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ABSTRACT An integrative analysis focused on multi-tissue transcriptomics has not been done for asthma.
Tissue-specific DEGs remain undetected in many multi-tissue analyses, which influences identification of
disease-relevant pathways and potential drug candidates. Transcriptome data from 609 cases and 196 con-
trols, generated using airway epithelium, bronchial, nasal, airway macrophages, distal lung fibroblasts,
proximal lung fibroblasts, CD4+ lymphocytes, CD8+ lymphocytes from whole blood and induced sputum
samples, were retrieved from Gene Expression Omnibus (GEO). Differentially regulated asthma-relevant
genes identified from each sample type were used to identify (a) tissue-specific and tissue–shared asthma
pathways, (b) their connection to GWAS-identified disease genes to identify candidate tissue for functional
studies, (c) to select surrogate sample for invasive tissues, and finally (d) to identify potential drug candidates
via connectivity map analysis. We found that inter-tissue similarity in gene expression was more pronounced
at pathway/functional level than at gene level with highest similarity between bronchial epithelial cells and
lung fibroblasts, and lowest between airway epithelium and whole blood samples. Although public-domain
gene expression data are limited by inadequately annotated per-sample demographic and clinical in-
formation which limited the analysis, our tissue-resolved analysis clearly demonstrated relative importance of
unique and shared asthma pathways, At the pathway level, IL-1b signaling and ERK signaling were significant
in many tissue types, while Insulin-like growth factor and TGF-beta signaling were relevant in only airway
epithelial tissue. IL-12 (in macrophages) and Immunoglobulin signaling (in lymphocytes) and chemokines (in
nasal epithelium) were the highest expressed pathways. Overall, the IL-1 signaling genes (inflammatory) were
relevant in the airway compartment, while pro-Th2 genes including IL-13 and STAT6 were more relevant in
fibroblasts, lymphocytes, macrophages and bronchial biopsies. These genes were also associated with
asthma in the GWAS catalog. Support Vector Machine showed that DEGs based on macrophages and
epithelial cells have the highest and lowest discriminatory accuracy, respectively. Drug (entinostat, BMS-
345541) and genetic perturbagens (KLF6, BCL10, INFB1 and BAMBI) negatively connected to disease at
multi-tissue level could potentially repurposed for treating asthma. Collectively, our study indicates that the
DEGs, perturbagens and disease are connected differentially depending on tissue/cell types. While most of
the existing literature describes asthma transcriptome data from individual sample types, the present work
demonstrates the utility of multi-tissue transcriptome data. Future studies should focus on collecting
transcriptomic data from multiple tissues, age and race groups, genetic background, disease subtypes
and on the availability of better-annotated data in the public domain.
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While asthma is primarily recognized as a disease involving the lungs
it has been increasingly understood to represent a systemic disease
consisting of networks between various tissue/organs and associated
with nasal, sinus, skin or allergic gastro-intestinal diseases which
all exhibit inflammatory changes involving a broad spectrum of

structural cells, adaptive and innate immune cells and circulating
or tissue effector cells (Bjermer 2007). Crosstalk between upper and
lower respiratory airways and other tissues, through inflammatory
mediators, leads to systemic propagation of inflammation in multiple
tissues resulting in disease progression. Genes differentially regulated
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in disease vs. control tissues can be used to explore the connectivity
between disease, gene expression and perturbagens (candidate ther-
apeutic agents) (Lamb et al. 2006). Previous gene expression studies
have utilized biological samples from bronchial and alveolar mac-
rophages, upper and lower airway epithelial cells and peripheral
whole blood or other circulating blood cells to identify genes differ-
entially expressed in asthma compared to healthy controls (Tsitsiou
et al. 2012; Kicic et al. 2010; Choy et al. 2011). Although these studies
produced lists of differentially expressed genes (DEGs), there tends to
be little or no overlap among the lists of genes obtained using different
tissues/cells suggesting disease-associated genes are likely to show
tissue-specific expression patterns (Lage et al. 2008; Reverter et al.
2008). Most gene expression studies so far reported tissue combined
approaches. Such an approach largely ignored the inherent gene
expression heterogeneity of tissues/cells, and highly expressed genes
rather than biologically relevant genes (but are too small to be
detected in tissue-combined analysis) may be lost and potentially
remain under-defined. Therefore, a tissue/cell-based gene expression
analysis is necessary to track real driver genes and reduce potential
confounders produced due to highly expressed genes from tissue/cell
types. Thus, the analyses of genome-wide gene expression data
originating frommultiple tissue types would be helpful to understand
tissue-specific or tissue-shared differentially regulated asthma genes.
As the availability of genome-wide gene expression datasets has
grown across major publicly data repositories, there is an increased
interest to systematically mine these resources to identify novel
patterns (Ramasamy et al. 2008).

In this study, we analyzed gene expression datasets available from
GEO that were generated using multiple tissue/sample types (e.g.,
blood, lymphocytes, upper and lower airway epithelial cells, lung
biopsies, fibroblasts, macrophages and induced sputum) obtained
from asthma patients and matched controls in order to obtain a
tissue-resolved perspective of differentially regulated asthma-relevant
genes and biologic pathways. This study has potential to (i) identify
biomarkers from easily accessible non-invasive samples (e.g., induced
sputum) as surrogates for invasive, difficult to collect samples, (ii)
connect GWAS-identified candidate genes to genome-wide gene
expression results in asthma and (iii) identify potential therapeutic
compounds for asthma based on tissue-specific and tissue-shared
gene expression. In the current study we have used DEGs identified
from different tissue/ sample types to select candidate perturbagens
via Connectivity Map (CMAap), which currently covers. 1309 com-
pounds connected with 7000 expression profiles.(Wang et al. 2015)
This approach can identify drugs that affect the expression of
common genes and identify candidate that could be potentially
repurposed for systemic management of asthma (Ravindranath
et al. 2015). However, how DEGs identified from different tissue/
sample types can potentially modify the list of perturbagens identified
from CMAP analysis remains to be elucidated. Since DEGs vary

across asthma-relevant tissue types, a better understanding of tissue-
specific/ -shared DEGs underlying asthma may lead to the develop-
ment novel drug candidates for to treat asthma.

MATERIALS AND METHODS

Gene expression datasets description
Data used in this study were retrieved from the publicly accessible
Gene Expression Omnibus (GEO) database at the NCBI (http://
www.ncbi.nlm.nih.gov/geo/) (Barrett et al. 2013; Edgar et al.
2002). We used the query terms “human [organism] AND asthma
AND 2000/01:2019/06[Publication Date] to retrieve datasets from
transcriptome studies comparing samples from multiple tissues
(Figure 1) asthma patients with those of healthy individuals. Each
individual dataset underwent consistent handling similar to when it
was uploaded to GEO by the original study groups (preserving
original normalization protocols, to maintain consistency with pub-
lished reports).The following information was extracted from each
study: (1) GEO accession, (2) sample type, (3) platform, (4) numbers
of asthmatic and control individuals (Table 1). In total, 568,930
probes covering 25,000 genes were extracted for the analysis. The
following asthma transcriptome data from the sample types were
considered:

Nasal epithelial cells (NECs): Nasal epithelial cells were obtained
by nasal brushing. Six asthmatics and 6 healthy controls were
used (GSE44037). NECs are of particular interest for studies in
children due to their easy accessibility during clinical visits (Poole
et al. 2014).

