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Expressed gene products often interact ubiquitously with binding sites at nucleic acids and 
macromolecular complexes, known as decoys. The binding of transcription factors (TFs) to decoys 
can be crucial in controlling the stochastic dynamics of gene expression. Here, we explore the impact 
of decoys on the timing of intracellular events, as captured by the time taken for the levels of a given 
TF to reach a critical threshold level, known as the first passage time (FPT). Although nonlinearity 
introduced by binding makes exact mathematical analysis challenging, employing suitable 
approximations and reformulating FPT in terms of an alternative variable, we analytically assess the 
impact of decoys. The stability of the decoy-bound TFs against degradation impacts FPT statistics 
crucially. Decoys reduce noise in FPT, and stable decoy-bound TFs offer greater timing precision with 
less expression cost than their unstable counterparts. Interestingly, when both bound and free TFs 
decay at the same rate, decoy binding does not directly alter FPT noise. We verify these results by 
performing exact stochastic simulations. These results have important implications for the precise 
temporal scheduling of events involved in the functioning of biomolecular clocks, development 
processes, cell-cycle control, and cell-size homeostasis.

Sequestration of gene products at genomic sites and in phase-separated particles critically shapes the stochastic 
dynamics of biomolecular circuits defining cellular responses to diverse stimuli1–6. For example, transcription 
factors (TFs) not only bind to their target promoters but also bind promiscuously to “decoy sites” scattered across 
the genome7–9. When binding to such decoys stabilizes an otherwise actively degraded TF, decoys have been 
shown to buffer stochastic variation in the levels of free (unbound) TF10–12. In contrast, when binding does not 
impact TF stability, decoys can function as noise amplifiers13. This latter scenario can occur for stable TFs whose 
concentrations are diluted from cellular growth.

While both experimental and computational works have explored the effects of sequestration mechanisms 
on stochastic variation in gene product levels, their impact on event timing remains mostly unexplored. Some 
theoretical and computational works have shown that the sequestration of TFs with decoys plays diverse 
roles in controlling the mean and stochastic dynamics in various genetic circuits such as oscillators14–19 and 
toggle switches19. Recent studies have shown that decoy binding can crucially affect an event’s mean first 
passage time (FPT) in auto-regulatory circuits20, and play an important role in precision control of bacterial 
replication initiation21. In this contribution, we explore the influence of decoys in the timing noise of events, 
employing FPT formalism. This analysis considers events triggered by the accumulation of a specific protein 
to a predefined threshold level. Several works have derived analytical expressions for FPT statistics for different 
models of stochastic gene expression, including models with feedforward and feedback regulation22–25, post-
transcriptional regulation26,27, miRNA-mediated regulation of protein translation28, providing rich insight 
into event timing in the context of different biological phenomena such as cell-cycle regulation29, lysis timing 
of phages30–32, development33, cell-state transitions34,35, and neuronal firing of action potentials36,37. Here we 
systematically explore how decoy-based sequestration of gene products impacts stochasticity in FPT using well-
established analytical approximations corroborated with exact stochastic simulations.

Understanding the variability in the timing of gene expression is crucial for unraveling fundamental biological 
mechanisms at the single-cell level. Identifying the regulatory strategies that can modulate this variability is 
essential for decoding the underlying design principles of cellular regulatory networks that govern timing. 
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Advancements in experimental techniques, notably fluorescence time-lapse microscopy, often integrated with 
microfluidic platforms to maintain cells in a precisely controlled environment across multiple generations, are 
poised to significantly enhance data accessibility on gene expression timing and its variabilities. Consequently, a 
robust theoretical framework elucidating the dynamics of timing fluctuations is imperative. Such a framework is 
necessary to effectively interpret forthcoming data, guide the development of targeted experimental designs, and 
facilitate the engineering of synthetic biological circuits with tailored timing characteristics.

