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Introduction
Next-generation sequencing (NGS) technologies have revolu-
tionized the sequencing landscape through their ability to gen-
erate millions of sequences at a time and provided new insights 
into pathogen and host evolution.1-3 Furthermore, the develop-
ment of cheaper NGS systems means that this is no longer 
restricted to well-resourced centers of excellence and is now 
becoming a standard tool in many molecular biology laborato-
ries including several African countries.4 For example, the 
Oxford Nanopore MinION costs just less than US$1000, and 
each flow cell can generate 10 to 20 Gb of DNA sequence 
data.5 Although NGS technologies are getting increasingly 
portable and cheaper, data management is lagging behind.6 
The amount of data generated using NGS comes with signifi-
cant memory and storage requirements, making it challenging 
to analyze using desktop computers.

Some bioinformatics programs required for such analyses 
are computationally intensive, requiring high processing 

power and long computational times either because of the 
large datasets being analyzed or the complex calculations and 
simulations performed.7,8 Clusters and servers have been tai-
lored to perform such analyses; however, these are very expen-
sive to establish. This means that researchers from low-income 
settings (where pathogen NGS data would be particularly 
useful to confront high burdens of disease) might not be able 
to afford to buy or rent the necessary computational resources. 
In settings where existing computational resources are avail-
able but scarce, Internet is often a limiting factor. Transfer of 
large datasets between high-performance computing centers 
and the research centers is often very expensive, or the 
Internet connections are too slow to be effective. In addition, 
some of the research data (eg, patient data) may contain per-
sonal and sensitive information that require high levels of 
protection, making it risky to transfer into public domains. 
Finally, many institutions have firewalls that prevent users 
from accessing outside servers and clusters to analyze their 
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data, forcing researchers to perform analyses using ordinary 
desktop computers.

Our laboratory is focused on studies of viral-host evolution 
in the context of HIV infection and vaccination. Understanding 
the interplay between the host immune system and the evolv-
ing virus is a major aspect of HIV vaccine design. We use bio-
informatics analyses of Sanger and NGS sequence data to 
analyze viral and antibody gene evolution. The human anti-
body repertoire is enormous, at greater than 1011 molecules per 
individual.9-12 NGS technologies are, therefore, ideally suited 
for antibody repertoire analyses as they are able to sequence 
millions of antibody reads at a time. Similarly, the HIV enve-
lope protein, which is the target of antibody responses during 
HIV infection, varies by as much as 30% between infected 
individuals.13,14 The amount of data generated through these 
types of studies has resulted in our laboratory encountering the 
computational challenges described above.

To enhance our analyses, we have developed a low-cost bio-
informatics cluster that is easy to build, capable of analyzing 
large NGS datasets and performing phylodynamic analyses, 
and less reliant on Internet data usage. This system, which is 
amenable to analysis of diverse large datasets, will enhance the 
ability of under-resourced researchers to independently inter-
rogate large datasets to address locally relevant scientific 
problems.

Methods
Cluster architecture

Development of a multi-node cluster
Computer hardware.  A 3-node (12-core) cluster, consist-

ing of a master node and 2 subsidiary nodes, was developed 
using ordinary personal computer workstations (Figure 1A). 
The master node (Bio-Linux) is an Intel(R) Xeon(R) CPU 
E3-1220 v3 at 3.10 GHz, with 4 CPU cores with 32GB RAM 
and 1TB SSD. Nodes 01 and 02 are Intel(R) Core(TM) 
i7-3770 CPU at 3.40 GHz machines, with 4 cores per socket 
and 32GB RAM (increased from an initial 4GB RAM per 
node). We also installed 11T and 50T network-attached stor-
age (NAS) for raw and processed data, respectively (Figure 1A). 
The nodes perform the computational tasks, whereas the stor-
age, as the name suggests, are the devices that store all the data 
that are generated. Files are also backed up to a separate file 
system that is further backed up to Linear Tape-Open (LTO) 
tapes that have a capacity of 3T each.

Operating system and packages.  Fedora release 23 was 
installed on all the nodes. The standard installation of Linux 
was used, which does not have a graphical user interface. 
Fedora uses RPM (Redhat Package Manager), and the pack-
ages were installed from their repositories using either “yum 
install” or “dnf install.” The packages and all file components 
were extracted during installation and stored in the correct 
locations on the system (the default location being /var/lib/
rpm). Cluster users were created using the Fedora dashboard.

