signaling activities.

4.2. Feature learning

Deep learning offers an entirely new approach for feature extraction. Instead of determining 

what kinds of features are useful for specific problems, DDNs are trained for certain tasks. 

The successful training of the neural networks means that the features learned by the 

neural networks can represent the input data very well in low dimensional space (figure 

1(b)). This feature learning is an attractive method for feature extraction since it does not 

require prior assumptions about which features would be necessary for the problems. Even 

if the application of feature learning in morphodynamic phenotyping is still in its infancy, 

this is likely to accelerate morphodynamic phenotyping since it is very challenging to 

acquire sufficient prior information in regard to heterogeneous morphodynamic phenotypes. 

Although end-to-end training is known to be one of the advantages of deep learning, 

most of the feature learning for morphodynamic phenotyping involves multistage training. 

Usually, the morphological features are learned during the first stage of training. Then, using 

these features, different types of DL or conventional ML algorithms are used for temporal 

analyses.

Buggenthin et al [74] pioneered the application of DNNs to live cell images and 

demonstrated strong feature learning capability for stem cell differentiation. They 

trained a CNN to classify primary murine HSPCs into granulocytic/monocytic (GM) or 
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megakaryocytic/erythroid (MegE) lineages to learn the static features from static brightfield 

microscopy images of differentiating primary hematopoietic progenitors. These CNN 

features along with cell movement were used to train another neural network, recurrent 

neural network [104] (RNN, a type of artificial neural network where previous output is 

used for current input) to forecast their lineage choice. They found that lineage choice 

can be detected before three generations using label-free live cell video when conventional 

fluorescence molecular markers are not observable. This means that DNNs are highly 

capable of capturing useful information in live cell video that cannot be detected by the 

human eye.

Generative adversarial networks (GANs, a generative modeling strategy where two artificial 

neural networks are trained to compete with each other) can automatically discover the 

patterns in input data and generate new data that resemble the original dataset [105]. 

Zaritsky et al [106] used a GAN variant, an adversarial autoencoder (figure 3(a)), to learn 

the morphological features of melanoma cells for cancer diagnosis. Then, the time-averaged 

morphological features were classified using linear discriminant analysis [107] (LDA, see 

appendix C) to predict the metastatic efficiency of patient-derived xenograft melanoma stage 

III cells. While deep learning features are usually not interpretable due to the inherent 

black-box nature of deep learning, they manipulated the autoencoder features to identify the 

interpretable cellular information that determines the aggressiveness of metastatic cells. This 

work demonstrated that deep learning analyses of label-free live cell images can be applied 

for cancer diagnosis.

Wu et al [108] developed a computational framework, DynaMorph, that employed deep 

learning for the automated discovery of morphodynamic states. The features of cell 

morphology were learned by training a CNN model using a vector quantized variational 

autoencoder (VQ-VAE, figure 3(b)). To understand the interplay between morphology and 

dynamic behavior, morphodynamic feature vectors were generated by combining the VQ-

VAE morphological features, the trajectory-averaged principal components, and averaged 

displacements between frames. Unsupervised clustering was then performed to reveal novel 

morphodynamic states. This approach identified two distinct phenotypes of microglial 

cells that exhibit morphodynamically distinct responses upon immunological challenges. 

The authors further compared the morphodynamic states and gene expression patterns, 

demonstrating that the different morphodynamic phenotypes are correlated with differential 

gene expression programs.

In contrast to previous feature learning, Li et al [73] applied a CNN to simultaneously 

extract spatiotemporal features for cell dynamic morphology classification. The cell 

dynamic morphology in video data was converted into 2D image data by quantifying local 

edge displacement over time, and then the CNN was used to extract features to discover 

edge deformation patterns. They pursued a transfer learning approach, where the pretrained 

models (VGG16 or VGG19) were used for feature extraction, and SVM was used as a 

classifier. They demonstrated that their morphodynamic features were useful for classifying 

the immune activation of mouse lymphocytes.
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5. Discussion

Cell populations have been widely observed to respond heterogeneously to molecular and 

environmental perturbations [33, 109, 110]. Poorly characterized cellular phenotypes make 

it challenging to interpret the true observed heterogeneity. Furthermore, today, with the 

increased volume of resultant datasets along with the development of imaging and genomic 

technologies, dissecting heterogeneity in cellular datasets under specific experimental 

conditions faces many challenges for the identification of subtle but significant phenotypic 

variations in cellular dynamics.