Materials and methods
Model formulation
To analytically explore the impact of decoy binding on FPT statistics, we consider TF synthesizing in stochastic 
bursts (Fig. 1). Such bursty gene expression is experimentally observed across various cell types due to different 
transcriptional and translational mechanisms38–47. For example, in eukaryotes, a promoter may randomly switch 
from an inactive to an active state, produce bursts of mRNA, and quickly turn off, with the burst rate determined 
by the switching rate to the active state48–50. Assuming short-lived mRNAs in prokaryotes, each mRNA degrades 
rapidly after translating a burst of proteins, with the burst rate equal to the transcription rate51–55. We model the 
combined effects of transcriptional and translational bursts by assuming Poisson arrival of burst events with a 
rate k, where each event creates B molecules12,13. The burst size B is an independent and identically distributed 
non-negative random variable following an arbitrary distribution. However, for plotting and simulation purposes 
where we consider a geometrical distribution grounded in prior research53,56–58. A TF molecule then decays with 
rate γf .

An expressed TF molecule binds reversibly to a decoy from a pool of total N decoy sites to form a decoy-
bound complex. The genomic decoys are the numerous high-affinity binding sites where TFs bind independently 
without any direct functional consequences8. The binding and unbinding rates are kb and ku, respectively.  The 
total decoy number N is kept fixed in our study. Experimental evidence suggests that the decay of decoy-
bound TFs is context-dependent. For some TFs such as p5359 and MyoD60, the decoy binding protects TFs 
from degradation. While some other TFs decoy-binding promotes degradation such as VP16 in Saccharomyces 
cerevisiae via ubiquitin-mediated proteolysis61. It has been shown theoretically that the stability of bound TFs 
plays crucial roles in the deterministic and stochastic dynamics of the nonregulatory13, auto-regulatory10, and 
oscillatory gene circuits17. Here, we assume the degradation of a TF molecule in the bound state is βγf . We will 
focus on two values of β=1 and 0, where β=0 corresponds to no decay of bound TF, and β=1 corresponds to 
equal degradation rates for both the free and bound TF.

Our TF expression and sequestration model at decoy binding sites is based on the standard stochastic 
formulation of chemical kinetics62,63. The model is comprised of five following events that occur probabilistically 
at exponentially distributed time intervals 

 TF synthesis: Prob(xf(t + dt) = xf(t) + i) =kαx(i)dt,  (1a)

 TF binding: Prob(xf(t + dt) = xf(t)− 1, xb(t + dt) = xb(t) + 1) =kbxf(N − xb)dt,  (1b)

 TF unbinding: Prob(xf(t + dt) = xf(t) + 1, xb(t + dt) = xb(t)− 1) =kuxb(t)dt,  (1c)

 Free TF degradation: Prob(xf(t + dt) = xf(t)− 1) =γfxf(t)dt,  (1d)

 Bound TF degradation: Prob(xb(t + dt) = xb(t)− 1) =βγfxb(t)dt,  (1e)

 where αx(i) is the probability distribution for burst size B = i. xf(t), xb(t) and x(t) := xf(t) + xb(t) denote the 
level of free, bound and total (free + bound) TF at time t inside the cell, respectively. To study the role of decoy 
binding sites on the statistics of event timing, we characterize the dynamical moments of free TF numbers as a 
function of the number of decoy sites N. The first and second moments of a stochastic variable Y at time t are 
denoted as ⟨Y ⟩ and ⟨Y 2⟩, respectively. The angular bracket ⟨·⟩ represents ensemble averages, which are obtained 
by averaging over many trajectories in simulations. The noise in Y is quantified by its coefficient of variation 
square at time t, which is denoted by CV 2

Y . For readers’ convenience, we provide a list of model parameters and 
their description in Table 1.

Fig. 1. Schematic of TF synthesis model in the presence of decoy binding sites. The synthesis of free TFs 
occurs in stochastic bursts with rate k, which reversibly bind/unbind to N decoy binding sites with rates kb and 
ku. Both the free and bound TFs are subject to degradation with rates γf  and βγf , respectively.
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Based on the above discrete-state continuous-time Markov model (1), one can write a corresponding Chemical 
Master Equation (CME) that provides the time evolution of the joint probability density function64. However, an 
exact solution of the CME is analytically intractable. Taking an alternative approach, we focus on the statistical 
moments of the molecular counts and use the well-known Linear Noise Approximation (LNA)65–69 to obtain 
closed-form formulas for the mean and noise level dynamics (see Supplementary B).

