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Abstract

Background: [t is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to
sustain tumor growth. These cells — called cancer stem-like cells — share certain phenotypic characteristics with
untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations
in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells
is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies.

Methods: Recently, we developed SWIM, a software able to unveil a small pool of genes — called switch genes —
critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of
glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like
phenotype.

Results: SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list
encompasses genes like CAV1, COL5AT, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBST, and VEGFC, involved
in "ECM-receptor interaction” and “focal adhesion” pathways. The inhibition of switch genes highly correlates with the
activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2,
SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells.
Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in
stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the
promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1.

Conclusions: We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell
communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation
could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of
cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells
by repressing the 4-core genes’ expression, which severely halts cancer growth and might affect the therapeutic
outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.
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Background

Glioblastoma multiforme (GBM) is the most frequently
diagnosed brain tumor in adults [1, 2] according to the
World Health Organization (WHO). Recently, the unique
professional research organization CBTRUS provided a
comprehensive summary of the current descriptive epi-
demiology of primary brain and central nervous system
tumors in the United States population for diagnosis
years 2008-2012 [3]. From this prospective study emerges
that glioblastoma accounts for 15.1% of all primary brain
tumors and 46.1% of primary malignant brain tumors; it is
more common in older adults especially in males (is about
1.6 times higher in males as compared to females), and
is less common in children; it has the highest incidence
among all malignant tumors, with 11890 cases predicted
in 2015 and 12120 in 2016.

GBM is also one of the most incurable cancer worldwide
mostly due to high infiltration into the brain parenchyma
making both standard therapies (e.g. radiotherapy,
chemotherapy) and surgical resection generally not able
to arrest the tumor development and progression [4, 5].
Despite aggressive and multimodality treatments [6, 7],
GBM mortality rate remains still very high especially
when compared to other cancers such as breast and lung
cancer [3]. This finding is dramatically confirmed by the
clinical data of 161 unique GBM patients available from
The Cancer Genome Atlas (TCGA) Data Portal [8, 9].
These data point out that the 5-years survival rate is estimated
to be achieved only from the 20% of the patients (Fig. 1).

Current scientific research and clinical trials have not
led to a definitive cure for GBM but have contributed to
both an improved understanding of the disease progres-
sion, as well as small improvements in patient outcomes to
treatment. In particular, several studies identified a small
percentage of the total GBM cell population that evolves
along the course of the disease, forming highly heteroge-
neous subpopulations within the tumor mass. These cells
possess radio/chemo-resistant properties and may have a
role in driving tumor initiation, resistance to treatment,
tumor progression, and relapse [10—16]. Due to their abil-
ity of self-renewing, proliferating, and differentiating into
multiple lineages, this subpopulation of cells - known as
cancer stem-like cells [17] - is held responsible for car-
cinogenesis not only in brain cancer [10, 13], but even in
other tumors such as breast, colon, prostate, pancreatic,
melanoma cancers [10, 13, 18—22]. The failure in remov-
ing these GBM cancer stem-like cells is one of the main
reason behind the ineffectiveness of traditional therapies
in treating glioblastoma [16]. Therefore, focusing on the
characteristics of GBM stem-like cells and on necessary
conditions for specific cell differentiation is a promis-
ing strategy to propose new therapeutic targets in order
to improve GBM treatment efficacy and overcome drug
resistance.
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Here, we applied SWItchMiner SWIM [23, 24] — a soft-
ware that we recently developed to unveil a small pool
of genes (called switch genes) critically associated with
drastic changes in cell phenotype — to the expression
data obtained by Affymetrix HG-U133 Plus 2.0 microrar-
rays of glioblastoma stem-like (GS) cell lines, correspond-
ing primary tumors, and conventional glioma cell lines
[25], publicly available on the Gene Expression Omnibus
(GEO) repository [26]. Our aim was to identify switch
genes in the transition from stem-like to differentiated
GBM cells.

Methods

Datasets

Schulteetal.

The first GBM dataset analyzed for the present study
is available through GEO public repository under acces-
sion number GSE23806 published on Feb 12, 2011 by
[25]. Data include expression profiles of 32 conventional
glioma cell lines, 12 glioblastoma stem-like (GS) cell
lines, among which 7 clonal sublines derived from two
GS lines, 12 original tumors, and 4 monolayer cultures
established from the same tumors as GS-lines using stan-
dard serum conditions obtained by Affymetrix Human
Genome U133 Plus 2.0 Array. The authors of [25] showed
that only one subgroup of GS cell lines, called full stem-
like phenotype (GSf), fulfilled all criteria for glioma stem
cells and mirrored the transcriptome of human glioblas-
tomas more closely than other cell lines. For this rea-
son, in our analysis we compared the expression pro-
files of 23531 genes in 15 GSf cell lines and 12 original
tumors with respect to 32 conventional glioblastoma cell
lines (Fig. 2).

Verhaak et al.