Networking.  Users login to the master node, which is con-
nected to the external Internet (Figure 1A). All the other nodes 
are connected through a local area network (LAN) to the mas-
ter node. External access to the cluster is given by ssh on a non-
standard port to reduce the risk of port scanning by automated 
bots. A firewall was also put in place on the LAN network as 
part of cybersecurity. Users login by ssh on their terminal using 
a username and password supplied by the system administrator.

Power.  The electricity from the main electrical supply 
passes through a generator and uninterruptible power supply 
(UPS) before passing through a secondary local UPS, to avoid 
disruption of analyses due to power failure.

Cluster configuration

SLURM.  Simple Linux Utility for Resource Management 
(SLURM) version 15.08 was installed to manage the cluster 
resources. SLURM allocates exclusive and/or non-exclusive 
access to resources (computer nodes) to users for a defined dura-
tion of time by providing a framework for starting, executing, and 
monitoring jobs (normally a parallel job) on the set of allocated 
nodes and arbitrates contention for resources by managing a 
queue of pending jobs. This means users can share the cluster in 
a controlled manner. SLURM was first installed on the master 
node, and the process was repeated on the additional nodes. The 
number of nodes can be increased in future depending on the 
laboratory computational requirements. The instructions for the 
step-by-step approach for installing were obtained on the follow-
ing website: https://slurm.schedmd.com/quickstart_admin.html.

Bioinformatics cluster f ile system

Data and scientific software packages are shared between nodes 
in the cluster using Network File System (NFS). The /opt/
conda2 directory (for scientific software) and /home directory 
(for data being analyzed) are exported from the master node 
and mounted on the same paths on the worker nodes. This 
allows scripts submitted to the SLURM scheduler to run on a 
consistent environment on all nodes on the cluster. User infor-
mation was synchronized between nodes using Ansible 2.2.0 
(https://www.ansible.com/).

The cluster has two storage facilities, 11T for raw data and 
50T for processed data (Figure 1A). The storage for raw data is 
accessible to the institutional sequencing core (where the 
Illumina MiSeq instruments are housed) to upload data. Cluster 
users access the cluster from the master node and are able to 
access the raw data already uploaded in the storage. Users first 
have to copy the data from the raw data storage into the home 
directory and then analyze it using various bioinformatics tools 
installed in the /opt directory. Cluster users have access to the 
green and blue areas (Figure 1B). The red area shows an exam-
ple of system files only accessible to the cluster administrator.

The user home directories are on the master node, and by 
default, all the jobs running write their output on the master 
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node disk space which only has 1T capacity. Once the disk 
space is full, the master node would not be able to allocate 
other nodes to run jobs. To resolve this, we decongested the 
master node by mounting a 11T volume to /share to increase 
the storage space in the share folder. Symbolic links (symlinks) 
were then created for all the user home folders to the share 
directory to prevent the master node from becoming con-
gested (Figure 1B).

Package manager and installation of bioinformatics 
packages

We installed several bioinformatics packages relevant to our 
studies of viral and antibody sequences described below. 

However, these could be replaced with tools relevant to local 
laboratory needs. We installed conda (https://conda.io/
docs/intro.html) as our package manager. All the installed 
packages were located in /opt/conda2/ (Figures 1 and 2). All 
programs were installed on the master node and are execut-
able on all the computer nodes. Conda is a package manager 
application that quickly installs, runs, and updates packages 
and their dependencies. The conda command is the primary 
interface for managing installations of various packages. It 
can query and search the package index and current instal-
lation, create new environments, and install and update 
packages into existing conda environments. Creation of dif-
ferent environments is done for programs that might have 
conflicting requirements in terms of the dependencies used 

Figure 1.  Bioinformatics cluster architecture. (A) Schematic description of the cluster architecture, storage, and memory. (B) Bioinformatics cluster file 

system. The storage area is shown in blue, the user area for data analysis in green, and the restricted system files in red.
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or versions of certain binaries (pre-built executables). The 
bioconda channel was enabled within conda to provide 
access to its collection of over 4000 open-source bioinfor-
matics packages.15

We used open-source tools and established pipelines devel-
oped by collaborators to perform bioinformatics analyses on 
viral and antibody sequence data. Bash scripts were used to 
execute the various bioinformatics programs allowing us to 
specify a given node and memory requirements to run the pro-
gram, an example of which is shown in Figure 2B. Job scripts 
are stored in a folder accessible by all users, standardizing all 
parameters for performing analyses and saving time when per-
forming similar analyses between donors.