FPT statistics in the absence of decoys
The first passage time or event timing in our study is defined as the minimum time required for the free TF level 
to reach a critical threshold for the first time to trigger some downstream processes. More precisely, starting 
from zero initial conditions, the FPT is mathematically described by the following random variable

 T := inf{t : xf(t) ≥ X|xf(0) = 0}, (2)

where X is the critical threshold level of free TFs needed for some events to occur. The FPT is a stochastic 
variable since the free TF number fluctuates over time. When the fluctuations in the free TF level are small, the 
mean FPT, ⟨T ⟩ is approximately the time required for the mean free TF level to reach the threshold for the first 
time, i.e.,

 ⟨T ⟩ ≈{t|⟨xf(t)⟩ = X}.  (3)

In the absence of decoys, the mean dynamics of free TFs are usually straightforward to obtain from linear 
biochemical systems given as follows51

 ⟨xf⟩ =x0
(
1− e−τ

)
,  (4)

which increases monotonically with time, asymptotically approaching the steady-state value x0 := k⟨B⟩/γf . For 
simplicity, we use dimensionless time, τ = γft, implying time measurement in the unit of lifetime of a free TF 
molecule.

The noise in FPT is quantified by the squared coefficient of variation (CV 2
T ), which is the ratio of the variance 

and the mean squared in FPT. By using the small noise approximation (SNA) in free TF level, one can compute 
the FPT noise as follows (see Supplementary A).

 
CV 2

T =
⟨T 2⟩ − ⟨T ⟩2

⟨T ⟩2
≈
[
CVxf

(
Sxf

)−1
]2
t=⟨T ⟩

,  (5)

where

 
Sxf :=

d⟨xf⟩
dt

t

⟨xf⟩
=

d log⟨xf⟩
d log (t)

, (6)

is the dimensionless log sensitivity of the mean free TF level with respect to time. In the absence of decoys, the 
noise dynamics of free TFs is given as follows51

 
CV 2

xf
=

1

2⟨xf⟩

[
⟨B2⟩
⟨B⟩

(
1 + e−τ

)
+ (1− e−τ )

]
,  (7)

Symbol Description Symbol Description

k TF burst frequency B TF bust size

kb TF binding rate ku TF unbinding rate

kd Dissociation constant (ku/kb) γf Free TF degradation rate

βγf Bound TF degradation rate N Total decoy binding sites

xf Free TF number at time t ⟨Y ⟩ Mean value at time t

xb Bound TF number at time t CVY Coefficient of variation of Y at time t

x Total TF number (xf + xb) at time t X Threshold number of free TFs

T First passage time T := γfT  FPT in the dimensionless unit

x0 := k⟨B⟩/γf , The stead-state mean of TF numbers for no decoy, N = 0

g g(X,N, kd), fraction of free TFs in total TFs at threshold crossing

Table 1. Summary of notation used.
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which asymptotically reaches the steady-state value ⟨B2⟩/⟨B⟩x0. We note that Eq.  (5) leads to the same 
mathematical expression as in Ref.70 obtained by a different approach by following the simple geometric 
argument in TF number dynamics.

Now, using the dynamics of mean and noise of free TFs in the definition of mean FPT (Eq. 3) and FPT noise 
(Eq. 5) one can obtain

 
⟨T ⟩ =− ln

[
1− X

x0

]
,  (8)

 
CV 2

T =

(
1− e−⟨T ⟩)

2x0(⟨T ⟩e−⟨T ⟩)2

[
⟨B2⟩
⟨B⟩

(
1 + e−⟨T ⟩

)
+ (1− e−⟨T ⟩)

]
,  (9)

which is the same expression as in the Ref.70. We use mean FPT in the dimensionless unit ⟨T ⟩ = γf⟨T ⟩. One 
significant feature emerges from Eq. (9) is that FPT noise exhibits a nonmonotonic behavior with mean FPT and 
the optimal value of normalized mean FPT is T ≈ 0.79 for geometric burst size distribution with large average 
burst size 70. The identification of the optimal threshold or mean FPT at T ≈ 0.79 is further substantiated by 
recent theoretical advances, where the lysis time has been analytically modeled within the FPT framework71. 
Their precise analytical calculations, devoid of any approximations, are in remarkable agreement with the 
experimental measurements of lysis times observed in variants of λ phages31.