Airway epithelium: Airway epithelial gene expression data were
obtained from GSE4302 (asthmatics= 10, controls = 10) and
GSE18965 (asthmatics= 9, controls = 7). Subjects using inhaled med-
ication or tobacco smoke have been removed from our analysis.

Bronchial biopsy: Data were obtained from asthma (n = 4) and
control (n = 4) subjects (GSE15823) and asthma (n = 4) and control
(n = 4) subjects (GSE41649). Data related to treatment outcome was
not included. The samples typically contained mucosal and epithelial/
sub-epithelial tissue (0.3 mm2 to 0.5 mm2) (Laprise et al. 2004; Choy
et al. 2011; Chamberland et al. 2009; Labonté et al. 2008). Bronchial
epithelium is a source of cytokines and chemokines which plays a
key role in recruitment of inflammatory cells into tissues from the
circulation.

Proximal airway fibroblasts: We used asthmatic (n = 8) and control
(n = 4) subjects (GSE27335) involving fibroblast samples obtained by
bronchoscopy. Proximal airway fibroblasts are known to synthesize
more collagen and eotaxin-1 than distal fibroblasts. Fibroblasts play
key roles via an IL-13 induced mechanism involving TGF-b1 and
MMPs leading to and lung remodeling in asthma (Ingram et al. 2011).

Distal airway fibroblasts:Matched case-control distal lung fibroblast
pairs were isolated from above-mentioned subjects’ distal lung from
GSE27335 (asthmatics= 8, controls = 4). Distal lung fibroblasts
exhibit a distinct phenotype, proliferate faster and express higher
levels of a-smooth muscle actin compared to proximal airway
fibroblasts. Distal airways demonstrate distinctly different fibrotic
property compared to the proximal segments. Excessive deposition of
extracellular matrix is particularly prominent in the proximal parts
compared to proximal airways.
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Alveolar macrophages (AMs): Two GEO datasets GSE22528 and
GSE2125 have been used for the present study which allowed us to
utilize transcriptome data containing 10 cases and 223 controls, and
30 cases and 547 controls respectively. To generate transcriptome
data, AM cells from broncho-alveolar lavage fluid of asthmatics and
control subjects were used to perform homogeneity checks by flow
cytometry prior to RNA isolation and microarray experiments
performed by the investigators. Alveolar macrophages constitute a
unique subset of pulmonary macrophages, which serve as a first line
of defense against foreign invaders to the lung tissue.

Blood and lymphocytes: Dataset GSE69683, which includes asth-
matics (n = 399; severe and non-severe) and non-asthmatics (n = 101)
excluding smokers, were used for this analysis. GSE 31773 was also
used to identify asthma associated DEGs from CD4+ and CD8+
lymphocytes. This dataset was generated using CD4+ and CD8+
T cells isolated from peripheral blood of asthmatics (N = 18) and
controls (N = 8) by negative selection and magnetic cell separation
procedures followed by purity assessments using flow cytometry.
Blood contains plasma and corpuscles, each paying multiple roles in
inflammation. Peripheral blood mononuclear cells (PBMC) consist of
lymphocytes (T cells, B cells, NK cells) and monocytes. TH2 cells
represent a phenotype of T lymphocytes that upon activation gen-
erate IL-4, IL-5 and IL-13 cytokines in both peripheral blood and
bronchial mucosa of asthma patients, leading to local tissue eosin-
ophilia, generation of specific IgE antibody responses and airway
hyperresponsiveness/ inflammation.

Induced sputum: We obtained transcriptomic data from GSE76262
which was generated using sputum cells collected from asthmatics
(n = 118) and matched healthy controls (n = 21). Induced sputum is
an easily accessible non-invasive approach for obtaining cellular
(epithelial cells, eosinophils, lymphocytes, neutrophils and macro-
phages) and non-cellular (cytokines, chemokines and other secreted
products/ inflammatory mediators) components from the lower re-
spiratory tract.

Analysis workflow
The workflow for data analysis is illustrated in Figure 2. Genome-
wide transcription data obtained from the seven different tissues/cell
sample types include airway epithelial, bronchial biopsy, nasal

epithelial, alveolar macrophages, distal lung fibroblasts, proximal
lung fibroblasts, CD4+ lymphocytes, CD8+ lymphocytes, whole
blood and induced sputum. Tissue-specific and tissue-combined
analyses were performed to identify differentially expressed genes.

The transcriptome datasets underwent careful quality control. If a
single GEO dataset contained data from multiple tissues/ sample
types (e.g., GSE31773 contains CD4+ and CD8+ cells and GSE27335
contains proximate and distal macrophages), such datasets were
further divided based on tissue/sample types. This generated 13 data-
sets, each with cases and controls, for downstream analysis (Table1).
Finally, data from subjects on asthma medication that could poten-
tially change the gene expression were also removed.

Probe level analysis
Each dataset was downloaded from GEO for further tissue-specific
analysis. Differentially expressed genes were identified for each in-
dividual dataset at the probe level using limma R packages from the
Bioconductor project (https://www.bioconductor.org/). Genes in
each dataset were arranged by statistical significance. Among the
top DEGs based on p-value, those showing a fold-change of 1.5 (up-
or down-regulated) were considered for further analysis.

Gene-level overlap between tissue/cell types
The probe IDs are mapped to NCBI generated annotations, which is
available from the UCSC genome browser site. Annotations such as
gene symbol and gene title are derived by extracting stable sequence
identification information from the platform and periodically que-
rying against the Entrez Gene and UniGene databases to generate
consistent and up-to-date annotation. Then, the transcripts showing
transcript IDs that did not have a corresponding gene symbol were
exported to DAVID (http://david.abcc.ncifcrf.gov/home.jsp) for gene
ID conversion (Huang et al. 2009a, 2009b).

Support vector machine (SVM) model
SVM is one of the most popular supervised learning methods for
analyzing data and recognizing patterns.(Fekete et al. 2012) The
objective of the support vector machine algorithm is to find a
hyperplane that classifies data points (potentially case vs. control).
Given labeled training data (supervised learning), the algorithm
generates an optimal hyperplane that can be used to categorize
new datapoints. SVM therefore represents a powerful technique

Figure 1 Asthma transcriptome data sources. Case
and control gene expression datasets obtained from
nasal epithelial cells, airway epithelial cells, bronchial
biopsies, peripheral blood, CD4+ and CD8+ lympho-
cytes, airway macrophages, proximal and distal fi-
broblasts and induced sputum were used for the
current study.
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for general (nonlinear) classification, regression and outlier de-
tection and has been widely used in bioinformatic applications
such as finding signature transcripts. The SVM function in R
package e1071 was used to build the statistical prediction model
with C-classification and radial kernel, where the parameters were
tuned to give the best prediction results.(Lepre et al. 2013)

Since individual tissue/ cell type can be associated with mul-
tiple gene expression datasets from different studies that used
different microarray platforms, probe level information was
mapped to gene level in order to aggregate differentially expressed
asthma genes within tissue/cell types. This procedure was done for
each dataset. DEGs at gene level were taken as the probe with the
smallest p-value. The ‘RobustRankAggreg’ package (a powerful
rank-based data aggregation tool capable of combining ranked
lists coming from different sources and platforms such as different
microarray chips) of the R software was then used to combine and
establish a consensus rank of DEGs per tissue at the gene level
(Pihur and Datta 2009). SVM was used to ascertain whether top
molecular profiling ‘signature’ genes can be used to discriminate
asthma patients from controls in various tissue types. For each
dataset, we randomly select about 4/5 of the sample as the training
dataset and the rest as the testing dataset. We used the top ranked
DEGs in each training dataset to build an SVMmodel with 10-fold
cross-validation and test it in the testing dataset. The prediction
accuracy and kappa coefficient were reported in both the training
and testing datasets.