The second GBM dataset analyzed for the present study is
available as supplementary material of a recent study[27].
Data include microarray expression profiles of 173 core
TCGA samples unified and scaled from three gene
expression platforms (Affymetrix HuEx array, Affymetrix
U133A array, and Agilent 244K array). The authors
of this study described a robust gene expression-based
molecular classification of GBM into Proneural, Neural,
Classical, and Mesenchymal subtypes and integrate multi-
dimensional genomic data to establish patterns of somatic
mutations and DNA copy number. Aberrations and gene
expression of EGFR, NF1, PDGFRA/IDH], and neuron
markers (e.g. NEFL, GABRA1, SYT1, SLC12A5) each
define the Classical, Mesenchymal, Proneural and Neural
subtypes, respectively.

TCGA-GBM
The third GBM dataset analyzed for the present study
was downloaded from TCGA Data Portal Release 10.0
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Fig. 1 Survival percentage for GBM patients. The figure depicts the post-diagnosis survival percentage related to 161 unique GBM patients, whose
clinical data were retrieved from TCGA repository in 2017 considering a follow-up of about seven years [8, 9]. The percentage of survivors at five

(December 2017) [8, 9]. It represents GBM normalized
expression data of 161 GBM unique patients from high-
throughput RNA sequencing, created by using FPKM pro-
cedure to perform the normalization (i.e. HTSeq-FPKM
data). For these patients also clinical data were down-
loaded from TCGA in order to perform the Kaplan-Meier
survival analysis.

SWIM software

SWitchMiner (SWIM) [23] is a software with a user-
friendly Graphical User Interphase (GUI) developed
in MATLAB and downloadable from the supplemen-
tary materials of [23]. SWIM implements an inte-
grated network analysis able to extract from genome-
wide expression data key players (i.e. switch genes)
marking the shift from one condition to another in a
complex biological network. SWIM algorithm encom-
passes a series of well-defined steps described in the
following [23].

Step 1: Pre-processing phase

Denoting by A and B the two conditions between
which searching for switch genes and by S the total
number of samples (S = samples in the condition A
+ samples in the condition B), this step requires the
selection of two specific thresholds for removing genes
whose expression across the S samples is mostly zero
or change very little. The first threshold regards the

maximum number of samples out of S allowed to be
equal to zero. The second threshold concerns the min-
imum variation - measured by the Inter Quartile Range
(IQR) percentile - allowed for each gene across the S
samples.

Step 2: Filtering phase phase

This step requires the selection of two specific thresh-
olds for removing genes whose expression between the
two given conditions (A and B) does not change enough
or does it without statistical significance. Considering
the logarithm of the ratio between the average expres-
sion of samples in condition A and the average expres-
sion of samples in condition B (log fold-change), the
first threshold allows to remove the genes falling behind,
in absolute value, a fixed cutoff on the log fold-change.
The second threshold concerns the smallest probabil-
ity (p-value) for which the data allow to reject the null
hypothesis (i.e. the means of the two distributions — nor-
mal and cancer - are identical) of the Student’s t-test.
Actually, since this statistical test will be repeated mul-
tiple times (as many as the genes under testing), the
obtained p-values must be adjusted. To correct mul-
tiple tests, SWIM makes use of False Discovery Rate
(FDR) method [28] and thus the threshold refers to
the FDR values. At end of this phase, the differentially
expressed genes between conditions A and B have been
identified.
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Fig. 2 Unsupervised hierarchical cluster of tumors and cell lines. Specimens included 12 glioblastomas (blue), 15 glioblastoma full stem-like
phenotype (GSf) cell lines established from these tumors (green) and 32 conventional glioma cell lines (magenta). The dendogram was obtained by
using Spearman correlation as distance metrics and highlights how the GSf cell lines mirror the transcriptome of tumors more closely than

Step 3: Building the correlation network

This step requires the selection of a threshold for build-
ing the correlation network where two nodes are con-
nected if the absolute value of the Pearson correlation
between their expression profiles exceeds a given cutoff.
This threshold should reflect a right balance between the
number of edges and the number of connected compo-
nents of the network: the number of edges should be as
small as possible in order to have a manageable network
(pointing towards a higher threshold) and the number of
connected components should be as small as possible in
order to preserve the integrity of the network (pointing
towards a smaller threshold).

Step 4: Finding communities in the network

To find communities in the network, SWIM makes use of
the k-means algorithm [29], a method of cluster decom-
position whose aim is to partition #n objects (i.e. the
nodes of the co-expression network) into N clusters.
The goal of the clustering is expressed by an objective

function that depends on the proximities of the nodes
to the cluster centroids. As objective function, SWIM
uses the Sum of the Squared Error (SSE), defined as
follows:

N
&E::E:E:dma%xﬁ

i=1 xeC;

where N is the number of the clusters, C; is the i cluster,
x is a node in the i cluster, ¢; is the centroid of the ith
cluster. The centroid ¢; is given by:

Ci:%in

i
xGC,'

where m; is the number of nodes in the i cluster. There
are as many centroids as the number of the clusters. As
measurement of the proximity of two nodes, SWIM makes
use of the metrics dist(x,y) = 1 — p(x,y), where p(x,y)
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is the Pearson correlation between expression profiles of
nodes x and y. Thus, two nodes are close in the network
(dist = 0) if they are highly correlated (p = +1) on the
contrary they are far apart in the network (dist = 1) if
they are highly anti-correlated (o0 = —1). The k-means
algorithm, despite being the most widely used cluster-
ing algorithm, has some intrinsic limitations. Firstly, the
number of clusters must be set in advance; secondly, it
guarantees convergence only to a local minimum of SSE;
thirdly, the initial position of the centroids is randomly
chosen causing a dependence of the partitioning on ini-
tialization. However, some reasonable assumptions can be
done and are described in the following. There is no strict
method to determine the “correct” number of clusters.
Among others, SWIM uses an approach - named “Scree
plot” - that evaluates the behavior of the SSE function
to vary the number of clusters. Then, the position of an
elbow in the scree plot - i.e., where the “cliff” reaches a
bottom plateau - determines an appropriate number of
clusters. Since finding the global optimum of SSE is the-
oretically NP-hard [30], it is commonly assumed that is
sufficient to carry out a number of random initialization
followed by a selection of the best separated solution,
measured by the lowest SSE [31]. Moreover, the parti-
tion with the lowest SSE is commonly assumed to be
reproducible under repeated initializations [31]. Thus, for
a given number of clusters, SWIM allows repeating the
clustering many times (replicates), each with a new set of
initial cluster centroid positions. For each replicate, the
k-means algorithm performs iterative partitioning (itera-
tions) until the minimum of the SSE function is reached.
Then, the cluster configuration with the lowest SSE val-
ues among all replicates will be chosen, for that number of
clusters.

Step 5: Building the heat cartography map

Once the modular structure of the complex network has
been found, roles have to be assigned to each node. This
is done by dividing the plan according to two parameters,
the clusterphobic coefficient K; and the global within-
module degree zg. In the following, the formal definitions
of these parameters for a generic node i [23]:

in 2
Ki=1- i
k;

in 7
ki — kC,'

oc;

i_

Z, =
where kf" is the number of links of node i to nodes in its
module Cj, k; is the total degree of node i, k¢, and o, are
the average and standard deviation of the total degree dis-
tribution of the nodes in the module C;. This definition of
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zg quantifies how much a node is a hub (i.e. degree exceed-
ing 5 [32]) in its community and thus represents a measure
of local connectivity. On the contrary, the parameter K
evaluating the ratio of internal to external connections of
a node represents a measure of global connectivity. Note
that K; = 0 when a node has only links within its mod-
ule, i.e. it does not communicates with the other modules
(kf” = k,'). On the contrary, K; is close to 1 when the
majority of its links are external to its own module. The
values of these two parameters define, in the plan identi-
fied by K;; and zg, a cartography made up by seven regions
(R1-R7) corresponding to seven different roles of nodes in
the network [33]:

1 non local hub for z, < 2.5

- K = 0 Ultra-peripheral nodes (role R1)

- K < 0.625 Peripheral nodes (role R2)

0.62 < K; < 0.8 Non-hub connectors (role R3)
- K; > 0.8 Non-hub kinless nodes (role R4)

2 local hub for z; > 2.5

- K; = 0.3 Provincial hubs (role R5)
- K; < 0.75 Connector hubs (role R6)
- K; > 0.75 Kinless hubs (role R7)

Then, SWIM colors nodes in the cartography according
to the Average Pearson Correlation Coefficient (APCC)
between the expression profiles of each node and its near-
est neighbors [32]. This representation of the network
is defined as “heat cartography map” By computing the
APCC of expression over all interaction partners of each
hub in protein-protein interaction (PPI) networks in yeast,
the authors in [32] concluded that hubs fall into two dis-
tinct categories: date hubs that display low co-expression
with their partners (low APCC) and party hubs that have
high co-expression (high APCC). In the gene expression
networks, the distribution of APCCs appears to be tri-
modal [23, 24] where, similarly to PPI networks, two peaks
represent low (date hubs) and high (party hubs) positive
APCC values, but with the addition of a new third peak
which is characteristic of gene expression networks and
represents negative APCC values. Nodes populating this
peak are called “fight-club hubs”.

Step 6: Identification of switch genes

Looking at the heat cartography map, SWIM identifies the
so-called switch genes: the subset of the fight-club hubs
that mainly interact outside their community (role R4).
In particular, they satisfy the following topological and
expression features:

- being not an hub in their own cluster (z; < 2.5);
- having many links outside their own cluster
(Kp; > 0.8);
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- having a negative average weight of their incident
links (APCC <0).

At the end of step 6, SWIM gives the opportunity to per-
form further analyses regarding the evaluation of network
robustness, which is the resilience to errors, by study-
ing the effect on the network connectivity of removing
nodes by decreasing degree. In particular, SWIM evalu-
ates the effect on the average shortest path - where the
shortest path between two nodes is the minimum num-
ber of edges connecting them and the average shortest
path is the mean of the shortest paths for all possible
pairs of nodes in the network - of removing randomly
chosen nodes, switch genes, fight-club hubs, date and
party hubs. Since scale-free networks have few hubs and
many non-hub nodes, they are amazingly resistant to a
random removal of nodes, while the removal of hubs
causes an effect known as “vulnerability to attack” to
allude to the fact that the integrity of the network is
destroyed.