FPT statistics in the presence of decoys
In the presence of decoys, the average dynamics for free and bound TF numbers are nonlinear and can be 
expressed as follows

 
d⟨xf⟩
dt

=k⟨B⟩ + ku⟨xb⟩ − kb(N − ⟨xb⟩)⟨xf⟩ − γf⟨xf⟩,  (10)

 
d⟨xb⟩
dt

=− ku⟨xb⟩ + kb(N − ⟨xb⟩)⟨xf⟩ − βγf⟨xb⟩.  (11)

The same closed-form mean dynamics can be derived from the chemical master equation corresponding to the 
model in (1) by applying the linear noise approximation (LNA)12,13. A direct consequence of using the LNA is 
that the time evolution of the means matches the deterministic chemical rate equations. The nonlinearity in the 
dynamics of free and decoy-bound TFs makes calculating FPT statistics challenging. However, as we will see 
below, in some limits one can bypass this nonlinearity by considering the dynamics of total TFs, x = xf + xb as 
follows

 
d⟨x⟩
dt

= k⟨B⟩ − γf(⟨xf⟩ + β⟨xb⟩), (12)

and reformulating the FPT question in terms of total TFs. For example, the above mean dynamics of the total TF 
number becomes linear for β = 1.

Generally binding/unbinding happens at faster rates compared to synthesis and degradation rates, i.e., the 
timescales for binding/unbinding are much shorter. In this limit, the dynamics of binding unbinding reaches a 
quasi-static equilibrium (QSE) and obeys the following relationship: kuxb=kb(N − xb)xf . This QSE or adiabatic 
limit is a prevalent approach in gene expression modeling72–74, supported by recent experimental evidence75. 
Using this approximation we get the relation between total and free TF numbers as follows

 

xf
x

=
xf + kd

xf +N + kd
≡ g(xf,N, kd), (13)

where 0 ≤ g(xf,N, kd) ≤ 1 and it signifies the fraction of free TF molecules. For notational convenience, we use 
g(X,N, kd) as g henceforth.

Based on Eq. (13) we reformulate the FPT in terms of the dynamics of the total TF level. Instead of locating 
the time for the free TF level to reach a threshold X for the first time, we find the time when the total TF level 
first time hits a normalized threshold X/g. More precisely, the modified FPT is mathematically described by the 
following random variable

 T :≈ inf{t : x(t) ≥ X/g|x(0) = 0}. (14)

We numerically demonstrate that this assumption works well when the noise in the system is relatively small. 
In Fig.  2, we have plotted the simulated trajectories and distributions of actual FPT (Eq.  2) and modified 
FPT (Eq. 14). Not only the mean FPT (Fig. 2a,b), but the full distributions of FPT (Fig. 2c,d) from these two 
definitions appear to be identical. This approximation even persists when the binding/unbinding reactions are 
slow, of the order of TF degradation rate (see Supplementary Fig. S1). However, in the limit of a small free TF 
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threshold, X ≪ x0 these two distributions deviate from each other, and the approximation is no longer valid 
(see Supplementary Fig. S2).

Following the same SNA approximation in x as mentioned before in Eq. (3), we can write the modified mean 
FPT as

 ⟨T ⟩ ≈ {t|⟨x(t)⟩ = X/g}. (15)

Similar to Eq. (5), the FPT noise will be as follows

 
CV 2

T ≈
[
CVx (Sx)

−1
]2
t=⟨T ⟩

Sx :=
d log⟨x⟩
d log (t)

,  (16)

which depends on the noise dynamics of total TFs (CV 2
x ) and the dimensionless log sensitivity of the mean 

total TF level with respect to time (Sx) (see Supplementary Sect. A). So, using SNA and fast binding/unbinding 
approximations, we can obtain analytical expressions for the mean and noise of free TFs’ FPT from the total TFs’ 
moment dynamics. Next, we will focus on two key regimes characterized by β=0 implying stable decoy-bound 
TFs and β=1 indicating the same degradation rate of free and decoy-bound TFs.