Pathway and regulatory network analysis
Differentially expressed genes by tissue/cell types between asthma
patients and normal controls were further investigated using In-
genuity Pathway Analysis (IPA) software (Qiagen, USA). The IPA
methodology compares proportional representation of genes from a
defined test set in a canonical pathway (a known, well-characterized
pathway), compared to the proportional representation of the path-
way genes in the entire set of known genes. The p-value is calculated
using a right-tailed Fisher Exact test and indicates the likelihood of
the pathway association under the randommodel. Pathway/networks
with a score.2 have.99% confidence that the genes included in the
network are not generated by chance. The score represents a nu-
merical value to rank networks according to their level of relevance to
the ‘Network Eligible’ molecules in the dataset considering the
number of ‘Network-Eligible’ molecules within the network and
its size, as well as the total number of ‘Network-Eligible’ molecules
analyzed and the total number of molecules in the Ingenuity

Knowledge Base that could potentially be included in networks.
Finally, the networks are ordered according to their score, with
the highest scoring network displayed at the top. The network Score
is based on the hypergeometric distribution and is calculated with the
right-tailed Fisher’s Exact Test.

Linking DEGs with asthma genes identified from
GWA Studies
There were 25 asthma studies resulting 38 genomic regions from
GWAS Catalog (accessed July 2019).(Hindorff et al. 2009). Inclusion
of asthma GWAS catalog-based associations was limited to those
studies with P values of less than 5x1028 (http://www.ebi.ac.uk/gwas/).
Asthma-relevant genes were also identified from published litera-
ture using literaturelab (Accumenta, USA)(Febbo et al. 2007). Gene
level expression of asthma-relevant genes was averaged over cases or
controls in each dataset and correlation coefficients were calculated
across datasets, which was used to run hierarchical clustering to
identify groups of tissue/cell types that cluster more closely than
others.

Connectivity Map (CMap) analysis using tissue-
specific DEGS
Next, we used Connectivity Map (CMap) analysis approach to
explore potential drugs targeting asthma by systematically mining
functional connections between asthma disease, DEGs, and pertur-
bagens (Lamb et al. 2006). Differentially expressed genes were divided
into two parts, one for upregulation and the other for downregula-
tion. The CMap analysis was performed through the web interface
CLUE (https://clue.io/), a cloud-based platform was used to analyze
perturbation-driven gene expression signatures, following a standard
protocol described by Wang et al.(Wang et al. 2019; Subramanian
et al. 2017). Briefly, the “Query” and “Touchstone” applications of
CLUE were used to identify reciprocal connectivity (negative corre-
lation) between asthma and perturbagens where up- and down-
regulated genes were used inversely as inputs to identify negative
correlation (Wang et al. 2019) (Lex et al. 2014). CMap instance was
measured by an enrichment score, which ranged from21 to 1, and a
permutation P-value. For the current analysis, any connectivity score
of below -0.85 or above 0.85 was considered for this analysis
(Subramanian et al. 2017).

Data availability
The data supporting this work is publicly available from NCBI
GEO (Gene Expression Omnibus): https://www.ncbi.nlm.nih.gov/gds/?

n■ Table 1 Summary of transcriptomics datasets used for the present study. NCBI Gene Expression Omnibus (GEO) accession number,
tissue/cell sample type, platform, sample size (excluding smokers and subjects using inhaled corticosteroids) have been shown for each study

Sample type GEO ID Tissues/cell types Platform Case Control

I Airway Epithelium GSE4302 Airway epithelial cells Affy HG-U133 10 10
II Airway Epithelium GSE18965 Airway epithelial cells Affy HG-U13A 9 7
III Bronchial Biopsy GSE15823 Endobronchial biopsies HG_U95 4 4
IV Bronchial Biopsy GSE41649 Endobronchial biopsies HG-U133 4 4
V Macrophages GSE22528 Alveolar macrophages Affy HG-U133 4 4
VI Macrophages GSE2125 Alveolar macrophages Affy HG-U133 15 15
VII Fibroblasts GSE27335 Proximal airway fibroblasts Agilent 8 4
VIII Fibroblasts GSE27335 Distal lung fibroblasts Agilent 8 4
IX Lymphocytes GSE31773 CD4+ T-cells Affy HG-U133 12 8
X Lymphocytes GSE31773 CD8+ T-cells Affy HG-U133 12 8
XI Nasal Epithelial GSE44037 Nasal epithelial cells Affy HG-U133 6 6
XII Whole blood GSE69683 Peripheral Blood Affy HG U133 411 84
XIII Induced sputum GSE76262 Induced sputum (whole) Affy HG U133 118 21
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term=asthma. Supplemental material available at figshare: https://
doi.org/10.25387/g3.11935959.

RESULTS

Tissue-combined and tissue-resolved approaches
Tissue/ cellular samples used in this study included airway epithelial
cells, bronchial biopsy, alveolar macrophages, peripheral blood,
purified peripheral blood CD4+ lymphocytes, CD8+ lymphocytes,
proximal lung fibroblasts, distal lung fibroblasts, induced sputum and
nasal epithelium samples (Table 1). In an initial tissue-aggregated
assessment (tissue-combined approach), top significant transcripts
showed an inability to discriminate between normal and asthma
subjects (Supplementary Figure S1A) by Principal Component Anal-
ysis (PCA) indicating the importance of tissue- specific analysis in
asthma. Tissue-resolved analysis approach was therefore followed
subsequently. Tissue-specific differentially expressed signature genes
(number ranged from 126 to 1060) were then obtained for each
of the seven tissues. Significant genes showing absolute fold change
values of 1.5 or higher were considered for further analysis.