Functional and motif enrichment analysis

The associations between selected genes and functional
annotation terms such as Gene Ontology (GO) terms [34]
and KEGG pathways [35] were analyzed by using FIDEA
web tool [36]. Binding motif enrichment analysis in pro-
moter regions (identified as genomic regions spanning
from -450 to +50 nucleotides with respect to transcrip-
tion start sites) was performed by Pscan [37], which
employs the JASPAR 2018 motif collection [38]. A p-value
< 0.05, after adjustment for multiple testing performed
with the Benjamini-Hochberg method [28], was set as
threshold to identify functional annotations and regula-
tory motifs significantly enriched amongst the selected
gene lists.

microRNA target enrichment analysis

The predictions of microRNA (miRNA) targets and
the information about the miRNA family members
with their seed (i.e. positions 2 to 8 at the 5-end of
the mature miRNA sequence) were downloaded from
TargetScan web site Release 7.0 (August 2015) [39].
The experimentally validated miRNA-target interactions
were downloaded from miRTarBase web site Release
6.1 (September 2015) [40]. For each miRNA (selected
miRNA) in the chosen database (TargetScan or miR-
TarBase), the hypergeometric test was used to cal-
culate the significance of the enrichment of the list
of switch genes in its targets. The relative p-value is
computed as

=Y

. (it
=3
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where M is the dimension of the universe (selected back-
ground), that is the number of all predicted (validated)
miRNA-target interactions encompassed in TargetScan
(miRTarBase); K is the number of predicted (validated)
miRNA-target interactions encompassed in TargetScan
(miRTarBase) for the selected miRNA; N is the number
of switch genes (input gene list) recognized by TargetScan
(miRTarBase); X is the number of switch genes for which
predicted (validated) miRNA-target interactions, for the
selected miRNA, exist.

Network visualization and analysis

The free software package Cytoscape was used for visu-
alizing gene correlation networks [41]. To find modules
(i.e. locally dense regions) in the gene correlation net-
work, we made use of the Cytoscape plugin MCODE
[42], which weights nodes by a local neighborhood den-
sity measure and graphically displays ranked extracted
modules.

Kaplan-Meier analysis

In order to evaluate the clinical relevance of switch genes
identified by SWIM, we performed Kaplan-Meier analysis
[43] by using clinical and RNA-seq expression data pro-
vided by TCGA Data Portal Release 10.0 (December 2017)
[8, 9], relating to 161 unique GBM patients and GBM
subtype-specific patients. The patients were split into
two groups (called low-expression and high-expression)
according to the expression level of each switch gene. In
particular, low- and high-expression groups referred to
patients with expression levels lower than or greater than
the 507 percentile, respectively. For each patient cohort,
the cumulative survival rates were computed according to
the Kaplan-Meier method [43]. A log-rank test was per-
formed to evaluate the p-value: the lower the p-value, the
better the separation between the prognoses of the two
groups. The resulting p-values were adjusted for multiple
testing by using the Benjamini-Hochberg (FDR) proce-
dure [28].

Results

Integrated network analysis of genes involved in the
transition from glioblastoma stem-like to conventional cell
lines reveals fight-club hubs

By analyzing Schulte et al. dataset [25], SWIM identi-
fied 787 genes showing significant differential expres-
sion between glioblastoma full stem-like phenotype (GSf)
cell lines together with tumors and conventional glioma
cell lines (Fig. 3a, Additional file 1). Among them,
500 (64%) were up-regulated and only 287 (36%) were
down-regulated in GSf cell lines and tumors during the
stemness-differentiation transition (Fig. 3b). To provide
an overview of the biological functions associated to
differentially expressed genes (DEGs), we used FIDEA



Fiscon et al. BMC Bioinformatics 2018, 19(Suppl 15):436

Page 109 of 143

Q0

Differential expressed genes = 787

Tumors + GSf

Protein digestion and absorption-

Hematopoietic cell lineage

Focal adhesion-

ECM-receptor interaction

Axon guidance -

Amoebiasis

Down-Reg

groups. Grey color indicates that no gene is present

Conventional cell lines

c Proximal tubule bicarbonate reclamation _

Fig. 3 Analysis on differential expressed genes (DEGs) for Schulte et al. GBM dataset [25]. @a Dendrogram and heat map for DEGs. The expression
profiles of DEGs are clustered according to rows (genes) and columns (samples) in the GBM data matrix by using as distance metrics 1-p, where p is
the Pearson correlation. Heatmap colors represent different expression levels (z-score normalized) that increase from blue to yellow. b Percentages
of DEGs that result up-regulated and down-regulated in glioblastoma full stem-like phenotype (GSf) cell lines and primary tumors. € Enrichment
analysis in KEGG pathways (www.genome jp/kegg/pathway.html) for DEGs that are up-regulated and down-regulated in GSf cell lines and primary
tumors. The up-regulated and down-regulated genes are considered as separate groups. The heatmap reports the absolute value increasing from
white to dark green of log10 of corrected p-value of functional categories significantly enriched (adjusted p-value < 0.05) in at least one of two

i Down in GSf and tumors
| | Upin GSfand tumors
High

64%

Low \_/

abs(logPV)
4

3
2
1
0

Up-Reg

bioinformatics tool [36]. KEGG pathway analysis revealed
that the most significantly over-represented (adjusted p-
value < 0.05) pathways among down-regulated transcripts
were “ECM-receptor interaction“ and “focal adhesion’,
while the larger list of up-regulated transcripts was not
found significantly enriched in relevant cancer-related
pathways (Fig. 3c).