Fig. 2. FPT statistics of free TF level reaching a threshold X is approximated by FPT statistics of total TF level 
reaching a normalized threshold X/g. Simulated stochastic and mean trajectories of total (x) and free (xf) TFs 
for (a)β = 1 and (b)β = 0 along with threshold of xf  is X and x is X/g. Simulated FPT distributions from both 
thresholds in Eqs. (2) and (14) will show a significant overlap for (c)β = 1 and (d)β = 0. We assume the shifted 
geometric distribution of burst size, i.e., ⟨B2⟩ = 2⟨B⟩2 + ⟨B⟩ with parameter values: N = 300, X = 300, γf  
= 1 hr−1 per TF molecule, kb = ku = 50 hr−1 per pair molecules, ⟨B⟩ = 10, x0 = 1500. We use the stochastic 
simulation algorithm (SSA)76 over 5× 103 realizations on model Eq. (1).
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Results
FPT statistics when both bound and free TFs decay at the same rate (β = 1)
Using β=1 in Eq. (12) one can obtain the average dynamics of the total TF number, which is the same as the 
dynamics of average TF number for no decoy (Eq. 4). Now using the modified definition of mean FPT in Eq. (15), 
one can obtain an expression from mean FPT as follows

 
⟨T ⟩ =− ln

[
1− X

gx0

]
,  (17)

which reduces to Eq. (8) for no decoys as the fraction of free TFs g=1 when N=0. The mean FPT increases 
monotonically with N and diverges for large N as g → 0 when N → ∞ (Fig. 3a). The analytical form of mean 
FPT obtained by using the modified threshold on total TFs (Eq.  15) agrees well with the exact stochastic 
simulation algorithm (SSA)76 (see Fig. 3a) of the decoy model in Eq. (1) that considers the actual free TF number 
threshold (Eq. 2).

Now, for the analysis of the FPT noise of free TF, we need the noise dynamics of the total TF number as mentioned 
in Eq. (16). In the limit of β=1, the noise in total TF numbers is the same as no decoy case, which is given in 
Eq. (7) (see Supplementary Sect. B). Using the expressions of mean and noise dynamics of total TF numbers in 
Eq. (16) one can obtain the mathematical form of FPT noise as follows

Fig. 3. Stability of bound TFs distinctly influences the FPT statistics. Variation of (a) mean FPT and (b) FPT 
noise with decoy number for β = 1 Eqs. (17), (18) (red triangles) and β = 0 Eqs. (20), (22) at fixed threshold 
value X = 300. Variation of FPT noise with mean FPT for (c)β = 1 and (d)β = 0 for three different values of 
N; N = 0, 300, and 1000. For β = 1, the relation between ⟨T ⟩ and CV 2

T  follows a master curve (Eq. 18) for all 
N values, which deviates for β = 0, for nonzero N values (Eq. 22). For the simulation, we use the stochastic 
simulation algorithm (SSA)76 over 5× 103 realizations using Eqs. (1), and (2). For each N, we change the 
value of ⟨T ⟩ by changing the threshold X. We assume the shifted geometric distribution of burst size, i.e., 
⟨B2⟩ = 2⟨B⟩2 + ⟨B⟩ with parameter values: γf  = 1 hr−1 per TF molecule, kb = ku = 50 hr−1 per pair 
molecule, ⟨B⟩ = 10, x0 = 1500.
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CV 2

T =

(
1− e−⟨T ⟩)

2x0(⟨T ⟩e−⟨T ⟩)2

[
⟨B2⟩
⟨B⟩

(1 + e−⟨T ⟩) + (1− e−⟨T ⟩)

]
,  (18)

which is the same as Eq. (9) for no decoy case. In Eq. (18), CV 2
T -a measure of FPT noise-implicitly depends 

on N via ⟨T ⟩. This implies that the relation between the FPT mean and noise remains invariant of N when 
β=1 as presented in Fig. 3c. So, for β=1, with different N values, ⟨T ⟩ and hence CV 2

T  will change in such a way 
that it will follow a master curve, which is Eq. (18). It is remarkable to note that despite the influence of decoy 
binding on the dynamics of free TFs, it does not modify the relationship between the FPT mean and noise. The 
optimal value of mean FPT is ⟨T ⟩ ≈ 0.79, similar to the no decoy case as mentioned before in (“FPT statistics 
in the absence of decoys” section). The approximated FPT noise from our analysis agrees well with the exact 
SSA76. Increasing the number of decoys results in a higher mean FPT (Fig. 3a) and thus impacts the FPT noise 
according to Eq. (18). The dependence of FPT noise on the number of decoys is depicted in Fig. 3b.