When the data were analyzed tissue by tissue (tissue-resolved
approach), a clear distinction between normal and asthma subjects
was observed. The lowest differentially expressed gene count was
observed in bronchial biopsy tissues (173 DEGs) while the highest
was observed in the nasal biopsy tissue (1320 DEGs). PCA showed
clear separation of asthmatics from controls in tissue specific analysis
(Supplementary Figure S1 B-D). Jaccard similarity index was used to
determine similarity between various tissues, nasal and airway epi-
thelial cells show the highest (0.61) while CD4+ lymphocytes and
Bronchial biopsies (0.01) showed the lowest Jaccard similarity index,
respectively. Differentially expressed genes were identified from datasets
representing multiple sample types consisting of tissues (e.g., airway
epithelial, bronchial, nasal) and isolated cells (e.g., CD4+ lymphocytes,

CD8+ lymphocytes, macrophages, isolated fibroblasts). Figure 3A and 3B
demonstrate the overlap of DEGs identified from tissue and cellular
samples, respectively. Differentially expressed genes identified from
different tissue types were compared to obtain tissue-specific and
tissue-shared genes and pathways relevant for asthma as described below:

Airway epithelial samples: In airway epithelial tissue, increased
expression of the chloride channel calcium-activated, family member
1 (CLCA1) (6.2 fold), periostin (4.4 fold), and serine peptidase
inhibitor clade B member 2 (SerpinB2) (also known as plasminogen
activator inhibitor-2) (3.5 fold) was observed. Originally described as
a calcium-activated chloride channel, CLCA1 likely functions in-
directly in chloride transport and has previously been reported to be
up-regulated in asthma. Periostin is an integrin ligand and extracel-
lular matrix protein with roles in cell adhesion, cell motility, and
matrix remodeling. SerpinB2 is a member of the serpin class of
proteases and functions to inhibit plasminogen activation and to
promote fibrin formation and deposition. Among the other most
differentially expressed genes in lung airway epithelial brushings were
three mast cell markers: carboxypeptidase A3 (3.4 fold induced),
tryptase b2 (2.2 fold induced), and tryptase a/b1 (2.1 fold induced).

The transforming growth factor beta (TGF-b) signaling pathway
seems to play a major role in the manifestation of asthma, most
notably in the airway remodeling process. TGF-b stimulates fibro-
blasts to synthesize and secrete proteins of the extracellular matrix in
patients with severe asthma may induce smooth-muscle hypertrophy
(Ohno et al. 1996; Cohen et al. 2000). In addition to the TGF-b
pathway, extracellular signal regulated kinase (ERK) plays a major
role in airway smooth muscle activity by virtue of its upstream
activation of cyclin D1 promoter activity which is required for
DNA synthesis in airway smooth muscle cells (Ramakrishnan et al.
1998; Zhou and Hershenson 2003). Consistent with this observation
that ERK is critical for signaling of airway smoothmuscle cell activity in

Figure 2 Major steps to identify and analyze tissue specific asthma gene expression data. Individual datasets were obtained from GEO.
Differentially expressed asthma-relevant genes identified from each tissue types were used to find tissue/ cell-specific genes and networks,
and discriminatory gene-sets to classify samples into normal vs. asthma classes and to predict asthma disease state. In addition, differentially
expressed genes identified from each sample/ tissue type were linked with GWAS catalog data and Connectivity Map resources to identify novel
drug candidates.

Volume 10 November 2020 | Tissue-Specific Transcriptomic in Asthma | 4053

https://www.ncbi.nlm.nih.gov/gds/?term=asthma
https://doi.org/10.25387/g3.11935959
https://doi.org/10.25387/g3.11935959


asthma, bronchoalveolar lavage fluid from asthma patients has been
shown to augment ERK activation, increase cyclin D1 protein abun-
dance, DNA synthesis, and proliferation of cultured human airway
smooth muscle cells (Naureckas et al. 1999). One very significant
finding is the upregulation of the estrogen pathway in the airway
epithelium of asthma patients. Estrogen receptors are found on
numerous immunoregulatory cells and estrogen’s actions skew im-
mune responses toward allergy. The role of estrogen receptor in
asthma is being increasingly recognized. For example, the G-protein-
coupled estrogen receptor agonist has been found to suppress airway
inflammation through IL-10 in a mouse model of asthma.

Lymphocytes: DEGs unique to CD4+ and CD8+ cells as well as
common DEGs were analyzed. The top up-regulated genes were
related to bacterial resistance, solute transport and calcium signaling.
While asthma involved pathways like NFAT in regulation of the
immune response and other lymphocyte activation pathways in-
cluding signaling through IL-4, IL-8, IL-3 and IL-9 in CD8+ cells,
the most prominent pathway in CD4+ cells was VDR/RXR activation
signaling. Activation of ERK pathway was also noted to be the top
common pathway in lymphocytes, followed by Immunoglobulin
synthesis and inflammatory cytokine synthesis pathways.

Macrophages: The two datasets generated using bronchial macro-
phage cells, showed that ERK was the main regulatory network. In an
individual study, Madore et al. identified differentially expressed
asthma genes related to stress and immune responses using airway
macrophage cells obtained from asthma and healthy controls
(Madore et al. 2010).

Fibroblasts: The fibroblast transcripts focused on the differences in
gene expression between distal and proximal fibroblasts. Distal Lung
Fibroblasts exhibited a higher basal activation of SMAD3 andMAPK8
compared to its proximal counterpart.

Nasal epithelial cells: Nasal epithelial cell samples revealed CCL
chemokines as the most biologically relevant DEG candidates exhib-
iting higher expression in asthma patients and were associated
with increased eosinophil and monocyte chemotaxis. In addition
to prominent eosinophilic inflammation, increased IL1RL1 expression
was also found.

Tissue-shared DEGs, the multi-tissue factors: The ATXN2 gene was
significantly upregulated in airway epithelial brushing, bronchial
biopsies and proximal as well as in distal lung fibroblasts. Interest-
ingly, a variant of this gene was recently found to be associated with
compromised lung function (Wain et al. 2017; Soler Artigas et al.
2015). In addition, upregulation of the integrin ITGB1 at the mRNA
level has been demonstrated in airway smooth muscle cells in the
asthma model group (Álvarez-Santos et al. 2016). The integrins are
important cell surface adhesion receptors that recognize extracellular
matrix components known to be altered in airway cells in asthma.
Intrinsic differences specifically related to proliferation, differentia-
tion, and migration contribute to the dysregulated bronchial epithe-
lial cell response to injury.

Functional enrichment, pathway-level overlap
and networks
In order to gain further insight into the functional significance of
tissue-specific and/or shared DEGs, a gene set enrichment analysis
based on gene ontology annotations was performed. Immune sys-
tem process and cell adhesion were the GO terms that were over-
represented (8 genes each) within our list of DEGs. Interestingly, out
of the 8 genes representing an immune system process, only
4 (ALOXA15, ITGB2, CD44 and EDNRA) had previously been
associated with asthma. The differentially expressed genes between
asthma and controls in each tissue type were used to identify gene
networks by the IPA software application. Two gene networks were
identified with a network score of .2. The highest scoring network

Figure 3 Gene-level overlap: Venn diagram showing overlap of differentially regulated genes identified from tissue samples (A; airway epithelial,
bronchial, nasal and whole blood samples) and isolated cellular samples (B; lymphocytes, fibroblasts and macrophages). There is considerable
overlap at the gene-level between airway epithelial and bronchial biopsy samples. However, each sample type shows a unique asthma-relevant
gene expression pattern; DEG sharing is not observed between all samples. Top significant tissue/ cell-specific DEGs (red up-regulated, blue
down-regulated) have been shown for each sample type.
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had a network score of 21 and was associated with the network
functions of cellular movement, immune cell trafficking and in-
flammatory response. Figure 4A and 4B demonstrate the overlap
of enriched pathways in tissue and isolated cellular samples in
asthma.