The task of assessing cellular dynamic states requires a high-throughput and fully automated 

approach to analyze a massive amount of data for statistically significant discrimination 

to determine rare but biologically meaningful dynamic cellular phenotypes. However, the 

longitudinal monitoring of dynamic cellular responses with live-cell imaging remains a low-

throughput endeavor. High-throughput studies with long-term and large-scale examinations 

of cell populations, including neuronal differentiation [111] and cell lineages of S. pombe 
[112], are usually limited in low-resolution settings. Conventional microscopes cannot 

acquire high-resolution and large field-of-view images at the same time. Therefore, the 

resolution enhancement of live cell imaging seeks to address this challenge to advance the 

identification of detailed motility and morphodynamic phenotypes. Fourier ptychographic 

microscopy [113] can stitch the Fourier components from low-resolution and a large field 

of view images with different directions of illumination, generating high-resolution large 

field-of-view images. DL can also improve image resolution by training neural networks to 

translate low-resolution to high-resolution microscopy images [114]. These computational 

imaging technologies will likely make significant contributions to the development of high-

throughput live cell imaging and the integration of cellular motility and morphodynamics 

across various spatial and temporal scales.

Recently implemented multiomics measurements of genomes, transcriptomes, epigenomes, 

proteomes, and chromatin organization have opened up new avenues to disentangle 

the causal relationship between multiomics layers and cellular phenotypes. Integrating 

these multiple datasets will provide more comprehensive phenotypes [115]. While 

spatial transcriptomics integrating single-cell RNA-seq and static cellular image data is 

emerging [116, 117], significant technical hurdles remain for integrating live cell imaging 

with multiomic technologies. It is expected that MERFISH [118], revealing the spatial 

distribution of hundreds to thousands of RNA species in individual cells, could be employed 

for this purpose in the future.

The comprehensive identification of biologically meaningful phenotypes hidden in 

phenotypic heterogeneity remains a major goal. Many fine-grained dynamic phenotypes 

can arise from diverse live cell images and multiomic datasets in conjunction with new 

ML analysis techniques. Given that cellular motility and morphodynamics reflect the states 

of cellular physiology and pathophysiology, this effort will allow us to deconvolve their 

heterogeneity and uncover molecular and cellular mechanisms of disease progression in 

unprecedented detail. This will ultimately open up fresh opportunities for live cell-based 

drug discovery and diagnosis.
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Appendix A.: Phenotyping

‘Phenotype’ originates from the Greek words phainein (meaning ‘shining’ or ‘to show’) and 

typos (meaning ‘type’). A phenotype is defined as the observable properties of an organism, 

including but not limited to behavior, biochemical properties, color, shape, and size, that 

result from both its genotype (total genetic inheritance) and the external environment. 

Biological phenotypes differ from the characteristics of nonliving or inanimate objects in 

two main ways: (1) they are innately inherited, and (2) they continuously evolve over 

generations [119, 120] such that they exhibit plasticity during development [121] or as a way 

of adapting to their environment [122]. As the broad definition of the terminology suggests, 

the meaning of the word continues to evolve given the perpetual technological evolution of 

today’s observational tools. In addition, our understanding of biological systems has evolved 

in an effort to elucidate the mechanisms that underlie the generation of highly complex 

naturally occurring biological phenotypes. In contrast to a phenotype, a genotype is defined 

as the genetic composition of an individual organism. Elucidating the mechanism by which 

genotypes generate phenotypes and how the environment affects the relationship between 

genotypes and phenotypes is still a major challenge in biology, both for basic research and 

for practical applications in medicine and agriculture.

Appendix B.: Deep learning

Deep learning is a technique that uses a network of neuron-like components to learn the 

input and output relationships from the data [104, 123–125]. Since 1943, it has evolved 

gradually from a mathematical model (perceptron) that mimics a neuron in the brain [126]. 

Each neuron can take multiple inputs from other neurons and output a value to another 

neuron with nonlinearity (figure 4(a)). Every connection between neurons has a weight 

or parameter that is updated during the training process. Together, they form an artificial 

neural network, minimally resembling neural networks in brains (figure 4(b)) [127]. With 

the advent of powerful GPUs (graphics processing units) and large-scale image databases, 

artificial neural networks with more than three layers, called DNNs, have opened a new era 

of artificial intelligence [124].

The strength of deep learning is that a DNN can approximate any function. In other words, 

it can map or find the relationship between the input and output of any data [128]. For 

instance, a DNN can take an image as input and output the name of the object in the 

image [124]. As a result, deep learning methods are applied in various ways, such as 

image recognition [124] and speech recognition [129], protein folding [130], drawing art 

[131], and playing Go games [132]. The high dimensionality of a DNN allows it to excel 

at learning patterns or features from the high dimensional data of the real world [133]. 
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However, this property also makes the DNN easily overfit to training data, where a DNN 

learns the patterns specific to training data, which do not exist in unseen real-world testing 

data. The best way to prevent overfitting is to use a large amount of training data [123]. 

Training datasets, however, are not always large due to high cost and time. Therefore, 

several regularization techniques, such as data augmentation [124], dropout [134], and batch 

normalization [135], have been employed to mitigate overfitting.