FPT statistics when bound TFs are protected from degradation (β = 0)
Using β=0 in Eq. (12) one cannot exactly solve the differential equation for ⟨x⟩. However, in the limit of kd ≪ xf
, i.e., when all decoy sites are bound with TFs (xb ≈ N ) one can get an approximated dynamics of the total TF 
number as follows

 ⟨x⟩ =(x0 +N)
(
1− e−τ

)
,  (19)

which is the same as the dynamics of the free average TF number for N=0 (Eq. 4). Now using the modified 
definition of FPT in Eq. (15), one can obtain an expression from mean FPT as follows

 
⟨T ⟩ =− ln

[
1− X

g(x0 +N)

]
,  (20)

which reduces to Eq. (8) for no decoys. For β=0, though the mean FPT increases with N, it does not show a 
diverging trend like β=1 (Eq. 17) as g(x0 +N) → (X + kd) when N → ∞. Our approximated calculation for 
the mean FPT in Eq. (20) agrees well with the stochastic simulation algorithm (SSA)76 of the decoy model in 
Eq. (1) (Fig. 3a).

Now, for the analysis of noise in free TF numbers’ FPT, we need the noise dynamics of the total TF number 
as mentioned before in Eq.  (16). In the limit of β=0, the noise in total TF numbers is given as follows (see 
Supplementary Sect. B)

 
CV 2

x =
1

2⟨x⟩

[
1

x0 +N

(
x0
⟨B2⟩
⟨B⟩

+N

)
(1 + e−τ ) + (1− e−τ )

]
,  (21)

which converges to Eq. (7) for N=0. Using the expressions of ⟨x⟩ (Eq. 19) and CVx (Eq. 21) in Eq. (16) one can 
obtain the mathematical form of FPT noise as follows

 
CV 2

T =

(
1− e−⟨T ⟩)

2(x0 +N)(⟨T ⟩e−⟨T ⟩)2

[
1

x0 +N

(
x0
⟨B2⟩
⟨B⟩

+N

)
(1 + e⟨T ⟩) + (1− e−⟨T ⟩)

]
,  (22)

which is an explicit function of N, unlike for the case of β=1 in Eq. (18). The variation of FPT noise with decoys 
is shown in Fig. 3b. Equation (22) demonstrates that the relationship between the FPT mean and noise deviates 
from the master curve observed in the absence of decoys as CV 2

T  is inversely proportional to the number of 
decoys (N). This analysis is also supported by the stochastic simulation algorithm (SSA) results shown in Fig. 3d.

FPT noise for a fixed mean FPT
In the previous section, we observe how the decoys alter both the mean FPT and the noise for a given production 
rate, decay rate, and binding affinity of transcription factors. The response of living cells to the presence of decoys 
influencing event timing remains unclear. It can be hypothesized that cells may maintain a constant mean FPT. 
In this section, we explore the behavior of FPT noise while holding the mean FPT constant. Consequently, 
to keep the mean FPT constant while varying N, it becomes necessary to modify certain parameters as 
⟨T ⟩ = f (N,X, x0, kd) (Eqs.  17, 20 for β=1 and 0). Here, we focus on adjusting burst frequency (k) hence 
x0(= k⟨B⟩/γf) and threshold (X). However, increasing burst frequency results in a higher load of TFs in the 
cell. Similarly, raising the threshold level leads cells to produce more TFs. Therefore, enhancing both the burst 
frequency and the threshold level increases the TF load on the cell, which we describe qualitatively as being more 
“expression cost” for the cell. Moving forward, we will explore how variations in burst frequency and threshold 
influence the timing precision of cellular processes, particularly in scenarios involving the presence of decoys, 
for both β=1 and 0.