Pathway analysis identified autophagy, VEGF (vascular endothe-
lial growth factor) Signaling, Paxillin Signaling, Actin Cytoskeleton
Signaling and ERK5 Signaling as the top canonical signaling pathways
in lower airway epithelial samples. Interestingly, VEGF Signaling, has
been designated as a very important pathway in asthma by inducing
remodeling and enhancing TH2-mediated sensitization and inflam-
mation in the lung (Lee et al. 2004). Paxillin and actin cytoskeletal
signaling have been found to be important for bronchial tissue
contraction and airway remodeling in asthma. However, thus far,
the role of the Pax gene (encoding paxillin protein) in asthma has not
been sufficiently explored. Analysis of the lymphocyte data using IPA
pathway analysis tool indicated that activation of multiple pathways
related to T-cell activation, inflammatory cytokine and immunoglob-
ulin synthesis were important. In lymphocytes, IgE synthesis, cyto-
kine signaling, and ERK-mediated cell proliferation have been found
to be the major driving factors for asthma. For macrophages, pathway
and network analysis identified IL-12 and ERK as the major hub
genes or nodal genes indicating the role of sustained inflammation via
the IL12 pathway and control of cell proliferation via the ERK
pathway. For fibroblast samples, the up-regulation of extracellular
matrix-associated molecules, actin binding and cytoskeletal protein
molecules has been previously reported in proximal and distal lung
fibroblasts respectively. Genome-wide gene expression differences
between these two populations of regional lung fibroblasts might
explain different responses to cell injury, cell regeneration, and sub-
sequent airway remodeling in the lung. We noticed that top significant
asthma-relevant networks are distinctly different between airway mac-
rophages, proximal lung fibroblasts and distal lung fibroblasts of
asthmatics indicating that although all of these samples were obtained
from airway compartment they demonstrate different asthma-relevant
genes and networks (Supplementary Figure S2).

Interestingly, although epithelial gene expression patterns differ
between nasal and bronchial samples, they exhibit significant sim-
ilarities at the functional level. For example, the genes CTSC,
ELAVL2, IL13RA2, IL1R2, IRX4 had higher expression in nasal
compared to bronchial epithelium, but both demonstrated activated
functional clusters important for cell-mediated immune responses,
hematological system development and function as well as immune
cell trafficking.

We also compared the pathway-level overlap between samples to
assess whether easily accessible sample types (such as nasal epithe-
lium and induced sputum) could be used as surrogates for more
invasive sample types (such as airway epithelial brushing and bron-
chial biopsy sample). Airway epithelium can be partially represented
by the nasal samples, rather than from induced sputum which might
partially represent bronchial samples at the pathway-level indicating
the significance of easily accessible samples as surrogates for less
accessible clinical samples (Supplementary Figure S3). Therefore, the
nasal epithelial cells are easier to obtain and may act as a surrogate for
airway epithelium (calculated Jaccard coefficient = 0.43) in asthma
studies as previously indicated (McDougall et al. 2008).

Linking tissue-specific DEGs with asthma GWA studies
To further assess the inter-tissue expression differences of asthma-
relevant genes we analyzed the expression of asthma-associated genes
identified from GWAS and from published asthma literature. GWA
studies have identified many genetic variants associated with com-
plex diseases like asthma. However, gene regulatory architectures
differ between tissues, and the enrichments for regulatory variants
among GWAS SNPs are more pronounced in disease-relevant tissues
(Roadmap Epigenomics Consortium et al. 2015). Thus the relevance
of significant GWAS loci in altering biological processes (such as
up/down regulated genes, biological process, functions and networks)
that result in risk for or protection from the disease remains to be
a key question, which requires access to the disease tissues of inter-
est (Koester and Insel 2016). Immunoglobulin genes and IL-1
signaling pathways, which are key regulatory pathways in asthma,

Figure 4 Pathway-level overlap in tissue (A) and isolated cellular level (B) samples: Argenase pathway, Th1/Th2 signaling, VEGF signaling and
Inflammation and Aryl hydrocarbon pathways were most predominant on blood, biopsy, airway epithelial and nasal samples respectively. EIF2
signaling was relevant for macrophages and proximal fibroblasts, while lymphocyte extravasation (adhesion and diapedesis), IL6 pathway and IL-8
signaling pathways were very relevant for CD4+, distal lung fibroblasts and CD8+ cells respectively. In addition, Glucocorticoid Receptor Signaling,
Clathrin-mediated Endocytosis Signaling were top significantly enriched pathways in all tissue types. IL-1beta and ERK signaling pathways were
common across a wide range of tissue types. Chemokine signaling (in nasal epithelium) were the most significant pathways.
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were identified by GWAS and tissue-based gene expression analysis
(Torgerson et al., 2011). Overlaping DEGs between our study and
those asthma genes identified from GWA studies clustered by their
expression in asthma-relevant cells/ tissues (Supplementary Figure
5A and 5B). A gene-level circular heatmap shows tissue-wise DEGS
and GWAS-identified genes (Figure 5C).

Predicting asthma risk using easily accessible surrogate
clinical samples
Next, we attempted to ascertain whether more accessible clinical
sample types (such as blood, induced sputum, airway macrophage)
could be used to discriminate asthma from controls thereby poten-
tially useful for predicting asthma. Prediction analysis using SVMwas
used to determine a minimal set of genes that could best discriminate
asthmatics from controls. Representative asthma signature for pe-
ripheral blood, Airway Macrophage and Induced sputum that could
discriminate asthma from control with . 80% predictive accuracy
have been shown in Table 2. Interestingly, in our SVM model, the
expression of only a set of 10 genes could discriminate cases from
controls with 96% predictive accuracy.

Utilizing tissue-specific DEGs to identify candidate
ASTHMA therapeutics
Asthma has been recognized as a systemic disease consisting of
networks between various tissues showing inflammatory changes
involving a broad spectrum of structural cells, adaptive and innate
immune cells. Therefore, the DEGs identified from each tissue were
used to “connect” asthma with candidate therapeutics using com-
putational drug repurposing approach (Subramanian et al. 2017). For
this, tissue-specific asthma-associated gene expression signatures
were matched to previously characterized perturbagens that may
potentially reverse the signature in multiple cell/ tissue sample types.
Table 3 shows perturbagens associated with three or more asthma
tissue/sample types, occurrence (number of connected asthma tis-
sues), and their association with allergy/ asthma/ lung diseases (if
known). Perturbagens can be ‘genetic’ (gene knock-down and over-
expression; 20 candidates) or ‘pharmacologic compound’ (e.g., entino-
stat, BMS-345541, calyculin, importazole and topotecan; 5 candidates),

while pharmacologic compound could be sub-categorized into biologic
or chemical drugs. The connectivity scores of perturbagens are pre-
sented in supplement S1.