HIV-1 and antibody datasets used for the analyses

Datasets used for the analyses were collected from partici-
pants in the Center for the AIDS Program of Research in 
South Africa (CAPRISA).16 These individuals were fol-
lowed-up from time of infection through chronic HIV infec-
tion. Ethics clearance for the use of samples was obtained 
from the Human Research Ethics Committee (Medical) 
from the University of Witwatersrand (MM040202), the 
University of Cape Town (025/2004), and CAPRISA at the 
University of KwaZulu-Natal (E013/04). HIV-1 sequences 
were obtained using the Sanger method,17 and antibody data 
from NGS with MiSeq Illumina as described previously.18

Results
Cluster performance with computationally 
intensive programs

Bioinformatics programs perform many analyses ranging 
from identifying signatures in sequences to performing com-
plex calculations, simulations, and predictions. Some of these 
programs are very computationally intensive, requiring large 
memory and longer computational hours. These types of anal-
yses include virus phylodynamics that provide insights into, 
for example, intra-host evolution of HIV-1 by estimating the 
rates of evolution, selection, diversity, divergence, elucidating 
spatio-temporal distributions of viruses, and identifying num-
ber of viral infections.19,20

To achieve this, we installed a number of phylodynamics 
programs on the cluster, including Bayesian Evolutionary 
Analysis by Sampling Trees (BEAST),21 which uses Bayesian 
statistical methods that require long computational times and 
memory requirements. BEAST ran faster on the bioinformat-
ics cluster compared with an ordinary machine (164 and 284 
hours, respectively) to complete the same task (Table 1). The 
“ordinary machine” used for the comparison was a MacBook 
Pro with a 2.6-GHz Intel Core i7 processor and 16GB RAM. 
The MacBook Pro makes a good comparison with the compu-
tational cluster since it is a high-end machine with above-
average processing power and memory compared with other 
ordinary machines. Furthermore, the bioinformatics cluster 

Figure 2.  Access to bioinformatics programs on the cluster. (A) Bioinformatics programs on the cluster. (B) Example of a bash script to run programs on 

the cluster.
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Table 1.  Comparison of the cluster performance with that of a high specification ordinary machine.

Machine Average speed and range 
(hours/mile steps)

Total time to complete 400 
million steps (hours)

No. of analyses 
at a time

Cluster 0.41 (0.39-0.43) 164 18

Ordinary machine: 2.8 GHz Core i7, 16GB memory 0.78 (0.25-1.01) 284 1

The cluster runs jobs faster compared with the ordinary machine and also runs multiple jobs in parallel, therefore reducing the total time to complete multiple analyses.

analyzed 18 datasets at a time compared with one on the ordi-
nary machine. This further highlights the benefits of the clus-
ter in rapidly performing analyses with computationally 
intensive programs. For BEAST, data visualization was done 
using FigTree and SpreaD3 installed on local machines.22,23

Cluster performance with large datasets

The cluster has also been applied to antibody repertoire analyses 
that rely on large datasets to accurately capture their evolution. 
We have thus far analyzed more than 3 TB of NGS antibody 
repertoire data (Figure 3A), which far exceeds the capability of 
ordinary desktop computers. These data were obtained from 4 
HIV-infected participants at multiple time-points ranging 
between 7 and 281 weeks post infection (Figure 3B). Each anal-
ysis (2-10 million light and heavy chain antibody reads) took 8 
to 168 computational hours, and the memory usage varied 
between 4 and 20 GB. The time and memory requirements of 
each of the analysis were dependent on the size of the input 
data, that is, the number of reads in the dataset. The cluster 
enables users to run several jobs simultaneously, thus allowing 
multiple time-points to be analyzed concurrently.

Easy integration of bioinformatics programs on the 
cluster

Bioinformatics analyses of complex data often involve using 
different tools to perform specialized tasks as part of a pipeline 
or a workflow. An example is the antibody repertoire NGS data 
analysis that we use, which requires many steps, summarized in 
Figure 4, and for which all of the steps are performed on the 
cluster. The analysis steps involve the use of the SONAR pipe-
line,24 which links several bioinformatics tools, including 
Clustal Omega,25,26 MUSCLE,25 Basic Local Alignment 
Search Tool (BLAST+),27 BEAST,28 and DNAML,29 to pro-
cess the data and identify sequences related to an antibody 
sequence of interest (clonally related sequences) (Figure 4).24

The pipeline was installed as follows: dependencies were 
first installed using conda or as per the developer’s instructions 
if not packaged within conda. SONAR was downloaded from 
https://github.com/scharch/SONAR and placed in /opt/
conda2/pkgs/. After uncompressing the files, we installed the 
pipeline by following the command prompts after executing 
“setup.sh.” The command prompts allowed us to specify  
the paths to the installed dependencies. Plots for data 

visualization were made using R which was also installed on 
the cluster. We then defined the python path using the follow-
ing command: “export PYTHONPATH =$PYTHONPATH: 
/opt/conda2/pkgs/sonar/.” Finally, for all the cluster users to 
be able to use the bioinformatics programs, we edited the 
.bashrc scripts to include the path to all the programs. The 
cluster, therefore, allows easy integration and automation of 
these bioinformatics programs, enhancing the laboratory’s 
throughput.