In order to identify potential master regulators of
stemness-differentiation transition, SWIM generated a
correlation network of DEGs using as distance metric

the Pearson correlation coefficient between any two
pairs of transcripts. Of note, the Pearson correlation
distribution of all RNA profile pairs revealed a clear
bimodal profile (Fig. 4a). To build the network, a
Pearson correlation threshold of 0.71 was selected. It
should reflect a right balance between a manageable and
full connected network (see step 3 of SWIM software
subsection of Methods). The co-expression network com-
prised 732 nodes and 75209 edges (Additional file 2 and
Fig. 4b).
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SWIM next searched for specific topological properties
of the correlation network using the date/party/fight-club
hub classification system, which we previously defined
[23, 24], based on the Average Pearson Correlation Coef-
ficients (APCCs) between the expression profiles of each
hub and its nearest neighbors. The extent to which hubs
are co-expressed with their interaction partners leads to
three classifications with characteristic topological prop-
erties: date hubs (low positive APCC), party hubs (high
positive APCC), and fight-club hubs (negative APCC).
Date hubs have a coordinating role within the network,
whereas party hubs act as local hubs [32]. Likewise date
hubs, fight-club hubs are supposed to connect different
biological processes, thus acting as global hubs, but differ-
ently from them they display an opposite transcriptional
pattern with respect to their interaction partners: if they
are induced, their interaction partners are repressed, and
viceversa.

SWIM identified 147 party hubs, 371 date hubs, and 175
fight-club hubs in the glioblastoma dataset (Additional

file 3). The date/party/fight-club hub trichotomy is mir-
rored by the trimodal distribution of APCCs (Fig. 5a)
that is emerging as distinctive feature of the com-
plex biological correlation networks [23, 24]. In order
to show that this trimodal behavior of the APCCs
was not obtained by chance, we calculated the distri-
bution of APCCs in a randomized network generated
by keeping node labels constant while shuffling their
edges but preserving the degree of each node. The
resulting distribution was unimodal with a peak equiv-
alent to a very low positive APCC value of ~ 0.2
(Fig. 5a). This positive value reflects the predominance
of positive compared with negative correlations in the
network.

Heat cartography in glioblastoma reveals switch genes as
network bottlenecks

SWIM next searched for the communities within the
glioblastoma correlation network using k-means cluster-
ing algorithm (see step 4 of SWIM software subsection of
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Methods), which led to the identification of three clusters
or modules (Additional file 4). The intramodule and inter-
module connections were exploited by SWIM in order
to assign topological roles to each node [23] based on
the computation of two parameters for each node: the
clusterphobic coefficient K,;, which measures the “fear”
of each node of being confined in a cluster in analogy
with the claustrophobic disorder, and the global within-
module degree z;, which measures how “well-connected”
each node is to other nodes in its own community. In par-
ticular, high z, values correspond to nodes that are hubs
within their module (local hubs), while high values of K,
identify nodes that interact mainly outside their commu-
nity (see step 5 of SWIM software subsection of Methods).
The values of these two parameters allow to define the
heat cartography map for the glioblastoma dataset, where

party, date, and fight-club hubs were easily identified
by red, orange, and blue coloring, respectively (Fig. 5b).
Fight-club hubs, acting as negative regulators, mainly fall
in the so-called R4 region of the heat cartography map
that is characterized by high values of the clusterphobic
coefficient and by a strong inclination of nodes to interact
mostly outside their own community. This subset of fight-
club hubs lying in the region R4 was called switch genes
(see step 6 of SWIM software subsection of Methods).

SWIM identified 171 switch genes out of 175 fight-club
hubs in the glioblastoma dataset (Additional file 5). By
drawing the heat cartography map for the nodes of the
glioblastoma randomized network, we observed a pre-
dominance of low positive correlation and an absolute
absence of switch genes (Fig. 5c). The parameters used for
running SWIM are listed in Table 1.
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Table 1 Parameters’ summary used by SWIM for Schulte et al.

GBM dataset [25]

Parameter Value Number
FC-threshold 1.5 -
FDR-threshold 0.05 -
p-threshold 0.71 -
k-mean clusters - 3

DEGs - 787
Correlation network nodes - 732
Correlation network edges - 75209
Switch - 171

Parameters column refers to: Fold-Change (FC), False Discovery Rate (FDR), Pearson
correlation (p) thresholds, clusters set for k-means algorithm (k-means clusters),
Differentially Expressed Genes (DEGs), nodes and edges of correlation network, and
switch genes (switch)
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Characterization of switch genes

The list of 171 switch genes encompasses 159 protein-
coding, 8 long non-coding (i.e. 4 pseudogenes, 3 antisense
genes and 1 lincRNA) and 4 transcripts not characterized
yet (Additional file 6 and Fig. 6b). We found 17 transcrip-
tion factors (TFs) among the 159 protein-coding switch
genes, including FOSL1, SNAI2, TWIST1, and WNT5A
that were resulted annotated for nervous system related
processes (Additional file 6). Interestingly, all switch
genes were down-regulated in GSf cell lines and tumors
(Additional file 5 and Fig. 6a) and enriched in the cell com-
munication pathways “ECM-receptor interaction” and
“focal adhesion” (Fig. 6¢). Cell-cell adhesion is well-known
to be a fundamental process for tissue architecture and
morphogenesis [44] and its alteration can disrupt impor-
tant cellular processes and lead to a variety of diseases,
including cancer [45]. The deep-rooted evidences of the
importance of cell-cell adhesion in cancer and its rela-
tion with switch genes, strongly support our hypothesis
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that switch genes repression may contribute to tumor
invasiveness.