We found that no L1000-characterized perturbagen is shared by
all asthma tissue sample types. The candidate perturbagen shared by
most sample types is KLF6 (5 sample types), followed by BCL10,
HOXB13, IFNB1 and Entinostat (4 sample types each). While
20 other perturbagens (ATOX1, BAMBI, BMS-345541, CCNL1,
CDCA8, DHX8, DTX2, KLF3, LASP1, LOXL1, PPP2R3C, PREB,
PUF60, SORBS3, TRIP10, XPO7, YWHAZ, calyculin, importazole,
topotecan) are associated with three different sample types, large
numbers of perturbagens are connected to either two (171 perturba-
gens) or only one (1126 perturbagens) sample type. Several top-
ranking perturbagens have been indicated by previous studies to be
involved in allergy/ asthma or other lung diseases (i.e., Chronic
Obstructive Pulmonary Disease; COPD). Figure 6 depicts unique
and shared perturbagens connected to asthma status in different
asthma sample types. The blue connected dots (6A) indicate shared
candidates between sample types (gray tracks) with the asterisk
showing perturbagen connecting maximum samples, while the bar
chart (6B) indicates the number of unique perturbagens for each
sample type. Finally, figure 6C represents a clustered heatmap
generated using the connectivity scores (shown in supplementary
table s1) of perturbagens (25 significant perturbagens listed in table-
3) depicting the connections between disease, candidate perturbagens
and tissue-based gene signatures of asthma. Connectivity score values
of perturbagens were generated by touchstone application of CLUE
(www.clue.io). Further details about their characteristics have been
listed in Supplementary S2. Analysis of functional significance of
the perturbagens showed their roles in immune function, cellular
transport function, apoptosis and inflammation, with several agents
showing one or more overlapping functions. The results clearly
demonstrated that the connectivity scores of perturbagens can vary
depending on input source tissue used to identify asthma-relevant
DEGs. For example, the genetic perturbagen can be relevant for distal
fibroblasts, CD+ lymphocyte and nasal epithelium, but may not be
relevant for proximal fibroblasts and CD4+ lymphocytes. Similarly,
Macrophages, the chemical perturbagen entimostat may be relevant

Figure 5 Tissue-based expression of asthma-relevant genes identified by (A) GWAS retrieved from GWAS-catalog (European Bioinformatics
Institute) and by (B) literature mining identified by using Literature Lab (Accumenta, USA). The results showed that asthma-relevant genes can be
clustered by their expression in target cells/ tissues. Macrophage samples are closely associated with induced sputum samples, whereas CD4+ and
CD8+ lymphocyte samples cluster with peripheral blood samples in both (A) and (B) samples. Bronchial biopsy samples cluster together. The tissue-
based clustering of asthma-relevant genes has been very clearly demonstrated in case of genes identified by literature-mining (B). A gene-level
circular heatmap demonstrating tissue-wise expression of GWAS-identified genes have been shown in panel C.
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for distal fibroblasts, CD8+ lymphocytes and nasal epithelium, but
may actually have an opposing effect based on sputum and whole
blood asthma signatures. Collectively our results indicate a critical
role of tissue sample (used in generating gene expression data) in
identifying connected drug candidates.

DISCUSSION
Tissue-specific gene expression plays a fundamental role in multi-
cellular pathobiology (Song et al. 2013). However, until recently
direct comparative analysis across multiple tissue types was not
possible due to the limited number of gene expression data
available from public domain. Herein, we studied tissue-specific
DEGs in multiple datasets originating from independent studies
using multiple asthma tissue/ cell sample types (bronchial epi-
thelium, peripheral blood, CD4+ and CD8+ lymphocytes, nasal
epithelial, induced sputum, airway fibroblast and airway macro-
phages). To our knowledge this is the first study to identify and
compare tissue-specific asthma-relevant genes and pathways from
publicly available gene expression data and to utilize them for
better asthma management.

Multi-tissue transcriptomic analysis can identify
appropriate surrogate samples for invasive/ difficult to
collect samples
Although it is ideal to determine gene expression from target tissues
(i.e., cells from lung tissue in asthma), this is challenging when
considering the large number of samples required given the demands
of statistical power. However, recently studies have demonstrated the
value of focusing on surrogate target tissues/cells in predicting gene
expression in tissues/cells that are challenging to access in large
numbers (i.e., lung tissue), which have the potential to significantly
move the field forward. For example, Poole and colleagues used
whole-transcriptome sequencing (RNA-Seq) to demonstrate that the
nasal airway epithelium mirrors the bronchial airway (Marenholz
et al. 2006). Their study confirmed that children with asthma have an
altered nasal airway transcriptome compared with healthy controls,
and these changes are reflected by differential expression in the
bronchial airway. Noninvasively obtainable biological samples show-
ing considerable pathway-level overlap with difficult to obtain dis-
ease-relevant tissues could be used as surrogates for assessing disease
risk and progression. For example, in experimental data indicated
that nasal epithelial cells are easier to obtain and may act as a
surrogate for bronchial epithelium in asthma studies (Thavagnanam
et al. 2014; McDougall et al. 2008). The accurate prediction of tissue-
specific gene expression could thus provide useful information for
biomarker development and drug targeting. Since nasal epithelial tissue
and induced sputum are readily accessible from patients and controls,
this study does suggest using these samples as a model system for

asthma, as there is more pathway-level similarity to the upper airway
and bronchial samples, respectively.

Genes and networks interact across tissues and show
connection to Canonical Pathways showing the
hallmarks of asthma
A striking finding of our study is that the top significant DEGs do
not significantly overlap between tissues, rather participate in
complex pathways and networks crucial for asthma manifestation.
Several of these genes are involved in cellular processes such as cell
migration, airway remodeling and mucus production that are
crucial for asthma manifestation. For examples, significant DEGs
in our list are involved biomarkers of Th2 response (POSTN),
inflammation (NOS2, ALOX15) and mucus production (MUC5AC)
corroborated with a previous metanalysis of airway gene expression
in asthma.(Liu et al. 2018)

Pathway-level overlap between multi-tissue gene transcription
data shows that ‘leukocyte adhesion and diapedesis’ and ‘Th1/Th2
activation’ are top significantly enriched pathways in all samples –
both from the blood and the airway compartments (Figure 4a and
4b). The roles of these pathways in the installation (recruitment of
inflammatory cells from blood to airways) and persistence of in-
flammation is well known. Activation of IL-1beta, IL-7 and ERK
signaling pathways were common across a wide range of tissue types
maintaining inflammation. Signaling via Calcium-sensitive chloride
channels (CLCA1) plays critical part in mucus production and
hyperresponsiveness in the airways. Our study also identified Acute
Phase Response Signaling pathway and Nitric Oxide and Reactive
Oxygen Species (ROS) pathway activation in nasal, airway epithelial,
bronchial biopsy samples that might contribute to hyperresponsive-
ness, while chronic inflammation as well as pro-fibrotic factors (TGF-
beta signaling pathway and factors release by infiltrating eosinophils)
lead to sub-epithelial fibrosis with changes of the extracellular matrix
composition, smooth muscle growth, Goblet cell hyperplasia and
mucus secretion, collectively known as airway remodeling. Taken
together, pathway-level overlap distinctly reflects molecular features
of Hyperresponsiveness, inflammation and remodeling – three hall-
marks of asthma.