CNNs are the most popular type of deep neural network widely used in computer vision 

tasks that extract information from the image and understand its content (figure 4(c)) 

[104, 123]. The CNN architecture used for image classification comprises a sequence 

of convolutional and pooling layers with fully connected layers at the end [124]. Each 

convolutional layer contains a block of neurons, called a filter, that finds local spatial 

patterns from the two-dimensional (2D) input and outputs a 2D feature map. Then, the 

pooling layer summarizes neighboring values and reduces the feature map to a lower 

resolution so that the next convolutional layers can detect features at a higher receptive 

field. Fully connected layers flatten the feature map to the 1D vector and learn to output 

numbers representing the classes of input images. This hierarchical structure of the CNN 

that processes from low- to higher-level features resembles how our brains process visual 

information [127, 136].

Appendix C.: Machine learning glossary

• Autocorrelation function (ACF) [99]: a common time series feature that 

quantifies the similarity between a time series and its lagged one.

• Autoencoder (AE) [49]: a type of artificial neural network widely used for 

feature learning. It reproduces the input of the AE with a reduced number of 

hidden units, whose values can serve as the learned features from the data.

• CNNs [104]: the most popular type of artificial neural network used for image 

data. They automatically learn multilevel image features for image classification.

• Density-peak clustering [100]: a clustering algorithm that identifies cluster 

centers that are at local density maxima and away from other high-density 

regions.

• Generative adversarial network (GAN) [105]: a generative modeling strategy 

where two artificial neural networks (generator and discriminator) are trained to 

compete with each other.

• Haralick feature [95]: a feature that quantifies texture information from images.

• Hidden Markov model (HMM) [92]: a statistical technique that models observed 

data by the probabilistic transitions of hidden states by assuming a Markov 

process.

• K-means [97]: a clustering algorithm that groups unlabeled data into k clusters 

by assigning them to nearest cluster means (centroids).
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• Linear discriminant analysis (LDA) [107]: an algorithm that finds a linear 

combination of features that separates given classes of data.

• Principal component analysis (PCA) [89]: an algorithm that reduces the 

dimensionality of data while preserving the variance of data as much as possible.

• Recurrent neural network (RNN) [104]: a type of artificial neural network where 

previous output is used for current input. It is widely used for time series 

modeling and natural language processing.

• Support vector machine (SVM) [91]: a classifier that maximizes the space 

between two classes.

• t-distribution stochastic neighbor embedding (t-SNE) [96]: assigning pairs of 

similar data with high probabilities of neighbors in low-dimensional space.
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Figure 1. 
Comparison between conventional machine learning and deep learning. (a) In conventional 

machine learning, we need to extract handcrafted features from raw data. These features 

are used to train the classifier. (b) In deep learning, feature learning and classifier training 

are performed end-to-end. After the training, the trained feature extractor can produce 

meaningful features, which can be reused for different tasks, including unsupervised 

phenotyping.
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Figure 2. 
Feature extraction-based phenotyping of cell motility and morphodynamics. (a) Phenotyping 

based on morphology-focused feature extraction. (b) Cellular morphology at each timepoint. 

(c) Identification of morphological states by dimensional reduction of morphological 

features. (d) Temporal transition of morphological states. (e) Phenotyping based on time-

focused feature extraction. (f) Examples of subcellular protrusion time series. (g) Extraction 

of autocorrelation function (ACF) temporal features. (h) Subcellular protrusion velocity 

phenotypes. (i) Phenotyping based on simultaneous spatiotemporal feature extraction. (j) An 

example of tracking cells in collective migration. (k) Methods for spatiotemporal feature 

extraction. (l) Phenotypes of the strain curves from collective cell migration. Panels (c) 

and (d) are adapted with permission from figure 1 in reference [72], Oxford University 

Press. Panel (h) is adapted from figures 2(e) and (h) in reference [30]. Panels (j)–(l) are 
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adapted from figures 2(a) and 5(a) in reference [36]. Panels (h) and (j)–(l) are licensed under 

(CC-BY-4.0).
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Figure 3. 
Phenotyping of cell morphodynamics based on morphology-focused feature learning. (a) 

and (b) Phenotyping procedure by morphology-focused feature learning. Autoencoders 

learn cellular morphological features. (a) Adversarial training and (b) vector quantization 

variational autoencoder. Panel (a) is adapted from figure 1(c) from reference [106]. Panel (b) 

is adapted from figure 2(a) from reference [108]. All panels are licensed under (CC-BY-4.0).
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Figure 4. 
Deep learning models. (a) A mathematical model of a neuron. The weighted sum of input 

values is transformed by a nonlinear activation function. A ReLU (rectified linear unit) 

is a widely used activation function. (b) Fully connected artificial neural network. (c) An 

example of a CNN for image classification. Conv, 3 × 3, ReLU: convolutional layer with 3 

× 3 filters and ReLU activation. Max pool, 2 × 2: max pooling layer with 2 × 2. FC: fully 

connected layer. (a) × (b) and (c): output format of a convolutional layer ((a): the number of 

filters, (b) × (c): the size of filter image). Panel (c) is adapted from figure 4(a) in reference 

[56] and licensed under (CC-BY-4.0).
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