Discussion
Lack of infrastructure and limited resources are bottlenecks 
in research conducted in low-to-medium income settings. 
These regions are often also those that bear the major burden 
of infectious diseases such as HIV. Conducting disease sur-
veillance and vaccine research to curb the spread of locally 
relevant pathogens is a public health priority. Our research 
laboratory is involved in HIV vaccine research which involves 
generating and analyzing huge amounts of sequencing data. 
We have successfully set up a bioinformatics cluster using 
cheap and low-specification CPUs and demonstrated its 
application in analyzing these large NGS datasets. This 
approach has broad utility for other pathogens and beyond 
bioinformatics to other studies that require high-perfor-
mance computing.

The cost of constructing this cluster was reduced using rela-
tively old computers that were no longer used in the laboratory 
and which were upgraded at a small cost to accommodate more 
data. This approach is very feasible in resource-limited labora-
tories that have access to old computers, or funding to purchase 
relatively inexpensive ones. We reduced costs through the use of 
open-source software to configure the cluster. There is a signifi-
cant body of useful open-source software that also comes with 
good technical support. Much of this support comes from the 
community of users that interact on Google groups such as 
Gitter, GitHub, Biostars, Stack Overflow, and other online plat-
forms. We used Linux Fedora operating system, as it is open 
source, stable, and is sponsored and funded by Red Hat. Conda 
package manager is also open-source software that makes it easy 
and manageable to install bioinformatics packages. The 
SLURM scheduler is also open-source software with excellent 
community support.

There are a number of software packages that may be used 
for cluster configuration management such as Ansible, Chef, 
and Puppet. Puppet has advantages when it comes to updating 
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programs on the cluster, in that it automatically updates the 
other nodes, whereas Ansible has to be run to update any 
changes on the other nodes. We used Ansible because it is sim-
ple and easy to configure compared with the other two as our 
cluster is small, with less than 3 nodes.

A centralized cluster for running tasks makes it easy to 
standardize processes and install updates on programs run by 
users. In addition, it enables good management of memory and 
storage resources as well as data security as users do not have to 
carry huge quantities of data around. Access to the cluster only 
requires use of the command line and an understanding of 
Unix systems. If a Windows operating system is preferred, 

installation of a program such as Putty will provide a command 
line to execute Unix commands.

We applied the cluster to the analysis of the HIV envelope 
glycoproteins evolution within individuals19 and to studying 
the development of antibody responses to HIV infection.30 
These examples demonstrated how usage of this cluster has 
helped overcome hurdles in data processing and analysis and 
generated valuable insights into HIV vaccine design. This 
computational cluster was built using ordinary desktops, and 
the memory was upgraded to the maximum limits of the nodes. 
It will not perform well with analyses that require memory 
beyond the limit of the infrastructure, and more sophisticated 

A

B

Figure 3.  Cluster performance with large datasets of antibody repertoire data. (A) Total amount of data from the SONAR analyses, followed by the 

breakdown per participant for donors. (B) Number of antibody sequences analyzed using the bioinformatics cluster per donor and per time point. Heavy 

and light chain antibody sequences data are shown in black and gray, respectively.
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systems may be required. Future work would look into imple-
menting parallel computing to break down large memory-
demanding tasks into manageable jobs that can run within the 
limits of the available infrastructure.

Conclusion
In this article, we have demonstrated the building and imple-
mentation of a low-cost cluster for analyzing large NGS data 
and performing computationally intensive studies of intra-host 
evolution of HIV. The establishment of this low-cost cluster 
demonstrates how researchers from low-income settings can 
solve global challenges using relatively inexpensive resources. 
Such an approach of using low-cost technologies and recy-
cling/repurposing equipment to tackle complex scientific prob-
lems is highly relevant to Africa and has broader implications 
in advancing creativity, research, and bringing about home-
grown solutions to the challenges facing the continent.
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