We found that switch genes inhibition strongly corre-
lated with the activation in GSf lines and tumors of genes
significantly enriched in processes related to the devel-
opment and differentiation of the glia and neuronal cells,
such as the four core of OLIG2, POU3F2, SALL2, and
SOX2 (Fig. 6d-e). The latters represent four master neu-
rodevelopmental TFs that were recently shown to be suf-
ficient to fully reprogram differentiated glioblastoma cells
into stem-like cells [12]. This finding is consistent with the
existence of one master regulator among switch genes. It
could control the stem-like phenotype of GBM cells simul-
taneosly acting as repressor of the four core TFs, thus
causing the induction of differentiation of cancer stem
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cells, which severely halt cancer growth and invasion.
Pursuing this hypothesis, we searched for switch genes
that simultaneously anti-correlated with the four core TFs
(Fig. 7a) and found a list of 41 switch genes (Additional
file 7) that includes: WNT5A whose activation can drive
GBM stem-like cell differentiation [46]; PLAUR that plays
a key role in glioma cell migration and invasion acting
mainly on integrins, a family of cell adhesion molecules
[47]; and the FOS like transcription factor FOSL1 that
appears to be expressed in various cancer tissues and
associated to glioblastoma aggressiveness, invasion, and
metastasis [48, 49].

Next, we investigated possible co-regulation of the four
core TFs by using Pscan [37], that evaluates enrichment
of known binding motifs in promoter regions, employing
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the JASPAR 2018 motif collection [38]. Significant enrich-
ment was found for FOSL1 that, thus, resulted as a
putative transcription factor binding to four core TFs
regulatory elements (Fig. 7b).

A recent study cataloged recurrent genomic abnor-
malities in glioblastoma and described a robust gene
expression-based molecular classification of GBM into
Proneural, Neural, Classical, and Mesenchymal subtypes
by integrating multi-dimensional genomic data to estab-
lish patterns of somatic mutations and DNA copy num-
ber [27]. In order to investigate a putative connection
between switch genes and the known GBM subtypes,
we performed an additional analysis of their expres-
sion profiles by using both RNA-seq data downloaded
from TCGA and microarray data available from this
study [27]. We found connection between the four
subtypes and the 171 switch genes in both datasets.
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Performing a hierarchical clustering, by using Pearson
correlation distance as metrics, and displaying the results
in the heatmap, we found that switch genes could be
grouped in two main clusters (Fig. 8). In particular,
those switch genes falling in the biggest cluster are
enriched in “ECM-receptor interaction” and “focal adhe-
sion” pathways and are mostly up-regulated in mes-
enchymal subtype that has been shown to have the
worst prognosis [50]. This largest subset of switch genes
includes FOSL1.

Considering all these clues that point towards FOSL1
as a possible master regulator of the four core TFs, we
sought its clinical relevance by investigating its prognostic
value through Kaplan-Meier survival analysis. To perform
this analysis we considered the whole list of 171 switch
genes and, taking advantage from the comprehensive atlas
of human cancers TCGA, we correlated their expression
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Fig. 8 Analysis of switch genes expression of GBM subtypes. a-b Dendrograms and heat map for switch genes for microarray expression data of
Verhaak et al. dataset [27] (@) and for GBM RNA-seq data provided by TCGA (b). The expression profiles of switch genes are clustered according to
rows (switch genes) and columns (subtype samples) by using as distance metrics 1-p, where p is the Pearson correlation. Heatmap colors represent
different expression levels (z-score normalized) that increase from blue to yellow
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profiles with patients survival in the GBM specific case.
For each switch gene, patients were stratified into low
and high risk groups through a Kaplan-Meier analysis
and the statistical difference (i.e. log-rank test p-values) in
their survivals was calculated (Additional file 8). A p-value
adjustment for multiple testing was performed by using
the Benjamini-Hochberg (FDR) procedure [28]. Unfortu-
nately, after multiple-testing correction no switch gene
were found statistically significant. However, it’s worth to
note that FOSL1 appears among the top ten switch genes
with the smallest p-value. Finally, we performed the same
survival analysis also considering only patients falling in
the known GBM subtypes. Overall, patients with a high
FOSL1 expression show an unfavorable outcome, even if
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not statistically significant, both considering all 161 GBM
patients and the subtype-specific patients (Figs. 7c, 9).