Multi-tissue transcriptomic analysis can be useful for
identifying candidate tissues for functional validation of
GWAS-identified genes
Since GWAS identify loci rather than functional variants, most
GWAS have provided limited insights into underlying mechanisms.
(Gallagher and Chen-Plotkin 2018) Genome-wide association studies
have nominated many genetic variants for common human traits,
including diseases, but in many cases the underlying biological reason
for a trait association is unknown.(Gallagher and Chen-Plotkin 2018;

n■ Table 2 SVM-generated classifiers (AsthmaGene Expression signatures) for sample types (blood,Macrophage, induced sputum) that are
widely used to study the pathology of asthma. Percent predictive accuracy for each classifier has also been indicated

Tissue Type Asthma Gene Signature (for .80% predictive accuracy)
% correct
prediction

Blood (GSE69683) MYD88, MYL12A, BOLA2, HBXIP, ACSL1, VPS24, GPM6B, F5, PDE7A, AB11FIP3, ZNF785,
TCF4, RAB11A, GPR109B, GNAQ, DIS3L2,, SLC7A5P1/P2, TSR2, AMICA1, CR1, QRICH1,
SERBP1, ZNF37A, DERL2, ZBTB20, CDC42SE1, NSMAF, KIAA0562, NT5C2, DAPP1,
ATP6V0E1, LOC203274, TMEM59, NAPEPLD, ANXA3, WIPI2, ATAD5, LARS, PTBP1, SPG7,
DNAJC16, IL6ST, CLN8, SAT1, EVI2B, MRPS5, AQP9, RPP14, ZNF747, GAPT

83

Macrophage Cells (GSE2125) KBTBD2, UPF3A, MLLT10, PSPC1, ST3GAL1, ARFRP1, TRIM14, EIF4G1, BM25, CDK11A/B, 83
Induced Sputum (GSE76262) IL18R1, TLR7, GPR85, LIMA1, SPINT1, EIF1AY, PDCD6, MGAT4A, CSTA, LOC100129845 96
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Gotoda 2015) Therefore, annotating the possible functional effects
of genetic risk variants is important in understanding genomic
data. Furthermore, the overlap between GWAS-identified genes
with tissue-specific gene expression should be given highest prior-
ity for expression studies. It is notable that many differentially
expressed genes were identified as genome-wide significant loci in
previous GWAS for asthma. This is supported by the observation
that several expression quantitative trait loci (eQTLs) are located
around TH2-related loci (TGF-b, POSTN, VEGF), and that airway
transcriptomics has revealed consolidation of certain expressed
genes into T1-driven vs. T2-driven modules (Modena et al. 2017;
Albert and Kruglyak 2015).

Connectivity map identifies perturbagens that can
potentially reverse asthma signature
DEGs identified from multiple tissues can be used for pharmacologic
techniques, such as drug repurposing, to identify candidate drugs that
can potentially reverse asthma signature at multi-tissue level. Using
asthma-relevant DEGs, we identified perturbagens (genetic or chem-
ical) that are primarily associated with immune function, cellular
transport, regulation of transcription and inflammation.

Asthma is currently treated with pharmacologic agents such as
glucocorticoids, long acting/ short acting beta-agonist in addition to
most recently the use of biologics. However, the pharmacologic
agents used to treat asthma may not significantly reverse/ modify
the expression of asthma-relevant genes at the multi-tissue level.
The current study utilized connectivity map approach to identify
perturbagens that might potentially reverse asthma signature at
multi-tissue level.

Perturbagens for 5 tissue types: The genetic perturbagen Kruppel-
like factor 6 (KLF6) is negatively associated with asthma in airway
epithelial cells, macrophages, distal airway fibroblasts, CD8+ peripheral

blood lymphocytes and nasal epithelial cell transcriptomes (Table 3).
KLF6 belongs to the family of Kruppel-like transcription factors that
critically regulate cellular/tissue homeostasis. Association of KLF6 gene
with lung function has been indicated from genomic data and from
in vitro experiments which showed that blocking of KLF6 in vitro can
decrease transforming growth factor b (TGF-b) production leading to
airway remodeling and asthma (Mgbemena et al. 2011; Duan et al.
2014). In the context of asthma, TGF-b acts as a pro-fibrotic immu-
nomodulatory cytokine produced by multiple cell types including
macrophages, epithelial cells and fibroblasts leading to airway remod-
eling and inflammation (Halwani et al. 2011; Al-Alawi et al. 2014; Chen
et al. 2016). Another Kruppel-like factor KLF3 (associated with
bronchial, distal fibroblasts, CD8+ cells) has also been shown in
tissue-resident memory lymphocytes in asthma (Vieira Braga et al.
2019). Therefore, their functional modifiers could modify/ reverse
asthma signature at the multi-tissue level.

Perturbagens associated with up to 4 tissue types: Three genetic
perturbagens (HOXB13, BCL10 and IFNB1) and one drug compound
perturbagen (entinostat; associated with Macrophages, FibroDistal,
CD8+, Nasal) are associated with four tissue types (Table 3). While
bcl-10 can modulate T cell proliferation, exogenous IFN‐b might
confer resistance to rhinoviral infection in humanmast cell rhinoviral
infection model (Akoto et al. 2017). Both BCL-10 and IFNB1 are
known to be associated with asthma status (Ramakrishnan et al. 2019;
Klemm et al. 2006; Bhakta et al. 2018). Among the perturbagens
associated with three different tissue types, we found four chemical
drugs and 16 genetic perturbagen candidates that negatively corre-
lated with asthma status, several of these are previously known for
their involvement in asthma. Major functional groups include: the
agents with anti-inflammatory function such as BMS-345541 (mar-
keted byMerck KGaA), a cell-permeable quinoxaline which primarily
binds IKK-2 and blocks NF-kB function, and dampens airway

n■ Table 3 Perturbagens associated with at least three asthma-relevant asthma sample types. occurrence (connection to number of asthma
tissues), associated asthma tissue/ sample type and their known associationwith allergy/ asthma/ lungdiseases (known/ unknown) have been
Mentioned

Perturbagen Occurrences Associated samples
Indicated in allergy/
asthma/ lung disease

KLF6 (Kruppel like factor 6) 5 AirEpi, Macrophages, FibroDistal, CD8+, Nasal Yes
BCL10 (B-cell lymphoma/ leukemia 10) 4 Macrophages, FibroDistal, CD4+, Blood Yes
HOXB13 Homeobox protein Hox-B13 4 Macrophages, Sputum, FibroDistal, Nasal No
IFNB1(Interferon beta 1) 4 Sputum, FibroDistal, CD8+, Blood Yes
Entinostat 4 Macrophages, FibroDistal, CD8, Nasal No
ATOX1(Antioxidant 1 Copper Chaperone) 3 FibroDistal, CD4, FibroProximal No
BAMBI(BMP and activin membrane bound inhibitor) 3 Macrophages, Sputum, Blood Yes
BMS-345541 3 FibroDistal, CD8+, Nasal Yes
CCNL1 (cyclin L1) 3 Macrophages, FibroDistal, CD8+ No
CDCA8 (cell division cycle associated 8) 3 AirEpi, CD8+, Blood No
DHX8 (DEAH-box helicase 8) 3 Sputum, Bronchial, Blood Yes
DTX2 (deltex E3 ubiquitin ligase) 3 AirEpi, Sputum, Nasal No
KLF3 (Kruppel like factor 3) 3 Bronchial, FibroDistal, CD8+ Yes
LASP1 (LIM and SH3 protein 1) 3 AirEpi, Macrophages, CD8+ Yes
LOXL1 (lysyl oxidase like 1) 3 AirEpi, Sputum, Blood Yes
PPP2R3C (protein phosphatase 2 regulatory subunit