First, we focus on tuning the threshold, X to maintain a fixed mean FPT. For both β values, the threshold 
decreases linearly with increasing decoys (Fig. 4b). A reduced threshold requirement means fewer TFs need to 
be produced, implying lesser expression cost for cells. Moreover, when β=0, it can be seen from Eq. (22) CV 2

T  
monotonically decays with N and asymptotically follows a 1/N relationship (Fig. 4a). Therefore, for stable decoy-
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bound TFs (β=0), decoy binding enhances both precision and cost-effectiveness for cells, provided the threshold 
is tuned to keep the mean FPT constant (see Fig. 4b). In contrast, for β=1, the noise in FPT is maintained at the 
same level observed without decoys, regardless of the increase in N as seen in Fig. 4a. This outcome occurs as 
CV 2

T  in Eq. (18) implicitly depends on X and N through ⟨T ⟩, which is kept fixed.
Next, we focus on tuning burst frequency to maintain a constant mean FPT fixed for varying values of 

N. Using the mean FPT equations for β=1 (Eq.  17) and β=0 (Eq.  20), we can precisely determine x0 and, 
subsequently, the burst frequency, k=x0/⟨B⟩ for a fixed mean FPT while N is changing. For both scenarios, 
the burst frequency increases linearly with N, as shown in Fig. 4d. This increase in burst frequency increases 
transcription cost77 hence expression cost. Moreover, linearly increasing burst frequency with decoy numbers 
reduces FPT noise as CV 2

T  inversely correlates with burst frequency both for β=1 (Eq. 18) and β=0 (Eq. 22). 
Hence FPT noise decays as 1/N when we tune burst frequency to maintain a fixed mean FPT. The exact analytical 
forms of CV 2

T  for both β values are plotted in Fig. 4c, which have −1 slope in the log-log axes (black dashed 
line for the eye guide). Our approximated analytical calculation matches the exact stochastic simulations76 of 
the model described in Eqs. (1) and (2). Therefore, decoy binding enhances timing precision at the expense of 
higher expression cost (see Fig. 4d). However, for a specific number of decoy binding sites (N), stable bound 
TFs (β=0) offer greater timing precision with lower expression costs compared to unstable bound TFs (β=1) as 
detailed in Fig. 4d.

Discussion
In this study, we have systematically investigated how sequestration of TFs by decoy sites impacts the statistics 
of event timing, a scenario not extensively explored in the existing literature. Specifically, we have studied the 
first passage time (FPT) statistics, the time required for free TF numbers to cross a certain threshold value. We 
have obtained approximated analytical expressions for the mean and noise of FPT. The noise is quantified by the 

Fig. 4. Decoys enhance timing precision at the expense of higher expression cost for a fixed mean FPT. 
Variation of the FPT noise with decoy number for fixed ⟨T ⟩ = 1 by changing (a) threshold for a fixed burst 
frequency k = 150 and varying (c) burst frequency for a constant threshold X = 300. For (a,c) we tune, 
respectively, X and k by using Eq. (17) for β = 1 and Eq. (20) for β = 0. The parameters used for figures: γf  
= 1 hr−1 per TF molecule, kb = ku = 50 hr−1 per pair molecule, ⟨B⟩ = 10. We use the SSA76 over 5× 103 
realizations for simulation. Contours representing a constant mean FPT of 1 in the (b)N −X  and (d)N − k 
plane are depicted for β = 1 and β = 0. The contours are color-coded by CV 2

T  quantifying FPT noise 
levels. Precision increases in the direction of the arrow, indicating lesser noise. On the same contour, higher 
thresholds and burst frequency increase “expression costs” due to elevated TF loads. While not quantified, the 
expression cost qualitatively increases in the direction of the arrow.
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square of the coefficient of variation (CV 2
T ) in FPT. As the decoy binding introduces nonlinearity, the analytical 

tractability of the problem usually becomes challenging, especially for the dynamics not only for the mean but 
also for the noise. Our analytical calculations of FPT moments are based on two key approximations: (1) quasi-
static equilibrium (QSE), i.e., fast binding/unbinding reactions, and (2) small noise approximation (SNA) in TF 
levels. We have shown that we can eliminate nonlinearity by looking at the dynamics of the total TF level and 
reframing the FPT question in terms of the total TF level reaching an equivalent threshold. Our approximated 
simple analytical results provide better insights for understanding FPT noise and agree with exact stochastic 
simulations. Without decoys, the exact analytical calculations for FPT statistics are possible31. However, the 
complexity in the mathematical expression for exact formulas may prohibit simple intuitive insights that one 
achieves via SNA approximation70. While this contribution focuses on TFs binding to genomic decoy sites, this 
framework applies to other classes of proteins, for example, RNA-binding proteins binding to sites on RNA78–80.