Recently, the expression of FOSL1 has been linked
to focal adhesion closing thus the circle with the the
results of the functional enrichment analysis of the
switch genes that reported “ECM-receptor interaction”
and “focal adhesion” as the most over-represented path-
ways. It has been suggested that, in a mouse model of
embryonic development in vitro, FOSL1 functions as a
modulator of the level of key molecules on endothelial cell
surface. It can function as either an activator or a repres-
sor, depending on the gene-context, controlling in this way
the delicate equilibrium between adhesion and migration
in sprouting angiogenesis [49].
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Taken together these findings thrust FOSL1 into the
spotlights as the most promising candidate among switch
genes as novel therapeutic target for treating human
glioma.

microRNAs regulating switch genes
In order to elucidate the cascade of events under-
lying the maintenance of the glioblastoma stem-like
cells identity, we surveyed regulatory activity of miR-
NAs on switch genes as computationally predicted
by TargetScan [39] and experimentally validated by
miRTarBase [40].

For each miRNA predicted to target one or more
switch genes, we performed an enrichment analysis to
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evaluate the statistical significance (p-value) of the over-
representation of its targets in the list of switch genes.
The list of miRNAs was then sorted by increasing p-
value (Additional file 9). Among the top-ranked miRNAs
we found (Fig. 10a): the members of the miR-26 family
(i.e. hsa-miR-26a-5p/hsa-miR-26b-5p/hsa-miR-1297/hsa-
miR-4465), where miR-26a appears to be over-expressed
in high-grade glioma and facilitates gliomagenesis in
vivo [51] and miR-26b plays an important role to
inhibit the proliferation and invasion of glioblastoma
cells [52]; miR-144-3p recently proposed as n factor for
GBM patients [53]; miR-101-3p, whose over-expression
correlates with significant inhibition of in vitro pro-
liferation and migration of glioma cells, and in vivo
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growth of established tumors [54]; miR-182-5p recently
proposed as a prognostic marker for glioma progres-
sion and patient survival [55]; miR-340-5p recently
proposed as a glioma killer and potential prognosis
biomarker and therapeutic target for GBM [56]; miR-582-
5p recently proposed to positively influence glioblastoma
survival and promote human glioblastoma stem-cell sur-
vival [57]; the miRNA-148/-152 family (i.e. miR-148a-
3p/hsa-miR-148b-3p/hsa-miR-152-3p), where miR-148a
appears to be as a negative risk factor in glioblas-
toma and its up-regulation could accelerate the malig-
nant process being negatively correlated with the survival
rate [58].

We found that all these top-ranked miRNAs target those
switch genes that are involved in “ECM-receptor interac-
tion” and “focal adhesion” pathways - such as COL5A1,
COL6A3, FLNB, ITGA5, MET, THBS1, SDC1, VEGEC
- suggesting a further layer of regulation given by miR-
NAs that could inhibit the “ECM-receptor interaction”
and “focal adhesion” pathways by directly targeting switch
genes involved in them, and thus promoting cancer inva-
sion and migration.

Similar to the above, we performed the same enrich-
ment analysis for the experimentally validated miRNA-
target interaction and once again the miR-26 family
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and the miR-144-3p appear as the top-ranked miRNAs
(Fig. 10Db).

Topological relevance of fight-club hubs and switch genes

in glioblastoma correlation networks

In order to test the topological relevance of nodes in the
GBM correlation network with respect to the overall net-
work connectivity, SWIM evaluated the effect of their
random/targeted removal on the average shortest path
(see step 6 of SWIM software subsection of Methods).
In particular, SWIM investigated whether fight-club, date,
and party hubs as well as switch genes have distinct topo-
logical properties by evaluating the effects produced on
the glioblastoma correlation networks upon their dele-
tion (Fig. 11). Strikingly, the removal of the first 40% of
fight-club hubs (i.e. the top-seventy in the ranked list of
fight-club hubs sorted by decreasing degree), which corre-
sponds to only 10% of the total nodes, produces a drastic
increase of the average shortest path presumably indicat-
ing a very rapid disintegration of the network into multiple
components (Fig. 11a). This beahvior is very similar to
the effect caused by the deletion of the same percentage
of date hubs that are known to be higher-level connec-
tors between groups [32, 59]. On the contrary, the random
removal of nodes does not effect the integrity of the
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network letting almost unchanged the average shortest
path.

Evaluating the contribute of switch genes to the robust-
ness of the network, we found the same behavior observed
on the deletion of fight-club hubs (Fig. 11b) and the same
drastic effect upon removal the first 40% of switch genes,
as expected because 98% of them are switch genes. This
crucial subset of switch genes encompasses FLNB, ITGA3,
MET, THBS1, VEGFC, thus resulting enriched in “ECM-
receptor interaction” and “focal adhesion” pathways, and
also FOSL1, whose function is related to these pathways
and which we acclaimed as the most promising GBM
switch gene.

To further strengthen the topological relevance of
switch genes, we divided the GBM network in densely
connected subgraphs and we found that the above-
mentioned crucial subset of switch genes falls in the
most locally dense module (Fig. 12). All these findings
point to a crucial role of “ECM-receptor interaction” and
“focal adhesion” pathways in the GBM regulatory network
through the switch genes directly or indirectly associated
to them.