B’’gamma)
3 AirEpi, Macrophages, Blood Yes

PREB(prolactin regulatory element binding) 3 Macrophages, FibroDistal, FibroProximal No
PUF60 (poly-U binding splicing factor 60) 3 Macrophages, CD8+, Nasal No
SORBS3 (sorbin and SH3 domain containing 3) 3 Macrophages, FibroProximal, Nasal No
TRIP10 (Thyroid Hormone Receptor Interactor 10) 3 Macrophages, Bronchial, FibroDistal No
XPO7 (Exportin 7) 3 AirEpi, Sputum, Bronchial Yes
YWHAZ 3 AirEpi, Bronchial, Nasal No
Calyculin 3 Macrophages, FibroDistal, Blood No

4058 | D. Ghosh et al.



inflammation and remodeling in mice model (Zhu et al. 2018).
BAMBI (Bone Morphogenetic Protein and Activin Membrane-
bound Inhibitor) has been described as a TGF-b type I pseudor-
eceptor, which regulates Treg/TH 17 differentiation (Onichtchouk
et al. 1999). BAMBI knock out mice model of asthma demonstrated
significantly reduced airway hyperresponsiveness, pulmonary inflam-
mation, broncho-alveolar lavage fluid (BALF) eosinophil count, as
well as diminished IL-4, IL-5, IL-13 and IL-6. In vitro data suggested
that this effect is mediated by a potential regulatory role for BAMBI in
TGF-b driven Treg differentiation (Vock et al. 2017). BAMBI also
regulates macrophages inducing the differentiation of Treg through
the TGF-[beta] pathway (Vock et al. 2015). In addition to asthma, the
enhanced plasma BAMBI level in COPD positively correlated with
the increased plasma TGF-b1 levels and peripheral Th17/Treg ratio
indicating the significance of TGF-beta/BAMBI pathway in pulmo-
nary disease (Zhang et al. 2016). LASP1, a protein-coding gene that
regulates cytoskeletal activity, is downregulated in sputum proteomics
of asthmatics (Takahashi et al. 2018). The Role of lysyl oxidases in
pathogenesis of pulmonary emphysema Lysyl oxidases regulate fi-
brillar collagen remodeling in idiopathic pulmonary fibrosis(Tjin et al.
2017) The copper-dependent lysyl oxidases play a role in the for-
mation and accumulation of elastic fibers in the extracellular matrix
and augments Pulmonary emphysema in COPD (Besiktepe et al.
2017). Increased fibrosis and remodeling potentially via periostin-
mediated pathway. Most of the perturbagens identified dsRNA-
induced changes in gene expression profiles of primary nasal and
bronchial epithelial cells from patients with asthma, rhinitis and
controls (Wagener et al. 2014). These genetic and chemical per-
turbagens could be regarded as novel drug candidates.

Finally, it is important to note that our analyses, and hence
interpretations, are subject to limitations associated with the data
available in the public domain. First, multi-origin transcriptome data
from independent investigators that could not be adjusted for age,
race, sex and asthma severity were used. We, therefore, could not
adjust all confounders. However, to minimize heterogeneity, the
datasets were analyzed individually to obtain up- and down-regulated
genes. Furthermore, the following transcriptome data were removed:
identifiable samples related to inhaled medication and tobacco use,
nasal polyps (in case of nasal dataset), animal cells, cultured cell lines.
Second, although considered as a state-of-the-art drug repurposing

tool, the drug perturbation gene expression profiles in connectivity
maps are derived from cancer cell lines, while the asthma tran-
scriptomic data are in vivo data from human patients. This could
contribute to noise in the connectivity results which should be
subjected to further validation in addition to acquiring multi-tissue
gene expression data from systemic asthma drugs including biologics
(e.g., Omalizumab). In spite of these limitations, the availability of
multiple data sets from public resources allowed us to explore DEGs
from various tissues to identify asthma-relevant genes specific and
shared tissue/cell types. Our analysis showed that tissue-specific, but
not tissue-combined analysis can resolve DEGs in principal compo-
nent analysis. Therefore, our transcriptome analysis was performed in
a tissue-specific manner without combining gene expression data
from multiple tissues. This approach was helpful to identify asthma
signatures from each tissue/ sample type and to use for potential drug
repurposing. The results from this study highlight the importance of
tissue specific analysis of gene expression data and that this tissue/
cell-type based approach could be used to treat the disease at tissue
specific or at systemic/multi-tissue level.

CONCLUSIONS
Our study utilized public domain gene expression data to capture an
integrated multi-tissue snapshot of asthma-relevant genes and path-
ways. This is, to our knowledge, the first report utilizing multi-tissue
transcriptomics for drug repurposing to manage asthma as depicted
in Figure 7. The results indicated that (1) Asthma, although primarily
affects the lungs, can be associated with tissue-specific DEGs and
signatures as seen in other systemic diseases; (2) Major significant
signature genes identified from each tissue/ sample type have pre-
viously-documented connections with asthma; (3) DEGs rarely over-
lap between tissues, but interact at the pathway level to manifest
asthma. Top significant networks show distinct functional roles
including bronchial hyperresponsiveness, inflammation and remod-
eling – three major hallmarks of asthma. Since asthma transcriptome
signature depends on tissue (source of RNA), it is important to
mention source tissue while presenting a gene signature; (4) Our
study represents a model of tissue-resolved asthma transcriptome
which can be used for (i) mapping asthma-relevant genes/ pathways
in tissues and their functional interactions (ii) to find appropriate
surrogate samples for difficult to obtain tissues (iii) to select appropriate

Figure 6 Asthma tissue transcriptome linked to drug repurposing. The blue connected dots (in A) indicate overlap between sample types (gray
tracks) while the asterisk showing perturbagen connectingmaximum tissue types. The bar chart (B) indicates the number of unique perturbagens for
each sample type with overlapped portion in orange. Clustered heatmap (C) connecting asthma-relevant tissue/ samples to perturbagens has been
generated using respective connectivity S1 Table scores) in each tissue. Asthma associated up and down-regulated genes identified form different
tissue/ sample types were used to identify perturbagens that can potentially reverse asthma signature in respective sample type.
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tissue for functional studies of GWAS-identified genes (iv) to use
in rational drug development such as connectivity map analysis; (5)
Although major networks shows their functional relevance to asthma,
limited per-sample demographic/ clinical data are currently available in
the public domain. Therefore, future studies should focus on collecting
transcriptomic data from multiple sample types, age and race groups,
genetic background, disease subtypes and better annotated data should
be made available in the public domain. Taken together, while previous
studies have used different samples types to identify asthma-relevant
genes and pathways, the present work has demonstrated the utility
of multi-tissue gene expression data as parts of a puzzle to obtain an
integrated overview of asthma.
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