Our investigation indicates that the stability of decoy-bound TFs is critical in determining FPT statistics. 
Earlier studies have shown that stable bound TFs decrease gene expression variability at steady-state, whereas 
their degradation increases fluctuations10,13. In the context of biomolecular clocks, however, the degradation 
of bound TFs can enhance oscillatory behavior and reduce noise, while protecting these TFs from degradation 
can disrupt sustained oscillations in gene expression17. This study shows that the mean FPT increases with the 
number of decoy binding sites and this increment is rapid if bound TFs are unstable (Fig. 3a). Importantly, 
when the degradation rates for free and bound TFs are equal (β=1), FPT noise does not explicitly depend on 
the number of decoys but is influenced indirectly via the mean FPT. In this scenario, adjusting burst frequency 
(threshold) to maintain a constant mean FPT effectively reduces FPT noise (regulates) with decoys compared to 
the no-decoy scenario (see Fig.  4a,c). In contrast, for stable bound TFs (β=0), decoys consistently reduce FPT 
noise, as it directly correlates with the inverse function of the number of decoy sites (Eq. 22). On the other hand, 
while increasing decoys enhances the precision of event timing, it comes at the cost of a higher total protein load 
and consequently, increased expression cost.

The analytical formulas for the noise give theoretical insights into the role of decoys on the noise of FPT. 
These are derived by assuming small copy number fluctuations around the statistical mean and then taking fast 
bind/binding limit. Using numerical exact stochastic simulations, we have shown that the main results agree 
with the theory. The quantitative match between theory and simulations can be poor where the fluctuations 
are large. We numerically have found that results are not very sensitive to fast binding/unbinding limits (see 
Supplementary Fig. S3). Our model disregards explicit mRNA dynamics and considers only protein synthesis 
that occurs in bursts, which is valid when the mRNA lifetime is shorter than that of the protein. Considering 
explicit mRNA dynamics we numerically checked that the main results are consistent with our theoretical 
predictions (see Supplementary Fig.  S4). It will also be interesting to consider different forms of parametric 
fluctuations coupled with intrinsically noisy expression, for example, the threshold level itself could be random 
in single cells81, cell size varies over time, influencing both species number and concentration82,83. In our study, 
we assume that the number of total decoys is constant. However, genomic decoy numbers can fluctuate due to 
different DNA conformations and their dynamics84. Additionally, proteins that bind to TFs can act as decoys, 
such as those in biomolecular circuits associated with the heat-shock response85,86. The role of decoy number 
fluctuations in temporal precision would be a direction for future study. Another intriguing direction could 
involve the cooperative binding of TFs to decoy binding sites, which would cause the decoy binding rate to vary 
with the number of decoy-bound TFs.

Our novel finding of the dual role of decoys as noise regulators/buffers in event timing encourages more 
investigation into the regulatory function of decoys in complex gene networks. In our prior research, we used 
bacteriophage λ as a model system for studying event timing in individual cells. Here, an easily observable event 
(cell lysis) is the result of the expression and accumulation of a single protein (holin) in the E. coli cell membrane 
up to a threshold level30,32,71, and precision in event timing is tied an optimal timing of phage-mediated cell 
lysis87. The lysis pathway also consists of another protein, antiholin that binds to holin and prevents holin from 
participating in hole formation88,89. Expressing antiholin in titratable amounts from a plasmid could be an 
interesting setup to experimentally investigate the role of decoys on intracellular event timing and connect these 
results with the theoretical foundation setup here.

Data availability
This research paper does not contain any experimental data. The results presented in the paper are theoretical 
and computational. All the details are given in the supplementary information file or/and in the method sections.
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