Discussion

Nowadays, the GBM research scene is dominated by try-
ing to discover novel therapeutic and prognostic markers
promoting the differentiation of cancer stem-like cells,
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which severely halts cancer growth and might affect the
therapeutic outcome. Although the adjusted p-values for
multiple testing didn’t reveal any statistically significant
association (p-value < 0.05) of switch genes with patient
survival, the transcription factor FOSL1 fulfills very inter-
esting features that make it eligible as new potential thera-
peutic target. In particular: it was found to act as repressor
transcription factor [49]; it resulted down-regulated in
stem-like cells; it resulted highly negatively correlated
with the 4-core TFs that were resulted all up-regulated
in stem-like cells; the promoter regions of the 4-core
TFs were found to harbor a consensus binding motif for
FOSLL1. Taken together these considerations prompt us to
bet on FOSL1, which can promote the differentiation pro-
cess of GBM stem-like cells by repressing the 4-core TFs.
This should allow for anticipation of care as well as the
reduction of the social impact of diseases and the restraint
of health costs.

Conclusion

Although our study can be considered as a starting
point, and further functional and clinical investigations
are needed, the switch gene signatures and their nearest
neighbor genes can improve our knowledge of the cellu-
lar events that are crucial for carcinogenesis and they also
reveal many potential prognostic and novel therapeutic
targets that have so far not been linked to glioblastoma.
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Thus, using SWIM could provide important clues that will
stimulate research activities into the causes of this ter-
rible disease thus supporting the planning of healthcare
services such as clinical trials and disease prevention.

Additional files

Additional file 1: Table. GBM differentially expressed genes for Schulte et al.
dataset [25]. The table reports the list of the statistically significant
(adjusted p-value < 0.05) DEGs in Official Gene Symbols identified by
SWIM in human GBM dataset analyzed in the present study; the p-values
resulted from an unpaired two-tailed Student t-test; the adjusted p-values;
the fold-change values; the DEGs expression direction (up/down in GSf
and tumors); the percentage of the up- and down-regulated DEGs in a pie
chart visualization. (XLSX 76 kb)

Additional file 2: Table. GBM correlation network for Schulte et al. dataset
[25]. The table reports the co-expression network of DEGs identified by
SWIM in GBM dataset analyzed in the present study. Source nodes, target
nodes and their interaction (Pearson correlation) are listed. (XLSX 1930 kb)

Additional file 3: Table. Roles of nodes in GBM correlation network for
Schulte et al. dataset [25]. The table contains the following columns.
nodeName: the names of the nodes of the correlation network (Official
Gene Symbol); hub: it specifies if the nodes of the heat cartography map
are (or are not) local hubs within their community; Region: it specifies the
region of the heat cartography map to which each node belongs; Type: it
specifies for each node of the heat cartography map its universal role; Kp:
values of the clusterphobic coefficient parameter Ky ; zg: values of the
within-module degree parameter z5; APCC: the average of the Pearson
correlation coefficients between the expression profiles of a node and
those of its interaction partners in the heat cartography map; Degree: the
degree for each node in the heat cartography map; Date-Party: if the node
of the heat cartography map is either a date or party or fight-club hub or if
itis not a local hub in its community. (XLSX 64 kb)

Additional file 4: Figure. Scree plot for the choice of the k-means number
of clusters. The x-axis represents the number of clusters, while the y-axis
represents the sum of the squared error (SSE). The SSE is computed as sum
of the distance of each object to its closest centroid and the number of
clusters is chosen on the basis of the elbow position. (TIF 124 kb)

Additional file 5: Table. GBM switch genes identified by SWIM for Schulte
et al. dataset [25]. The table reports: the list of the switch genes in Official
Gene symbol; the adjusted p-values; the fold-change values; their
expression direction (up/down in GSf and tumors). (XLSX 16 kb)

Additional file 6: Table. Switch genes functional annotations and
molecular type. The table is composed of three sheets reporting: the list of
the switch genes in Official Gene symbol together with their GO term
annotations provided by BioMart [60], whenever available; an indication of
their molecular type (protein coding, non-coding or miRNA) obtained from
Ensembl annotations of the human genome (GHCR38 version), whenever
available; the list of switch genes characterized by a transcription factor
activity. The TFs annotated for nervous system related processes are
highlighted in yellow. (XLSX 87 kb)

Additional file 7: Table. Switch genes negatively interacting with four
core TFs. The table reports the list of switch genes that are simultaneously
anti-correlated with OLIG2, POU3F2, SALL2, and SOX2. (XLSX 7 kb)

Additional file 8: Table. Kaplan-Meier survival analysis. The table reports
the list of the switch genes, the p-values resulted from log-rank test, and
the adjusted p-values (FDR) for multiple testing. The list is sorted by
increasing p-values. The file reports the 161 switch genes out of 171, whose
expression data were available on TCGA Data Portal Release 10.0
(December 2017). (XLS 10 kb)

Additional file 9: Table. Enrichment analysis of miRNA-target interactions
among switch genes. The table reports miRNA families found to be
enriched in the lists of switch genes, based on the miRNA-target
interactions computationally predicted by TargetScan (sheet 1) and
experimentally validated by miRTarBase (sheet 2). The miRNA families are

sorted according to the increasing p-values. (XLSX 159 kb)
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